On multi-particle Brownian survivals and the spherical Laplacian

Balakrishna B S

4 January 2013
On Multi-Particle Brownian Survivals and the Spherical Laplacian

B S Balakrishna*

January 4, 2013
Revised: January 25, 2013

Abstract

The probability density function for survivals, that is for transitions without hitting a barrier, for a collection of particles driven by correlated Brownian motions is analyzed. The analysis is known to lead to a study of the spectrum of the Laplacian on domains on the sphere in higher dimensions. The first eigenvalue of the Laplacian governs the large time behavior of the probability density function and the asymptotics of the hitting time distribution. It is found that the solution leads naturally to a spectral function, a ‘generating function’ for the eigenvalues and multiplicities of the Laplacian. Analytical properties of the spectral function suggest a simple scaling procedure for determining the first eigenvalue, readily applicable for a homogeneous collection correlated particles. Comparison of the first eigenvalue with the available theoretical and numerical results for some specific domains shows remarkable agreement.

The case of a particle obeying Brownian motion in one dimension under different boundary conditions have been well studied. For instance, in the simplest case of a single barrier, the probability density function for transition without hitting the barrier is expressible in closed form. No closed form solutions exist in the case of a collection of such particles driven by correlated Brownian motions. The problem of \(n \) particles each restricted by a barrier can be recast into a that of solving the heat equation or the diffusion equation in a conical region in \(n \)-dimensions. Within such a context, the problem has been addressed by various authors in the past and series solutions have been obtained. The \(n = 2 \) solution was obtained by Sommerfeld [1894]. It has been addressed within the context of default correlation by Zhou [2001]. The \(n = 3 \) case was considered within the context of circular cones by Carslaw and Jaeger [1959]. For higher dimensions, the applicable solution has been presented by Cheeger [1983]. The probability of survival as such was obtained by DeBlassie [1987] and its implications for hitting times discussed.

The radial component of the diffusion equation is identifiable with the differential equation for a Bessel process whose solution is well-known. The angular component of the series solution governing \(n \) Brownian particles involves the eigenvalues and the eigenfunctions of the Laplacian on a domain on the \(n - 1 \) dimensional sphere. The first eigenvalue of the Laplacian determines the large time behavior of the survival probability and hence the finiteness of the expected hitting time. It is found that the solution leads naturally to a spectral function, a ‘generating function’ for the eigenvalues and their multiplicities, expressible in closed form for certain domains on the sphere such as the octant triangle on the two-sphere

*balakbs2@gmail.com
and analogous ones on higher dimensional spheres. Analytical properties of the spectral function suggest a simple scaling procedure to estimate the eigenvalues, readily applicable to analyze the survival probability of a homogeneous collection of correlated particles. The estimates appear to be satisfactory for the first few eigenvalues finding excellent agreement with the available theoretical and numerical results.

The article is organized as follows. Sections 1, 2 and 3 address the solutions for one, two and many particle systems. Section 4 discusses a spectral function for the Laplacian arising naturally from the series solution. Section 5 analyzes some of the analytical properties of the spectral function. Section 6 discusses a scaling procedure to estimate the eigenvalues and their applicability to a homogeneous collection of correlated particles. Section 7 compares the estimates with some of the available theoretical and numerical results.

1 One Particle

Consider a particle driven by Brownian motion with position variable x. The probability density $f(x, x', \tau)$ that the particle at position x at any time t reaches x' at time $T = t + \tau$ is obtained by solving the differential equation

$$\frac{\partial f}{\partial \tau} = \frac{1}{2} \frac{\partial^2 f}{\partial x^2}. \quad (1)$$

A constant drift term may also be present but ignored for simplicity of presentation. A suitable scaling of x is done to standardize the coefficient of the second order term. The above is the well-studied heat equation or the diffusion equation in one dimension having the fundamental solution

$$f(x, x', \tau) = \frac{1}{\sqrt{2\pi \tau}} e^{-\frac{1}{2\tau} (x-x')^2}. \quad (2)$$

As required, $f(x, x', \tau) \to \delta(x - x')$ as $\tau \to 0$.

Consider next a barrier at $x = 0$. We will now be interested in the probability density that the particle at $x > 0$ at any time t reaches $x' > 0$ at time $T = t + \tau$ without hitting the barrier. The requirement that the particle does not hit the barrier can be stated as Dirichlet boundary condition $f(0, x', \tau) = 0$. The solution to the differential equation is easily obtained by the method of images,

$$f(x, x', \tau) = \frac{1}{\sqrt{2\pi \tau}} (e^{-\frac{1}{2\tau} (x-x')^2} - e^{-\frac{1}{2\tau} (x+x')^2}) = \sqrt{\frac{2}{\pi \tau}} e^{-\frac{1}{2\tau} (x^2+x'^2)} \sinh \left(\frac{xx'}{\tau} \right). \quad (3)$$

The total probability $p(x, \tau)$ that the particle travels without hitting the barrier is then

$$p(x, \tau) = \int_0^\infty dx' f(x, x', \tau) = 1 - 2 \frac{x}{\sqrt{\tau}} N \left(\frac{x}{\sqrt{\tau}} \right), \quad (4)$$

where N is the cumulative standard normal distribution function. This has the large-time behavior $\sim \tau^{-\frac{1}{2}}$ resulting in an infinite expected hitting time.

2 Two Particles

Next consider two particles with positions x_1 and x_2, together denoted \mathbf{x}, driven by Brownian motions correlated with a correlation parameter ρ. Let the barriers be set at $x_1 =$
0 for the first particle and \(x_2 = 0\) for the second. The transition probability density
\[
\frac{1}{\sqrt{1-\rho^2}} f(x, x', \tau)
\]
that the particles at \(x > 0\), that is \(x_1 > 0\) and \(x_2 > 0\), at any time \(t\) reach \(x' > 0\) at time \(T = t + \tau\) without either of them hitting the barrier is now governed by the differential equation
\[
\frac{\partial f}{\partial \tau} = \frac{1}{2} \left[\frac{\partial^2 f}{\partial x_1^2} + 2\rho \frac{\partial^2 f}{\partial x_1 \partial x_2} + \frac{\partial^2 f}{\partial x_2^2} \right],
\]
subject to Dirichlet boundary conditions \(f(x, x', \tau)|_{x_1=0} = f(x, x', \tau)|_{x_2=0} = 0\). As before, for simplicity of presentation, constant drift terms are ignored and a suitable scaling of \(x_1\) and \(x_2\) is done to standardize the coefficients. The above equation can be diagonalized with the change of variables
\[
y_1 = \frac{1}{\sqrt{1-\rho^2}} (x_1 - \rho x_2), \quad y_2 = x_2.
\]

In this new system of coordinates, the differential equation becomes
\[
\frac{\partial f}{\partial \tau} = \frac{1}{2} \left[\frac{\partial^2 f}{\partial y_1^2} + \frac{\partial^2 f}{\partial y_2^2} \right].
\]

This is the heat equation or the diffusion equation in 2-dimensions. Boundary conditions in the new coordinate system are
\[
y_1 = -\frac{\rho}{\sqrt{1-\rho^2}} y_2, \quad y_2 = 0.
\]

It is convenient to go to polar coordinates \(r\) and \(\theta\) where
\[
r = \sqrt{y_1^2 + y_2^2}, \quad \theta = \cos^{-1} \left(\frac{y_1}{r} \right), \quad 0 \leq \theta \leq \varphi = \cos^{-1}(-\rho).
\]

The differential equation to be solved now reads
\[
\frac{\partial f}{\partial \tau} = \frac{1}{2} \left[\frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} \right].
\]

Angular functions \(\sin(\nu \theta)\) can be chosen to vanish on the boundaries at \(\theta = 0\) and \(\theta = \varphi\) so that \(f(x, x', \tau)\) can be expanded in Fourier series as
\[
f(x, x', \tau) = \sum_{\nu} g_{\nu}(r, \tau) r^\nu \sin(\nu \theta), \quad \nu = \frac{k\pi}{\varphi}, \quad k = 1, 2, \ldots.
\]

The differential equation now reduces to
\[
\frac{\partial g_{\nu}}{\partial \tau} = \frac{1}{2} \frac{\partial^2 g_{\nu}}{\partial r^2} + \frac{2\nu + 1}{2r} \frac{\partial g_{\nu}}{\partial r}.
\]

This is the differential equation describing the Bessel process. Its solution is well-known: \(\frac{r'^2}{\tau}\) is distributed as the non-central chi-squared distribution with \(2(\nu + 1)\) degrees of freedom and non-centrality parameter \(\frac{r^2}{\tau}\). We thus have for the \(r'-\)distribution
\[
g_{\nu}(r, \tau) \propto \frac{1}{\tau} \chi^2 \left(\frac{r'^2}{\tau}, 2(\nu + 1), \frac{r^2}{\tau} \right) \propto \frac{1}{\tau} r^{-\nu} e^{-\frac{1}{2} \left(r'^2 + r^2 \right)} I_{\nu} \left(\frac{r r'}{\tau} \right),
\]
where I_ν is the modified Bessel function. Some factors involving r' have been dropped as the appropriate normalization is determined below. Putting together, we have

$$f(x, x', \tau) = \frac{2}{\varphi \tau} e^{-\frac{1}{\tau}(r^2 + r'^2)} \sum_{\nu} I_\nu \left(\frac{rr'}{\tau} \right) \sin(\nu \theta) \sin(\nu \theta'). \quad (14)$$

To verify the factors, note that $dx_1 dx_2 = \sqrt{1 - \rho^2} r dr d\theta$, and that $f(x, x', t) \to \delta(r - r') \delta(\theta - \theta') = \sqrt{1 - \rho^2} \delta(x_1 - x'_1) \delta(x_2 - x'_2)$ in the limit $\tau \to 0$. The asymptotic behavior $I_\nu(x) \to (2\pi x)^{-\frac{1}{2}} e^x, x \to \infty$ for fixed ν gives rise to $\delta(r - r')$ in the form of a limiting normal distribution in $\sqrt{1 - \rho^2} (r - r')$ (roughly, since the series involves sum over $\nu \to \infty$).

The above result was obtained differently by Sommerfeld [1894]. It has been addressed within the context of default correlation by Zhou [2001]. The total probability of survival $p(x, \tau)$ can be obtained by integrating over $x'_1 > 0$ and $x'_2 > 0$,

$$p(x, \tau) = \sqrt{\frac{2\pi \tau}{\varphi}} e^{-\frac{r^2}{4\tau}} \sum_{\nu \text{ odd}} \frac{1}{\nu} \left[I_{\nu+1} \left(\frac{r^2}{4\tau} \right) + I_{\nu-1} \left(\frac{r^2}{4\tau} \right) \right] \sin(\nu \theta), \quad (15)$$

where by ν odd, it is meant that the integers k in (11) are restricted to be odd.

3 Many Particles

We now come to a correlated system of n Brownian particles with a position vector x describing collectively their positions, governed by

$$\frac{\partial f}{\partial \tau} = \frac{1}{2} \sum_{ij} R_{ij} \frac{\partial^2 f}{\partial x_i \partial x_j}. \quad (16)$$

This is the differential equation for the transition probability density $\frac{1}{\sqrt{\text{det}R}} f(x, x', \tau)$. More generally one would have a covariance matrix on the right hand side. For convenience, x_i’s are suitably scaled so that covariance matrix is replaced by the correlation matrix R_{ij}. Constant drift terms have also been ignored for simplicity.

The domain D^n we are concerned with for x is $x_i > 0, i = 1, \ldots, n$ with Dirichlet boundary conditions $f(x, x', \tau) = 0$ when any one of the x_i’s is set to zero. It is also expected that $f(x, x', \tau)$ goes to zero when any one of the x_i’s is taken to infinity. As before, it is convenient to work in the diagonalized system that diagonalizes R and scales it into identity so that the differential equation involves the Laplacian ∇^2,

$$\frac{\partial f}{\partial \tau} = \frac{1}{2} \nabla^2 f, \quad \nabla^2 = \sum_i \frac{\partial^2}{\partial y_i^2}. \quad (17)$$

This is the heat equation or the diffusion equation in n-dimensions. Dot-products defined as $u \cdot v = \sum_{ij} R_{ij}^{-1} u_i v_j$ for any two vectors u and v and the implied lengths remain invariant but now get diagonalized expressions. It is further convenient to split the coordinates y into radial and angular parts, r and \hat{r},

$$r^2 = \sum_i y_i^2 = \sum_{ij} R_{ij}^{-1} x_i x_j, \quad \hat{r} = \frac{y}{r}. \quad (18)$$
In the diagonalized system, domain D^n intersects into a domain Ω'^{n-1} traced out by the unit radial vectors \hat{r} on the $n - 1$ dimensional sphere S^{n-1} at $r^2 = 1$.

Functions on Ω'^{n-1} can be equivalently expressed as zero-degree homogeneous functions in D^n. Solving the Laplace equation $\nabla^2 (r'^\nu h_{\nu\sigma}) = 0$ in D^n for a ν-degree homogeneous function $r'^\nu h_{\nu\sigma}(\hat{r})$ is equivalent to solving the Laplacian eigenvalue problem

$$\nabla^2 h_{\nu\sigma}(\hat{r}) = -\lambda h_{\nu\sigma}(\hat{r}), \quad \lambda = \nu(n + 2)$$

(19)

for a zero-degree homogeneous function $h_{\nu\sigma}(\hat{r})$. Here $\nabla^2 = r^2 \nabla^2$ acting on functions of \hat{r} is the Laplacian on S^{n-1} and $h_{\nu\sigma}(\hat{r})$ is the eigenfunction, σ labeling any multiplicity. Boundary value problems of the above kind have been extensively studied and it turns out that the eigenvalues are all non-negative and discrete and that the eigenfunctions form a complete system. Hence ν’s can also be taken to be non-negative and discrete and we will assume that the eigenfunctions are normalized to form an orthonormal system

$$\int_{\Omega'^{n-1}} d^{n-1} \hat{r} h_{\nu\sigma}(\hat{r}) h_{\nu'\sigma'}(\hat{r}) = \delta_{\nu\nu'} \delta_{\sigma\sigma'},$$

(20)

where $d^{n-1} \hat{r}$ is the volume element (area element if $n = 3$) on the unit sphere S^{n-1}.

The complete system of eigenfunctions $h_{\nu\sigma}(\hat{r})$ enable us to expand $f(\mathbf{x}, \mathbf{x}', \tau)$ as

$$f(\mathbf{x}, \mathbf{x}', \tau) = \sum_{\nu\sigma} g_{\nu\sigma}(r, \tau) r'^\nu h_{\nu\sigma}(\hat{r}).$$

(21)

The Laplacian on $g_{\nu\sigma} r'^\nu h_{\nu\sigma}$ separates into that on $g_{\nu\sigma} r'^\nu$ and $h_{\nu\sigma}$. Its action on $h_{\nu\sigma}$ is given by (19) so that the differential equation for $f(\mathbf{x}, \mathbf{x}', \tau)$ gives rise to

$$\frac{\partial g_{\nu\sigma}}{\partial \tau} = \frac{1}{2} \frac{\partial^2 g_{\nu\sigma}}{\partial r^2} + \frac{2\nu + n - 1}{2r} \frac{\partial g_{\nu\sigma}}{\partial r}.$$

(22)

This is again the differential equation describing the Bessel process. Hence, $\frac{r'^2}{\tau}$ is distributed as the non-central chi-squared distribution with $2\nu + n$ degrees of freedom and non-centrality parameter $\frac{r'^2}{\tau}$. We thus have for the r'-distribution,

$$g_{\nu\sigma}(r, \tau) \propto \frac{1}{\tau} e^{-\frac{1}{\tau^2} \left(\frac{r'^2}{\tau} + 2\nu + n, \frac{r^2}{\tau} \right)} \propto \frac{1}{\tau} e^{-\frac{1}{\tau^2} \left(\frac{(r'^2 + r^2)}{\tau} \right) r^{-\nu - \frac{n-2}{2}} I_{\nu + \frac{n-2}{2}} \left(\frac{r'^2}{\tau} \right)}.$$

(23)

where again I_{ν} is the modified Bessel function. Some factors involving r' have been dropped as the appropriate normalization is determined below. Putting these together, we have

$$f(\mathbf{x}, \mathbf{x}', \tau) = \frac{1}{\tau} (rr')^{-\frac{n-2}{2}} e^{-\frac{1}{\tau^2} \left(\frac{(r'^2 + r^2)}{\tau} \right)} \sum_{\nu} I_{\nu + \frac{n-2}{2}} \left(\frac{r'^2}{\tau} \right) \sum_{\sigma} h_{\nu\sigma}(\hat{r}) h_{\nu\sigma}(\hat{r}).$$

(24)

To verify the factors, note that the integration measure is $d^n x = \sqrt{\det R} r^{n-1} dr d^{n-1} \hat{r}$, and that $f(\mathbf{x}, \mathbf{x}', \tau) \to \sqrt{\det R} \delta(\mathbf{x} - \mathbf{x}')$ in the limit $\tau \to 0$. The asymptotic behavior $I_{\nu}(x) \to (2\pi x)^{-\frac{1}{2}} e^x$, $x \to \infty$ for fixed ν gives rise to $\delta(r - r')$ in the form of a limiting normal distribution in $\frac{1}{\sqrt{\tau}} (r - r')$ (roughly, since the series involves sum over $\nu \to \infty$).

The above result was obtained differently under different contexts by various authors. For $n = 2$ it was obtained by Sommerfeld [1894]. For $n = 3$, it was considered within the

\[^{1} \nabla^2 \text{ acting on a product } g(r) h(\hat{r}) \text{ separates into } \nabla \cdot (\nabla g) h + g(\nabla^2 h) \text{ when } h(\hat{r}) \text{ is zero-degree homogeneous function because of the vanishing of the cross term } \nabla (\nabla g) \cdot (\nabla h) = \partial_r (g r^{-1} (y \cdot \nabla) h) = 0. \]
context of circular cones by Carslaw and Jaeger [1959]. For general dimensions, it has been presented by Cheeger [1983]. The leading term in the series (24) can be obtained by making use of the expansion for the Bessel functions,

\[
f(x, x', \tau) \sim \frac{2}{\Gamma(\nu_1 + \frac{n}{2})(2\tau)^{n/2}} \left(\frac{rr'}{2\tau} \right)^{\nu_1/2} e^{-\frac{1}{2\tau}(r^2 + r'^2)} h_{\nu_1}(\hat{r}) h_{\nu_1}(\hat{r}').
\]

where \(\nu_1 \) is the first \(\nu \) and \(\Gamma \) is the Gamma function. In the case of an independent collection of particles in the presence of the barrier, we know that \(f(x, x', \tau) \) is given by the product of individual expressions (3) so that

\[
f(x, x', \tau) = \left(\frac{2}{\pi \tau} \right)^{n/2} e^{-\frac{1}{2\tau}(r^2 + r'^2)} \prod_{i=1}^{n} \sinh \left(\frac{x_i x_i'}{\tau} \right).
\]

In this case, series (24) can be viewed as a representation of product of sinh's in terms of modified Bessel functions.

The total probability of survival \(p(x, \tau) \) can be obtained by integrating \(f(x, x', \tau) \) with respect to \(x' \) on \(D^n \) giving (in the absence of drift)

\[
p(x, \tau) = \tau^{\frac{n}{2}} \tau^{-n} e^{-\frac{r^2}{2\tau}} \sum_\nu \tilde{I}_{\nu+n/2} \left(\frac{r^2}{\tau} \right) \sum_{\sigma} h_{\nu\sigma}(\hat{r}) \tilde{h}_{\nu\sigma},
\]

where

\[
\tilde{I}_\nu(a) = \int_0^\infty dt \, t^{\nu} e^{-\frac{a^2}{4t}} I_\nu(t), \quad \text{and} \quad \tilde{h}_{\nu\sigma} = \int_{\Omega^{n-1}} d^{n-1}\hat{r} h_{\nu\sigma}(\hat{r}).
\]

This result in terms of a hypergeometric function was obtained directly from the differential equation by DeBlassie [1987] who also discussed its implications for hitting times. The first term in the series is guaranteed to be positive since it is well known that the first \(h_{\nu\sigma} \) can be taken to be positive within the domain. For large \(\tau \), \(p(x, \tau) \) has the behavior \(\sim \tau^{-\nu_1/2} \), implying that the expected hitting time will be finite if \(\nu_1 > 2 \). As discussed in the next section, for an independent collection of particles, \(\nu_1 = n \) so that the expected hitting time will be finite for \(n \geq 3 \). For a positively correlated collection of particles we expect \(\nu_1 < n \) but greater than \(n - 1 \) as long as correlations are not too large so that the expected hitting time will remain finite for \(n \geq 3 \). For a homogeneous collection of 3 particles with a common correlation of \(\frac{1}{2} \), the result of Ratzkin and Treibergs [2009] is applicable giving \(\nu_1 \approx 1.826 \) and as discussed by them the expected hitting time will be finite only for \(n \geq 4 \).

4 Spectrum On The Sphere

The solution for the transition probability density obtained in the last section is expressed in terms of the eigenvalues and the eigenfunctions of the Laplacian on the sphere. Hence, let us have a look into spectrum of the Laplacian on a domain \(\Omega^{n-1} \) on the sphere \(S^{n-1} \) in \(n \)-dimensions corresponding to a collection of \(n \) particles.

Many results are known in general about the eigenvalues and eigenfunctions of the Laplacian. For instance, the first eigenvalue has no multiplicity and the corresponding eigenfunction can be taken to be positive within the domain. In the case of independent particles in the absence of the barrier, \(\Omega^{n-1} \) is the whole of \(S^{n-1} \) and the resulting spectrum is well-known. In this case \(\nu \) is an integer taking values from zero to infinity. The first \(\nu \),
denoted \(\nu_1 \), is zero corresponding to a constant function on \(S^{n-1} \). The multiplicities of the eigenvalues will be revisited below.

In the independent case in the presence of the barrier, it is straightforward to show that \(\nu_1 = n \). In fact, being independent, the simplest homogeneous function solving the Laplace equation in \(D^n \) and vanishing on the boundaries is of degree \(n \) and is given simply by the product of the \(n \)-coordinates consistent with equation (26). It is further clear that adding an independent particle to a correlated collection would increase \(\nu_1 \) by one. If the added independent particle is not subject to the boundary condition, \(\nu_1 \) would remain the same. These observations are not trivial when formulated on a spherical domain.

To say more about the spectrum of the Laplacian on the sphere, let us next derive a spectral function, a 'generating function' for the eigenvalues and multiplicities in terms of \(f(x, x', \tau) \). In the result (24), the multiplicities of eigenfunctions appear as projections into the eigenspaces. These projections help us in obtaining the spectral function. Towards this end, let us set \(x' = x \) and \(\tau = 1 \) to obtain

\[
f(x, x, 1) = r^{2-n} e^{-r^2} \sum_{\nu} I_{\nu + \frac{n-2}{2}} (r^2) \sum_{\sigma} (\hat{h}_{\nu \sigma}(\hat{1}))^2.
\]

(29)

Note that a further operation of integrating over \(y \), along with any \(\hat{1} \)-independent weight, would integrate \((\hat{h}_{\nu \sigma}(\hat{1}))^2 \) to unity (its normalization) introducing the multiplicity \(m_{\nu} \). This procedure\(^2\) derives the following expression for the spectral function \(M(z) \),

\[
M(z) \equiv \sum_{\nu} m_{\nu} z^{\nu} = \left(1 - z^2\right)^{-\frac{n}{2}} \int_{D^n} d^n y e^{-\frac{1}{2}(1-z)^2 r^2} f(x, x, 1),
\]

(31)

where \(0 < z < 1 \) and \(r \) is the length of \(x \) or \(y \). If the right side can be computed, this provides us with not only the multiplicities but the eigenvalues as well.

The above function arose naturally from the solution of the heat equation on the cone. It differs from the usually studied trace of the heat kernel, \(\text{Tr} e^{t \nabla^2} \), in that it is not the eigenvalues \(\nu(\nu + n - 2) \) of \(-\nabla^2 \) that appear in the exponents, but rather \(\nu \)'s themselves. Its derivation did not assume any specific character of the domain, except that \(D^n \) is conical intersecting \(S^{n-1} \) into some domain \(\Omega^{n-1} \). But its applicability depends on our knowledge of \(f(x, x, 1) \). This is not expected to be the case in general. Below, let us first consider some special cases for which we do know \(f(x, x, 1) \).

Consider again the case of independent particles with no barrier. In this case the integration range covers all of \(x \), that is, it includes \(x < 0 \) as well. Knowing \(f(x, x, 1) = (2\pi)^{-\frac{d}{2}} \) as a product from \(n \)-individual free Brownian motions at \(x = x', \tau = 1 \) (see (2)), one readily obtains

\[
M(z) = (1 - z^2)(1 - z)^{-n} = \sum_{k=0}^{\infty} \left[\binom{n + k - 1}{n - 1} - \binom{n + k - 3}{n - 1} \right] z^k.
\]

(32)

This gives the right eigenvalues and multiplicities on the whole sphere \(S^{n-1} \). The two terms inside square brackets are the dimensions of the spaces of degree \(k \) and degree \(k - 2

\(^2\text{Eqn. (29) is multiplied by } e^{-(s-1)^2} \text{ and integrated over } y \text{ making use of the Laplace transform of } I_{\nu},

\[
\int_0^\infty dt I_{\nu}(t)e^{-st} = \left(\frac{s - \sqrt{s^2 - 1}}{\sqrt{s^2 - 1}}\right)^\nu.
\]

(30)

Further, \(s \) is replaced by \(\frac{1}{2} \left(z + \frac{1}{z} \right) \) introducing variable \(z = s - \sqrt{s^2 - 1} \).
homogeneous polynomials in \(n \) variables, and the role of \(1 - z^2 \) is hence to choose the difference for the dimension of the space of degree \(k \) harmonic homogeneous polynomials, that is those satisfying the Laplace equation in \(n \)-dimensions.

For the case of independent particles with the barrier, \(f(x, x, 1) \) is given by (26) that generates the spectral function

\[
M(z) = z^n (1 - z^2)^{1-n} = \sum_{k=1}^{\infty} \left(\frac{n + k - 3}{n - 2} \right) z^{n+2k-2}.
\]

This corresponds to a domain \(\Omega^0_{n} \) on \(S^{n-1} \) that is \(2^n \) of its size obtained by cutting away the sphere into half. \(n \)-times: a quadrant arc on \(S^1 \), an octant triangle on \(S^2 \) or an analogous domain on a higher dimensional sphere. In the case of two correlated particles, we know from section 2 that \(\nu \)'s are multiples of \(\frac{n}{2} \) and are all of multiplicity one. Its spectral function is hence \(z^\frac{n}{2} (1 - z^2)^{-1} \) that becomes \(z^2 (1 - z^2)^{-1} \) in the independent case corresponding to a quadrant arc in agreement with (33).

Note that \(M(z) \), except for the factor \(1 - z^2 \), factorizes across subsystems that are mutually independent but may well be internally dependent. Hence, \(M(z) \) for a system comprising of two subsystems independent of each other with spectral functions \(M_1(z) \) and \(M_2(z) \) that are not necessarily of the independent types is given by

\[
M(z) = \frac{1}{1 - z^2} M_1(z) M_2(z).
\]

For example, if \(p \) particles have no barrier and \(q \) ones do, the product system has

\[
M(z) = (1 - z^2) (1 - z)^{-p} z^q (1 - z^2)^{-q}.
\]

This corresponds to \(n = p + q \) and the domain on \(S^{n-1} \) is obtained by cutting away the sphere into half, \(q \)-times. Knowing the spectral function for correlated pairs of particles, one or more of such pairs can be included in the above expression.

If we are interested in exploring the \(h_{\nu \sigma}(\hat{r}) \) functions themselves, we could rederive our results without the angular integration to obtain

\[
M(\hat{r}, \hat{r}', z) \equiv \sum_{\nu} m_{\nu}(\hat{r}, \hat{r}') z^\nu = (1 - z^2) z^{-\frac{\nu}{2}} \int_0^{\infty} dr r^{n-1} e^{-\frac{1}{2} (1-z)^2 r^2} f(r \hat{\alpha}, r \hat{\alpha}', 1),
\]

where \(m_{\nu}(\hat{r}, \hat{r}') = \sum_{\sigma} h_{\nu \sigma}(\hat{r}) h_{\nu \sigma}(\hat{r}') \). This provides us with a spectral function for the projections onto the eigenspaces. As a function of \(z \hat{r} \) and \(\hat{r}' \) with \(z \) considered as a radial coordinate, it can be identified as a kernel satisfying the Laplace equation on the cone under Dirichlet boundary conditions within the unit sphere tending to \(\delta(\hat{r} - \hat{r}') \) as \(z \to 1 \). In the case of \(n \) independent particles without barrier, that is on the whole sphere \(S^{n-1} \), we get

\[
M(\hat{r}, \hat{r}', z) = \frac{1}{|S^{n-1}|} \frac{1 - z^2}{(1 - 2z \cos \theta + z^2)^{\frac{n-1}{2}}},
\]

where \(\theta \) is the angle between \(\hat{r} \) and \(\hat{r}' \), and \(|S^{n-1}| \) is the size of the sphere \(S^{n-1} \). This is the Poisson kernel of the \(n \)-dimensional unit ball at points \(z \hat{r} \) and \(\hat{r}' \) that when expanded in powers of \(z \) gives rise to zonal harmonics as projections in terms of Gegenbauer (ultraspherical) polynomials. Less simpler expressions can be derived in other independent cases by setting one or more directions to have barrier.
5 Analytical Properties

On continuing from the $z < 1$ region, $M(z)$ exhibits a singularity at $z = 1$. At least for the various cases considered, the singularity is a pole of order $n - 1$ (the dimension of the sphere) so that we may write around $z = 1$

$$M(z) = \frac{c_0}{(1 - z)^{n-1}} + \frac{c_1}{(1 - z)^{n-2}} + \cdots. \quad (38)$$

Coefficients c_0 and c_1 can be determined,

$$c_0 = 2 \frac{|\Omega^{n-1}|}{|S^{n-1}|}, \quad c_1 = \frac{1}{2} c_0 - \frac{1}{2} \frac{\partial |\Omega^{n-1}|}{\partial |\Omega^{n-2}|}. \quad (39)$$

It is convenient to write $c_1 = -\frac{1}{2}(1 + \gamma) c_0$ introducing

$$\gamma = -2 \frac{c_1}{c_0} - 1 = \frac{1}{2} \frac{|\Omega^{n-1}|}{|\Omega^{n-2}|} \frac{\partial |\Omega^{n-1}|}{|\Omega^{n-1}|}. \quad (40)$$

Above, $|\Omega^{n-1}|$ is the size of the domain Ω^{n-1} and $|\partial \Omega^{n-1}|$ is that of its boundary $\partial \Omega^{n-1}$. $|S^{n-1}|$ and $|S^{n-2}|$ are the sizes of $n - 1$ and $n - 2$ dimensional spheres of unit radii respectively. Sizes of Ω^{n-1} and $\partial \Omega^{n-1}$ are measured in units set by the $n - 1$ dimensional sphere S^{n-1} of unit radius on which they reside.

The leading coefficient c_0 can be determined by letting $z \to 1$ in the expression for $M(z)$. Note that the exponential inside the integral would no longer provide the suppression as $r \to \infty$. As $r \to \infty$, the effect of the boundary becomes insignificant and $f(x, x, 1)$ tends to a constant $(2\pi)^{-\frac{n}{2}}$ (n factors from (2) at $x = x', \tau = 1$). The integral is thus dominated by regions near $r = \infty$ where the angular integral contributes $|\Omega^{n-1}|$. This gives, as $\epsilon = 1 - z \to 0$,

$$M(1 - \epsilon) \sim 2\epsilon \int_0^\infty dr r^{n-1} e^{-\frac{1}{2}r^2} \frac{|\Omega^{n-1}|}{(2\pi)^\frac{n}{2}} = 2 \frac{\Gamma\left(\frac{n}{2}\right)}{2\pi^{\frac{n}{2}}} \frac{|\Omega^{n-1}|}{\epsilon^{n-1}}. \quad (41)$$

The factors in front can be identified as twice the inverse size of the sphere S^{n-1}.

The next coefficient c_1 can be determined by the method of images. To start with, note that the contribution to $M(z)$ coming from the source alone,

$$\frac{c_0}{2} \frac{1 + z}{(1 - z)^{n-1}} = \frac{c_0}{2} \frac{1}{(1 - z)^{n-1}} - \frac{c_0}{2} \frac{1}{(1 - z)^{n-2}}, \quad (42)$$

makes an order $n - 1$ contribution as well. In the method of images, the source placed within the domain induces images across the boundary that cancel out the source effect on the boundary to ensure zero boundary condition. Since $f(x, x, 1)$ is evaluated at the source location itself, as x is varied, the source moves and the images follow the source. As $r \to \infty$ many of the images will recede away from the source. The leading contribution comes from the image brought closest to the source by taking the source close to the boundary. Its contribution is $\sim -(2\pi)^{-\frac{n}{2}} e^{-y_\perp^2}$. Here y_\perp is the perpendicular distance of the image to the boundary so that the image to source distance is $2y_\perp$. The image contribution as $\epsilon = 1 - z \to 0$ is

$$-\frac{2\epsilon}{(2\pi)^\frac{n}{2}} \int_0^\infty dr r^{n-2} e^{-\frac{1}{2}r^2} \int_{\partial \Omega_\perp} dy_\perp e^{-2y_\perp^2} = -\frac{1}{2} \frac{\Gamma\left(\frac{n-1}{2}\right)}{2\pi^{\frac{n-1}{2}}} |\partial \Omega^{n-1}|. \quad (43)$$
The factors in front can be identified as half the inverse size of the sphere S^{n-2}.

Expansion (38) is a result of an expansion of $f(x, x, 1)$ in r^{-1} in the expression (31) for $M(z)$. Since $\tau f(x, x, \tau)$ is a function of the combination $\frac{r^2}{\tau}$, an expansion of $f(x, x, 1)$ in r^{-1} is in fact an expansion of $f(x, x, \tau)$ in $\sqrt{\tau}$ at $\tau = 1$. This is the well-known expansion of the heat kernel (see for instance Vassilevich [2003]), in our case on the cone D^n. Because the higher order terms of this expansion bring in more powers of r into the denominator inside the integral in (31), as such it can only be used up to coefficient c_{n-1}. If the remainder falls off faster than r^{-n} as $r \to \infty$, its integral will be finite at $z = 1$ because of the $r \to 0$ behavior of $f(x, x, 1)$ evident from (29). Also note here that the heat kernel expansion being an expansion in r^{-1} does not see any terms of the type e^{-r} for instance. That such terms are present can be seen by taking the example of the $n = 2$ independent system with barrier for which we know from (33) that $M(z) = z^2(1 - z^2)^{-1}$. It turns out that in this case (31) is easily invertible to obtain

$$\int_{\Omega_0^1} dr f(x, x, 1) = \frac{1}{4} - \frac{1}{2} I_0(r^2) e^{r^2} + \frac{1}{4} e^{-2r^2}, \quad (44)$$

where Ω_0^1 is the quadrant arc and I_0 is the modified Bessel function of order zero (this can also be obtained directly from the series solution (14)). The first two terms on the right hand side give rise to the heat kernel expansion while the last term, not visible to the heat kernel asymptotics, is required for the $r \to 0$ behavior. Expansion (38) can also be obtained from the heat kernel expansion on Ω^{n-1} on the sphere itself using the identity

$$M(e^{-s}) = \frac{se^{qs}}{2\sqrt{\pi}} \int_0^\infty \frac{dt}{t^2} e^{-q^2 t - \frac{q^2}{\pi} Tr t \nabla^2}, \quad (45)$$

where Tr refers to trace and $q = \frac{1}{2}(n - 2)$. Analogous relation can be written down for the pointwise object $M(\hat{r}, \hat{r}', z)$. Inverse relations can be obtained by expressing them as Laplace transforms, giving rise to identities for the heat kernel such as the one involving the Jacobi θ-function on S^1.

The series expansion of the kind at the $z = 1$ pole are useful in estimating the growth of the spectrum at large eigenvalues. This is done with the help of a counting function

$$W(\nu) = \sum_{\nu'} m_{\nu', 1_{\nu' \leq \nu}}, \quad (46)$$

where $1_{\nu' \leq \nu}$ is the step-function. $W(\nu)$ counts the eigenvalues, including multiplicity, up to ν. Its Laplace transform is

$$\overline{W}(s) = \int_0^\infty d\nu W(\nu) e^{-s\nu} = \frac{1}{s} M(e^{-s}). \quad (47)$$

As we have noted, $M(e^{-s})$ is expected to have a pole of order $n - 1$ at $s = 0$. Here it should arise from the large ν behavior of $W(\nu)$. One finds

$$W(\nu) \sim \frac{c_0 \nu^{n-1}}{(n - 1)!} + \frac{1}{2} (n - 2 - \gamma) \frac{c_0 \nu^{n-2}}{(n - 2)!} + \cdots, \quad \nu \to \infty. \quad (48)$$

3More generally, knowing $M(z)$ from (33) on domain Ω_0^{n-1}, one can obtain $t^{\frac{n}{2} - 1} f_{\Omega_0^{n-1}}(t)$ as the Laplace inverse of $\frac{1}{2\pi i} \left(\frac{z - \sqrt{z^2 - 1}}{2} \right)^{\frac{n}{2}}$ where $f_{\Omega_0^{n-1}}(r^2) = f_{\Omega_0^{n-1}} d^{n-1} r f(x, x, 1)$.

Expressed in terms of the eigenvalues $\lambda = \nu(\nu + n - 2) \sim \nu^2$ of the Laplacian on Ω_n^{-1}, this is consistent with the Weyl scaling law (true for more general domains).

As a Dirichlet series in s, one expects a $M(e^{-s})$ defined on the positive real s-axis to be analytic on the half-plane $\text{Re}(s) > 0$. Its behavior for $\text{Re}(s) \leq 0$ is less clear. Result (31) indicates naively a relation $M(z^{-1}) = -z^{n-2}M(z)$. However, this is not expected to hold as an approach to z^{-1} from z along the real axis encounters the singularity at $z = 1$ (the situation is somewhat analogous to the Laplace transform of the modified Bessel function I_ν into variable expressed as $\frac{1}{\nu}(1 + z^2)$). The cases considered earlier suggest that a relation if one exists might instead be, for some γ,

$$M(z^{-1}) = (-1)^{n-1}z^{n-2-\gamma}M(z).$$

If this holds as $z \to 1$, consistency with the series (38) implies that γ is the one introduced in (40). The relation appears restrictive and likely does not hold in general, but for the cases considered earlier, it holds ($M(e^{-s})$ having poles along the imaginary s-axis) and γ equals ν_1, and the expression (40) for γ reproduces ν_1’s. Because ν_1 is additive across independent subsystems, it will also hold for domains factorizable into such cases.

6 \hspace{1em} A Scaling Procedure

Domain Ω_n^{-1} on the sphere S_n^{-1} for a correlated system of n particles is related to domain $\Omega_0_n^{-1}$ corresponding to the independent case. Domain Ω_2^n for the case of 2 independent particles is given by the quadrant circular arc considered in section 2. Domain Ω_3^n for the case of 3 independent particles is given by the octant triangle on the two-dimensional sphere, a triangular region having three 90 degree angles taking up one eighth of the spherical surface. It can be viewed as an extension of Ω_1^n into the third dimension. Domains $\Omega_0_n^{-1}$ in higher dimensions can be similarly approached.

It is a result that the eigenvalues of the Laplacian do not increase as the domain is enlarged. For a positively correlated collection of particles, domain $\Omega_0_n^{-1}$ tends to be larger compared to $\Omega_0_n^{-1}$ and we expect $\nu \leq n$. Having dimensions of inverse coordinate squared, the eigenvalues are found to scale accordingly, though approximately, suggesting that we look for a scaling procedure to estimate the eigenvalues in the correlated system. However, applying scaling to the eigenvalues itself, as is usually done, turns out to be not satisfactory. Let us hence look for a spectral function $M(z)$ on the domain Ω_n^{-1} of the form

$$M(z) = z^\alpha M_0(z^\beta),$$

where $M_0(z)$ is the known spectral function on the domain $\Omega_0_n^{-1}$. This implies that, given the eigenvalues $\lambda_{0k} = \nu_{0k}(\nu_{0k} + n - 2), k = 1, 2, \ldots$ of the Laplacian on $\Omega_0_n^{-1}$, the eigenvalues $\lambda_k = \nu_k(\nu_k + n - 2)$ on Ω_n^{-1} can be estimated according to

$$\nu_k = \alpha + \beta \nu_{0k}, \hspace{1em} k = 1, 2, \ldots.$$

Parameters α and β can be determined by expanding $M(z)$ and $M_0(z)$ into their series (38) at $z = 1$ and matching the first two coefficients (39) for the two domains,

$$\alpha = \frac{1}{2}\left[\gamma - \beta \gamma_0 + (\beta - 1)(n - 2)\right], \hspace{1em} \beta = \left[\frac{\Omega_n^{-1}}{\Omega_0_n^{-1}}\right]^{\frac{1}{n-1}}.$$

\[11\]
γ and γ₀ for Ωⁿ⁻¹ and Ω₀ⁿ⁻¹ are as given by (40). The expression for α can also be obtained directly from (49) though such a relation is not a requirement. Estimation (51) can be rewritten as a scaling of the combination \(\nu + \frac{1}{2}(n - 2 - \gamma)\). Note that the spectral function (50) does not change multiplicities. If \(Ωⁿ⁻¹\) and \(Ω₀ⁿ⁻¹\) are closely related and the eigenvalues are well separated, multiplicities are likely to remain the same at least for the first few eigenvalues. Eigenfunctions will of course be different; perhaps there is a scaling procedure for them as well.

The above procedure requires computing the domain sizes \(|Ωⁿ⁻¹|\) and \(|∂Ωⁿ⁻¹|\). For a correlated system, \(|Ωⁿ⁻¹|\) can be computed as

\[
|Ωⁿ⁻¹| = \frac{|Sⁿ⁻¹|}{\sqrt{\det R(2\pi)^{n/2}}} \int_0^∞ dxe^{−\frac{1}{2}x^TR⁻¹x}, \tag{53}
\]

while for the independent case it is given by \(|Ω₀ⁿ⁻¹| = 2⁻ⁿ|Sⁿ⁻¹|\). \(|∂Ωⁿ⁻¹|\) can be computed using the same formula with \(R⁻¹\) restricted to one dimension less. An example of a correlated system is a homogeneous collection of particles with a single correlation parameter \(ρ\) such that the correlation matrix is

\[
R_{ij} = (1 - ρ)δ_{ij} + ρ, \quad R⁻¹_{ij} = \frac{1}{1 - ρ}δ_{ij} - \frac{ρ}{(1 - ρ)(1 + (n - 1)ρ)}. \tag{54}
\]

This matrix has determinant \(\det R = (1 - ρ)^{n-1}(1 + (n - 1)ρ)\). Diagonalization to coordinates \(y_i\) can be carried out for instance by

\[
x_i = ay_i + b\sum_{j=1}^{n}y_j, \quad y_i = \frac{1}{a}x_i - \frac{b}{a(a + nb)}\sum_{j=1}^{n}x_j,
\]

\[
a = \sqrt{1 - ρ}, \quad b = \frac{1}{n}\left(\sqrt{1 + (n - 1)ρ} - \sqrt{1 - ρ}\right). \tag{55}
\]

For this homogeneous system, the domain size expression (53) simplifies to

\[
|Ωⁿ⁻¹| = |Sⁿ⁻¹| \int_0^∞ \frac{du}{\sqrt{2π}} e^{-\frac{1}{2}u²} \left[\frac{\sqrt{ρ}u}{\sqrt{1 - ρ}}\right]^n, \tag{56}
\]

where \(N\) is the cumulative standard normal distribution function. The same expression upon setting \(n → n - 1\) and \(ρ → \frac{ρ}{1 + ρ}\) gives \(\frac{1}{n}|∂Ωⁿ⁻¹|\). The expression can be evaluated for \(n = 2\) giving \(Ω¹ = \cos⁻¹(-ρ)\) in agreement with section 1. It can also be evaluated for \(ρ = \frac{1}{2}\) for any \(n\) giving \(Ωⁿ⁻¹ = \frac{1}{n+1}|Sⁿ⁻¹|\) corresponding to a domain on \(Sⁿ⁻¹\) analogous to a tetrahedral triangle on the two-sphere. The integral is an increasing function of \(ρ\) so that \(|Ωⁿ⁻¹| > |Ω₀ⁿ⁻¹|\) for \(ρ > 0\). As \(ρ → 1\) it tends to cover half the sphere. For very small \(ρ\), the integral is \(≈ 2⁻ⁿ(1 + \frac{1}{2}n(n - 1)ρ)\) so that \(α ≈ -\frac{1}{2}n(n - 2)ρ, \ β ≈ 1 - \frac{1}{2}nρ\) and the first eigenvalue corresponds to \(ν₁ ≈ n - \frac{5}{2}n(n - 1)ρ\).

7 Numerical Comparisons

The following numerical comparisons are for domains on the two-sphere and for clarity, area \(|Ω²|\) is denoted as \(A\) and the perimeter \(|∂Ω²|\) as \(L\).

Ratzkin and Treibergs [2009] have studied a capture problem that can be recast into that of a homogeneous collection of correlated particles having \(ρ = \frac{1}{2}\). The authors present
a theoretical and numerical framework and compute the first eigenvalue \(\lambda_1 = \nu_1(\nu_1 + n - 2) \) of the Laplacian on the tetrahedral triangle on the two-sphere \(S^2 \) of unit radius. To find out how good our estimate is, let us compare their result \(5.159 \) to that of the scaling procedure. For the domain \(\Omega_0^2 \), let us choose the octant triangle having \(M_0(z) = z^3(1-z^2)^{-2}, A_0 = \frac{\pi}{2}, L_0 = \frac{3\pi}{2}, \gamma_0 = \nu_0 = 3 \). The tetrahedral triangle has \(A = \pi, L = 3 \cos^{-1}\left(-\frac{1}{3}\right) \) so that \(\gamma = \frac{2}{3} \cos^{-1}\left(-\frac{1}{3}\right) \) and \(\beta = \frac{1}{\sqrt{2}} \). This gives \(\nu_1 = 1.826 \) and \(\lambda_1 = 5.162 \) in excellent agreement with their result, indicating that the scaling procedure should be satisfactory for homogeneous collections.

A spherical cap is a circular domain on the two-sphere. If its radius relative to its center in angles is \(\theta \), it has \(A = 2\pi(1 - \cos \theta) \) and \(L = 2\pi \sin \theta \). In this case \(\Omega_0^2 \) can be chosen to be the half sphere that has \(M_0(z) = z(1-z)^{-2}, \gamma_0 = \nu_0 = 1 \). We then get

\[
\nu_1 = \frac{1}{2} \left(\cot \left(\frac{\theta}{2} \right) - 1 \right) + \frac{\nu_0}{\sqrt{2} \sin \frac{\theta}{2}}, \quad (57)
\]

The usual scaling procedure applied to the eigenvalues of the Laplacian itself is based on just the size of the domain, and hence is not able to differentiate the effects of the boundary. Ratzkin and Treibergs [2009] present a theoretical result \(\lambda_1 = 4.936 \) for the first eigenvalue on a spherical cap \((\theta = \frac{\pi}{2}) \) having the same area as the tetrahedral triangle. Scaling with \((57) \) gives \(\lambda_1 = 4.949 \) in excellent agreement.

A sector of the spherical cap making an angle \(\varphi \) has \(A = \varphi(1 - \cos \theta) \) and \(L = \varphi \sin \theta + 2\theta \). Choosing \(\Omega_0^2 \) to be such a sector on the hemisphere \((\theta = \frac{\pi}{2}) \) that has \(M_0(z) = z^{1+\frac{\varphi}{2}}(1-z^{\frac{\varphi}{2}})^{-1}, \gamma_0 = \nu_0 = 1 + \frac{\pi}{2}, \) we get

\[
\nu_1 = \frac{1}{2} \left(\cot \left(\frac{\theta}{2} \right) + \frac{\theta}{\varphi \sin^2 \frac{\theta}{2}} - \frac{\pi}{\sqrt{2} \varphi \sin \frac{\theta}{2}} - 1 \right) + \frac{\nu_0}{\sqrt{2} \sin \frac{\theta}{2}}, \quad (58)
\]

Ratzkin and Treibergs [2009] present a theoretical result \(\lambda_1 = 5.0046 \) for the case \(\varphi = \frac{2\pi}{3} \) and \(\theta = \cos^{-1}\left(-\frac{1}{\sqrt{3}}\right) \), whereas the scaling procedure gives \(\lambda_1 = 5.1046 \).

As a domain on the sphere is shrunk retaining its shape, it tends to approximate a flat domain in the limit, allowing for a comparison to the available solutions on flat domains. For instance, as the spherical cap has its radius \(\delta \rightarrow 0 \), its \(\nu_1 \rightarrow (1 + \sqrt{2})\delta^{-1} = 2.4142\delta^{-1} \) that compares well with the flat disk solution \(\sqrt{\lambda_1} = j_{0,1}\delta^{-1} = 2.4048\delta^{-1} \) \((j_{0,1})\) being the first zero of the Bessel function \(J_0 \). The second one \(\nu_2 \sim (1 + 2\sqrt{2})\delta^{-1} = 3.8284\delta^{-1} \) also compares well with \(\sqrt{\lambda_2} = j_{1,1}\delta^{-1} = 3.8317\delta^{-1} \). The next one \(\nu_3 \sim 5.2426 \) is close to \(\sqrt{\lambda_3} = 5.1356 \). As expected, higher ones start showing up significant differences.

Complete solution on the equilateral triangle on the plane was obtained by Lamé [1833]. Comparing the octant triangle on the plane, one finds for the equilateral triangle of side length \(\delta \) on the plane \(\nu_1 \sim \left(2\sqrt{3} + 2\sqrt{\frac{2\pi}{\sqrt{3}}}\right)\delta^{-1} = 7.273\delta^{-1} \) that compares well with Lamé’s result \(\sqrt{\lambda_1} = \frac{4\pi}{\sqrt{3}}\delta^{-1} = 7.255\delta^{-1} \). The second one \(\nu_2 \sim \left(2\sqrt{3} + 4\sqrt{\frac{2\pi}{\sqrt{3}}}\right)\delta^{-1} = 11.083\delta^{-1} \) also compares well with \(\sqrt{\lambda_2} = \frac{4\pi\sqrt{3}}{4}\delta^{-1} = 11.082\delta^{-1} \). The next one \(\nu_3 \sim 14.892 \) is close to \(\sqrt{\lambda_3} = 14.510 \). Here too, higher ones start showing up significant differences.

More generally, one can use the flat domain solution to estimate the first few eigenvalues on a similar domain on the sphere. Given \(A \) and \(L \) for a domain \(\Omega_0^2 \) on the sphere and \(A_0 \) and \(L_0 \) for a similar domain \(\Omega_0^2 \) on the plane, one finds for \(\nu_k, k = 1, 2, \cdots \) on \(\Omega_0^2 \),

\[
\nu_k = \frac{1}{2} \left(\frac{L}{A} - \frac{L_0}{\sqrt{AA_0}} - 1 \right) + \sqrt{\frac{A_0\lambda_{0k}}{A}}, \quad (59)
\]
where $\lambda_{0k}, k = 1, 2, \cdots$ are the eigenvalues of the Laplacian on Ω_0^2. This may be viewed as providing a curvature correction to the flat space eigenvalues. Note that the length scale on Ω_0^2 cancels out, and that A, L and ν_1 are in units set by the unit sphere.

The estimates relative to the data, though close, are usually on the higher side (for smaller domains). Improved scaling relations involving more parameters to match other coefficients in the series could provide better results. Reference domains may not always be available and with the choices, multiplicities may not agree in general, except perhaps for the first few eigenvalues. The scaling procedure based on just two parameters is not expected to yield good results for all the eigenvalues, but its potential to do so for the first few is intriguing, especially because it is based on the first two coefficients of the series that governs the growth of the spectrum at large eigenvalues. Also interesting to study is the applicability of a similar scaling procedure for more general domains, other than those on spheres, by extending them to a cone or by taking (45) as defining $M(z)$.

To summarize, the problem of n particles, each obeying correlated Brownian motion in the presence of a barrier, can be reduced to that of solving the diffusion equation in a conical region in n-dimensions. The survival probability that each particle travels over time τ without hitting the barrier is known to exhibit a large-time behavior $\sim \tau^{-\nu_1^2}$ where $\lambda_1 = \nu_1 (\nu_1 + n - 2)$ is the first eigenvalue of the Laplacian on a domain on the $n - 1$ dimensional sphere. It is found that the series solution to the diffusion equation leads naturally to a spectral function whose analytical properties allow for a simple scaling procedure to estimate the first few eigenvalues, readily applicable to a homogeneous collection of correlated particles. The estimate to the first eigenvalue for some specific domains finds excellent agreement with the available theoretical and numerical results.

References

