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Abstract. In this paper, we study whether simple heuristics can arise as equilibrium

strategies in mutual sequential mate search. To this aim, we extend the mate search

model of Todd and Miller (1999), involving an adolescence (learning) phase followed

by an actual mating phase, to a strategic game where the players, as the individuals

in the mating population, choose before starting the adolescence phase, the best

rule - among the four available search (aspiration adjustment) rules - to maximize

their likelihood of mating, given the choice of other individuals. Conducting Monte

Carlo simulations, we show that the use of the Take the Next Best Rule by the

whole population never becomes a (Nash) equilibrium in the simulation range of

adolescence lengths. While the unanimous use of the Adjust Relative Rule by the

whole population arises as an equilibrium for a wide part of the simulation range,

especially for medium to high adolescence lengths, the rules Adjust Up/Down and

Adjust Relative/2 are unanimously chosen as equilibrium strategies for a small part

of the simulation range and only when the adolescence is long and short, respectively.
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1 Introduction

It has been fifty years since the problem of mate search was studied by Gale and

Shapley (1962). Their seminal work offered an iterative algorithm, called the deferred

acceptance algorithm, under which a population of males and females has always a

stable matching where there exist no two agents of opposite sexes who are not a pair

but prefer each other to their current partners, and no individual who is matched

but prefer being single to his/her partner. This algorithm, which was independently

discovered by the National Residency Matching Program (NRMP) in the United

States (US) and had been used since 1950s in matching medical interns with hospital

residency positions (as shown by Roth, 1984), gained its popularity especially with

its use to match students with public high schools in New York City and Boston.2

While the two-sided stable matching model of Gale and Shapley (1962) has led

to the emergence of a large literature in economic theory and applied mechanism

design, the amount of research in this literature studying the formation of marriages

in societies is extremely little.3 One reason is that in marriage environments, unlike

in school choice or hospital-intern problems, there exists no central agency applying

a particular matching algorithm. Besides, individuals have no information about

potential mates before the actual matching takes place. Therefore, it has become

inevitable to study the formation of marriages using ‘decentralized’ and ‘sequential’

models of mate search, where individuals gain, by sequentially encountering some

potential mates, all relevant information on which they base their final mating deci-

sions.4 Relatedly, a strand of literature (Dombrovsky and Perrin, 1994; Mazalov et

2See Abdulkadirog̃lu and Sönmez (2003) for a pioneering work, and Abdulkadirog̃lu (2013) and

Pathak (2011) for surveys, on school choice, and Roth and Sotomayor (1990) for a wide range of

earlier results in stable matching theory.

3Stable matching theory was applied to study the formation/dissolution of marriages only very

recently by Mumcu and Saglam (2008) when utilities are transferable between mates and by Saglam

(2011) under nontransferable utilities.

4See Kalick and Hamilton (1986) for an early example of computer-based, decentralized and
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al., 1996; Todd and Miller, 1999; and Collins et al., 2006) conditioned the informa-

tion for mating decisions on the self mate values of individuals, also assuming that

individuals do not completely know but can partially learn (or approximate) their

self mate values by using feedbacks from potential mates they interact before they

are mated. Among this literature, the paper of Todd and Miller (1999) was the first

to consider a mate-choice model with two-sided (mutual) search strategies. In this

model, individuals first go through an ‘adolescence’ (learning) phase in which they

randomly interact (date) with a number of individuals of the opposite sex and pos-

sibly exchange information with their dates. After each interaction each individual

adjusts his/her aspiration level (as a proxy of his/her self mate value) according to

a particular adjustment rule assumed to be used by the whole population. Individ-

uals next proceed to a ‘mating’ phase where they randomly interact with potential

mates and decide whom to make a proposal for mating. In this phase, each pair of

individuals in the mating pool are considered to be successful and removed from the

pool as mated if they simultaneously make proposals to each other. This phase ends

after a stage at which either the mating pool becomes empty or each individual in

the mating pool has already been paired unsuccessfully with all available individuals

of the opposite sex.

The adjustment rules considered by Todd and Miller (1999) in the adolescence

phase of their model involve Take the Next Best, Adjust Up/Down, Adjust Relative,

and Adjust Relative/2.5 According to the Take the Next Best Rule, individuals start

the adolescence period with an initial aspiration level of zero, and at each instance

sequential, models of mate search.

5The adjustment rules considered by Todd and Miller (1999) also involve the Mate Value - α

Rule, according to which the aspiration level of each individual is constant over the adolescence

period and formed by subtracting a prescribed constant α (set to 5 in their simulations) from one’s

self mate value. We have chosen to exclude this rule from the scope of our paper since it requires,

as already noted by Todd and Miller (1999), that each individual knows his/her self mate value, a

highly unrealistic assumption.

3



of dating each individual sets his/her aspiration to the mate value of his/her date

if that value is above his/her current aspiration level. Thus, individuals leave the

adolescence phase with an aspiration level set to the highest mate value they have

observed.

The remaining three adjustment rules set the initial aspiration level of each indi-

vidual to the average mate value of all individuals of the same sex. These rules also

require that each individual exchanges information with his/her date as to whether

they have found each other desirable; i.e., the observed mate value of the date is

above one’s aspiration level. According to the Adjust Up/Down Rule, each individ-

ual adjusts, at each instance of dating, his/her aspiration upwards by a constant shift

parameter if he/she learns that the date finds him/her desirable, and adjusts his/her

aspiration downwards by the same parameter otherwise. The Adjust Relative Rule

differs from the previous rule in that if the date’s mate value is above the current

aspiration level of an individual and the date still finds this individual desirable,

the individual raises his/her aspiration level. Conversely, if the date’s mate value is

below the current aspiration level of an individual and the date does not find this

individual desirable, the individual reduces his/her aspiration level. In other possi-

ble cases, individuals do not make any adjustments. In Adjust Up/Down Rule and

Adjust Relative Rule, the adjustment parameter is constant during the adolescence

phase and inversely related to the length of this phase (i.e., the common number of

dates interacted by each individual). Finally, the Adjust Relative/2 Rule differs from

Adjust Relative in the adjustment parameter, which is no longer constant during the

adolescence phase but is dependent on the difference between the aspiration level of

each individual and the mate value of his/her date.

Computer simulations of Todd and Miller (1999) show that among the four ad-

justment rules the TNB rule yields the lowest number of matings. The highest

number of matings are generated by the Adjust Relative/2 Rule when adolescence

length is short to medium, and by the Adjust Up/Down and Adjust Relative Rules

when adolescence is longer. Since in terms of the likelihood of mating no adjustment
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rule dominates every other rule for all adolescence lengths, one needs to consider

additional measures of ‘population-level mating success’ to identify the best adjust-

ment rule. One such measure, Todd and Miller (1999) use in their study, is the mean

mate value of all mated individuals’, with middle values indicating more successful

mate search strategies. Another measure they consider is the mean within-pair differ-

ence in mate value, with lower values indicating strategies that are more successful.

Todd and Miller (1999) show that of the three rules that all dominate the TNB rule

in terms of the likelihood of mating, Adjust Relative/2 has a better performance

in terms of these additional measures of success, than the other two rules, namely

Adjust Up/Down and Adjust Relative, for almost all adolescence lengths.

Clearly, the (ex-post) instability of some matings is inevitable in environments

where matings are decentralized, individuals have incomplete information about po-

tential mates and the search is not exhaustive. The mean difference between the

mate values of partners, as a measure of mating success, can provide some indirect

information about the stability of the mated pairs formed under a particular ad-

justment rule. As already argued by Todd and Miller (1999), with higher values of

this measure an adjustment rule may lead to less stable matings, since mated pairs

with diverse mate values are more prone to the danger of partner switching in a dy-

namic framework. Recently, Eriksson and Hägsström (2008) has dealt with directly

estimating the degree of instability that one can expect in decentralized matching

environments. Using the proportion of blocking pairs among all possible pairs as

a measure of instability, they show that in environments where all individuals use

a particular heuristic with a threshold lowered gradually over the mate search (as

in Simão and Todd, 2002), the expected instability of matchings tends to zero as

the number of agents grows if individuals’ preferences are random and independent.

Following up this work, Eriksson and Strimling (2009) show, with the help of experi-

mental data, how the total search effort and the expected instability of the matching

outcome vary with various other preference structures.

Inspired by the previous works studying the stability of matching outcomes under
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simple heuristics in mate search, we would like to ask in this study an entirely new,

yet complementary, question: whether the simple heuristics/rules used in the mate

search are themselves stable when individuals can act strategically,6 i.e., whether

all individuals using a particular adjustment rule can be an equilibrium à la Nash

(1950), of a normal-form game where the set of players involve all individuals in the

population, the strategies of the players are the adjustment rules described above

and the payoff of each player at each strategy profile is his/her likelihood of mating.

2 Mutual Sequential Mate Search Model

We consider the mutual sequential mate search model of Todd and Miller (1999),

where a population N involves a set of males, M = {m1,m2, . . . ,mn} and a set of

females F = {f1, f2, . . . , fn}, with n > 1. Each individual i ∈ N has a (self) mate

value, v(i), which is a randomly drawn from the uniformly distributed values over the

interval [0, V ]. Mate value of each individual is always unknown to himself/herself.

Mate search consists of two phases. The first phase is called ‘adolescence’ or

‘learning’ phase, where each individual adjusts his/her aspiration level based upon

the adjustment rule he/she follows. This phase consists of S consecutive stages of

dating, with S < n. (In other words, the length of adolescence is S.) At stage

s ∈ {1, 2, . . . , S}, individual i ∈ N randomly meets a date d(i, s) of opposite sex,

whose mate value v(d(i, s)) is immediately known to individual i. Individual i finds

the date d(i, s) desirable at stage s if v(d(i, s)) ≥ a(i, s − 1), i.e., the mate value

of the date is not below his/her aspiration at the beginning of stage s. Here, it is

assumed that a(i, 0) is exogenously given to individual i at the beginning of stage 1.

Depending on the adjustment rule, individual i and the date d(i, s) may exchange

information as to whether they find each other desirable at stage s. Then, individual

6See Conclusions for a discussion that the same question can be asked in evolutionary environ-

ments where individuals learn to play better search rules by mutations.
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i forms his/her aspiration level, a(i, s), corresponding to stage s.

With the aspiration level a(i, S) formed at the last stage of the adolescence phase,

individual i next enters the second phase of mate search, called the ‘mating’ phase.

This phase may also have multiple stages depending on the mating outcome in the

first stage. At the beginning of the first stage in the mating phase, all individuals

are in the mating pool. In each stage of the mating phase, males and females in the

mating pool are randomly paired to assess each other for a possible mating. If both

individuals in a pair, after learning the mate values of each other, make a proposal

to each other, then they are mated and removed from the mating pool. Otherwise,

both individuals remain in the mating pool, as available for the next stage, if any.

The mating phase ends after a finite stage at which either the mating pool becomes

empty or each individual in the mating pool has already been paired with all available

individuals of the opposite sex.

Below, we describe four adjustment rules (taken from Todd and Miller, 1999),

according to which individuals can update their aspiration levels in the adolescence

phase.

Take the Next Best (TNB) Rule: This is a modification of the 37% rule in the

”secretary problem” (Ferguson, 1989; Seale and Rapoport, 1997), as each individ-

ual dates with (S/n)% of the available candidate mates in the adolescence phase.7

According to this rule, at a stage of dating s, individual i sets the corresponding

7In the secretary problem, an employer must hire the best applicant for a secretarial job, inter-

viewing each applicant one at a time without being able to make a job offer to an already interviewed

applicant. The employer knows the number of applicants but does not know the distribution of the

applicants. In this setup, the optimal strategy of the employer turns out to be first interviewing

(approximately) %37 of the available applicants and choosing in the following hiring period the next

better applicant whose quality is above the quality of the best applicant interviewed. The TNB

Rule considered by Todd (1997, 1999) is similar to the search rule in the secretary problem except

for that (i) the number of potential mates does not need to be known by any individual searching

for a mate and (ii) individuals do not optimize but use heuristics they find to be satisficing.
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aspiration level to the mate value of the date, v(d(i, s)), if individual i finds the date

d(i, s) desirable, and sets it to the aspiration level corresponding to the previous

stage, a(i, s− 1), otherwise. Formally,

a(i, s) =







v(d(i, s)) if v(d(i, s)) ≥ a(i, s− 1),

a(i, s− 1) otherwise.

So, individual i enters the mating phase with the aspiration level a(i, S) = max{a(i, 0),

v(d(i, 1)), v(d(i, 2)), . . . , v(d(i, S))}. For this rule, a(i, 0) is assumed to be zero, the

lowest possible mate value.

For the following three adjustment rules, it is assumed that at each stage of

learning each individual is informed by the date whether the date found him/her

desirable. Moreover, for these adjustment rules a(i, 0) is assumed to be V/2, the

mean mate value of all males and of all females.

Adjust Up/Down Rule: This rule is formulated as follows:

a(i, s) =







a(i, s− 1) + δ̄ if v(i) ≥ a(d(i, s), s− 1),

a(i, s− 1)− δ̄ otherwise,

where δ̄ = (n/2)/(1 + S).

Here, individual i adjusts up his/her stage s − 1 aspiration a(i, s − 1) by the

constant δ̄ to obtain stage s aspiration a(i, s) if the date d(i, s) finds individual i

desirable. Otherwise, individual i adjusts down a(i, s− 1) by δ̄ to obtain a(i, s).

Adjust Relative Rule: According to this rule, the aspiration of individual i at

stage s is given by

a(i, s) =















a(i, s− 1) + δ̄ if v(i) ≥ a(d(i, s), s− 1) and v(d(i, s)) ≥ a(i, s− 1),

a(i, s− 1)− δ̄ if v(i) < a(d(i, s), s− 1) and v(d(i, s)) < a(i, s− 1),

a(i, s− 1) otherwise,
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where δ̄ = (n/2)/(1 + S).

Differing from the previous rule, now there is the possibility of nonadjusting in

addition to up and down adjusting. Here, individual i adjusts up his/her stage s− 1

aspiration a(i, s− 1) by δ̄ to obtain stage s aspiration a(i, s) if individual i and the

date d(i, s) find each other desirable. If none of the dating individuals i and d(i, s)

finds the other desirable, then individual i adjusts down a(i, s − 1) by δ̄ to obtain

a(i, s). In other possible cases, individual i does not adjust his/her aspiration level

at stage s and he/she sets a(i, s) to a(i, s− 1).

Adjust Relative/2 Rule: This rule differs from the Adjust Relative Rule in that

the size of adjustments is neither constant over the individuals nor over the stages

of adolescence. For individual i, the size of adjustment at stage s is equal to the

half of the difference between the mate value of the date and the aspiration level of

individual i at the end of previous stage. Thus, the rule is given by

a(i, s) =















a(i, s− 1) + δ(i, s) if v(i) ≥ a(d(i, s), s− 1) and v(d(i, s)) ≥ a(i, s− 1),

a(i, s− 1)− δ(i, s) if v(i) < a(d(i, s), s− 1) and v(d(i, s)) < a(i, s− 1),

a(i, s− 1) otherwise,

where δ(i, s) = |v(d(i, s))− a(i, s− 1)|/2.

Using a population with n = 100 (i.e., 100 males and 100 females), the maximal

mate value V set to 100, and mate values uniformly distributed to individuals, Todd

and Miller (1999) simulated the likelihood of mating (the number of mated pairs

formed) corresponding to each adjustment rule, when the length of adolescence S is

changed from 1 to 90. Considering the same mating environment, we have conducted

200 (Monte Carlo) simulations at each value of S to reproduce their findings in Figure

1. (We have used the GAUSS software for all simulations in this paper. The program

codes and the simulated data are available from the author upon request.)

Apparently, for all considered adolescence lengths, the TNB rule is dominated
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by each of the other rules in terms of the produced likelihood of mating. Figure

1 also shows two sharp findings that for short adolescence lengths (2 ≤ S ≤ 32),

the Adjust Relative/2 Rule generates the highest number of matings among the four

adjustment rules; whereas when adolescence is medium to long (42 ≤ S ≤ 90), the

Adjust Up/Down Rule generates the highest number of matings, performing slightly

better than the Adjust Relative Rule. It is also evident that both Adjust Up/Down

and Adjust Relative are significantly superior to Adjust Relative/2 when adolescence

is long.
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Figure 1. The number of successful mates

3 Stability of Adjustment Rules

We will check whether all individuals using a particular adjustment rule can be a

Nash equilibrium of a normal-form strategic game played right before the adolescence
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phase. In this game, the set of players involve all individuals in the population, the

strategies of the players are restricted to the four adjustment rules we have described

above and the payoff of each player at each strategy profile is simply his/her likelihood

of mating. For a formal treatment, we introduce the following definitions.

Let R = {TNB, Adjust Up/Down, Adjust Relative, Adjust Relative/2} denote

the strategy space of each individual i. Let r = (rm1
, . . . , rmn

, rf1 , . . . , rfn) ∈ R2n

denote the strategy profile of the society. In particular, we denote by rTNB the

strategy profile at which each individual plays the strategy TNB, i.e. rTNB
i = TNB

for all i ∈ N . We similarly define the strategy profiles rAUD, rAR, and rAR2 such that

all individuals in the society play Adjust Up/Down under the profile rAUD, Adjust

Relative under rAR, and Adjust Relative/2 under rAR2. Also, for all i and r ∈ R2n

define the 2n − 1 dimensional profile r−i such that r = (ri, r−i). For any strategy

profile r ∈ R2n, let µi(r) denote the likelihood that individual i is mated to someone

of the opposite sex when he/she uses the strategy ri, while the rest of the society

uses their respective strategies in r−i.

We say that a strategy profile r is a Nash equilibrium if there exists no individual

that can increase his/her likelihood of mating by unilaterally deviating from this

profile by changing his/her strategy ri to any other strategy r′i in R; i.e., the profile

r = (ri, r−i) ∈ R2n is a Nash equilibrium if

µi(ri, r−i) ≥ µi(r
′
i, r−i) for all i and for all r′i ∈ R.

Below, we explore whether any of the profiles rTNB, rAUD, rAR, and rAR2 is a Nash

equilibrium for any length of adolescence. For each of these profiles, we make 200

Monte Carlo simulations at each value of S between 1 and 90. At each simulation,

we randomly pick one of the individuals (i.e., %1 of 100 individuals of a particular

sex) to be a potential deviant and check whether this individual can increase his/her

likelihood of mating by unilaterally switching from the population’s common strategy

to any other strategy in R. (Since the model is completely symmetric with respect

to all individuals, checking whether or not an arbitrarily chosen individual has an
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incentive to deviate is sufficient for our purpose.)

We check in Figure 2 whether rTNB is a Nash equilibrium profile for any length

of adolescence. To that end, we simply compare the values of µi(r
TNB) (in blue

marked points), denoting the likelihood individual i is mated when he/she sticks

to the common strategy TNB of the rest of the population, with the values of

max
r′
i
∈R\{T NB}

µi(r
′
i, r

TNB
−i ) (in red marked points), denoting the likelihood individ-

ual i is mated when he/she deviates to the best alternative strategy in R\{TNB}.
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Figure 2. The mating likelihood of a potential deviant when he/she plays TNB

versus the best alternative rule, while the rest of the society plays TNB.

It is apparent in Figure 2 that rTNB is not a Nash equilibrium profile for any value

of S = 1, 2, . . . , 90. This result is not surprising since unlike the other rules TNB

makes adjustments always in the upward direction and does not depend on whether
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the potential deviant is found desirable by his/her date. Therefore, the aspiration

level of a potential deviant in the mating phase is higher under TNB than under the

alternative adjustment rules. Since the lower the aspiration level of an individual,

the more likely he/she will accept a proposal in the mating period, an individual can

increase his/her likelihood of mating by switching from TNB to the best alternative

strategy in R.

In Figure 3 we show that rAUD is not a Nash equilibrium profile for short to

medium lengths of adolescence (S < 46). For higher lengths of adolescence, rAUD

may turn out to be a Nash equilibrium profile. Yet, this is only true for 12 out of all

values of S between 46 and 90.
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Figure 3. The mating likelihood of a potential deviant when he/she plays AUD

versus the best alternative rule, when the rest of the society plays AUD.

A closer inspection of the simulation data generating Figure 3 also reveals that
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a randomly selected individual prefers to play Adjust Relative at 65 values of S and

Adjust Relative/2 at only 13 values of S, out of a total of 78 distinct values of S at

which he/she finds it optimal to deviate from the Adjust Up/Down Rule.
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Figure 4. The mating likelihood of a potential deviant when he/she plays AR

versus the best alternative rule, when the rest of the society plays AR.

In Figure 4, we illustrate that rAR is a Nash equilibrium profile for most of the

medium to high lengths of adolescence (i.e., for all values of S exceeding 55 and for 22

values of S between 28 and 55). whereas for most of the short lengths of adolescence

(i.e., for 22 out of the lowest 27 values of S) an arbitrary individual has an incentive

to unilaterally deviate from playing Adjust Relative. Only at four out of 28 values

S where rAR is not found to be a Nash equilibrium, the deviating individual prefers

to play Adjust Up/Down, while he/she plays Adjust Relative/2 in the remaining 24

instances.
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Figure 5. The mating likelihood of a potential deviant when he/she plays AR2

versus the best alternative rule, when the rest of the society plays AR2.

Finally, in Figure 5 we plot the equilibrium results for Adjust Relative/2. Here,

we find that rAR2 is not a Nash equilibrium profile for any value of S exceeding 33.

In the view of the potential deviant, playing alternative adjustment rules rather than

Adjust Relative/2 seems to be attractive for shorter lengths of adolescence, as well;

indeed we find that only for 7 of the lowest 33 values of S, the profile rAR2 can arise

as a Nash equilibrium. In more detail, the deviating individual prefers to play Adjust

Relative in 68 out of 83 values of S at which rAR2 is not a Nash equilibrium, whereas

he/she plays Adjust Up/Down in the remaining 15 cases.

From the above results, we immediately notice that for a majority of adolescence

lengths, the Adjust Relative Rule is the best strategy of a deviant at both of the

profiles rAUD and rAR2. This is so, despite the observation in Figure 1 that Adjust
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Up/Down dominates both the Adjust Relative and Adjust Relative/2 Rules, in terms

of the induced likelihood of mating, for more than half of the considered values of

S (i.e., for 42 ≤ S ≤ 90) while the Adjust Relative and Adjust Relative/2 Rules

generate quite similar outcomes on the average over the whole simulation range.

Interestingly, these two rules that are inferior to Adjust Up/Down for a majority

of adolescence lengths when they are played by the whole population can become

superior to it for some adolescence lengths when they are played singly by any indi-

vidual. A possible explanation underlying this phenomenon may be related to the

variance of aspirations generated by these rules. We observe that although the rules,

Adjust Up/Down, Adjust Relative, and Adjust Relative/2, have almost the same

mean aspiration level, close to the mean mate value of 50, for almost all adolescence

lengths, the standard deviation of aspiration around the mean value is significantly

different for these rules, as reported below for a sample of values of S.

Table 1. The mean value of the standard deviation of aspiration levels

under the rules AUD, AR, and AR2

S AUD AR AR2

10 34,01 16,55 24,16

30 34,64 16,62 27,95

50 34,69 16,94 28,34

70 34,92 16,92 28,68

90 34,76 16,85 28,80

In the above table, the standard deviation of aspirations is lower under the rules

Adjust Relative (around 16) and Adjust Relative/2 (between 24-29) than under Ad-

just Up/Down (around 34) since not only that the former rules allow the possibility

of nonadjusting the aspiration after a date, but also the conditions for adjusting it

are stronger (as the mutual desirability of the dating partners is required). On the
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other hand, the reason why Adjust Relative and Adjust Relative/2 themselves yield

significantly different standard deviations of aspirations should be the difference of

the size of adjustments in the definition of these two rules. Considering our findings,

it seems that the smaller the variance of aspirations generated by a particular adjust-

ment rule, the more likely its survival against the alternative strategies of potential

deviants, yet a formal proof of the relation between the stability of a rule and the

induced aspirations in agent-based models is left to future research.

4 Conclusions

In this paper, we have studied whether the use of a particular heuristic by the whole

population in mutual sequential mate search can be a stable situation, where no

individual has any incentive to use an alternative heuristic in order to increase his/her

likelihood of mating. For our purpose, we have considered the Nash equilibrium as a

proper concept of stability, and have restricted our focus on mate search heuristics to

four rules, namely TNB, Adjust Up/Down, Adjust Relative, and Adjust Relative/2,

that were considered by Todd and Miller (1999). Using a two-phase search model

of theirs, which involves an adolescence phase and a mating phase, we have showed

that in the whole simulation range of adolescence lengths, the unanimous use of the

TNB Rule by the whole population never arises as an equilibrium of a strategic game

played right before the adolescence phase. Of the other three rules, Adjust Up/Down

and Adjust Relative/2 have been observed as a Nash equilibrium play, though only

for a small part of the simulation range; the former arising when the adolescence

is long and the latter arising when the adolescence is short. On the other side,

the Adjust Relative Rule has been an equilibrium strategy for the whole population

for a great part of the simulation range, especially for medium to high adolescence

lengths. Taking stock of our results, the stability of heuristics as a new measure

of mating success points to that among the mate search rules we have considered,

the Adjust Relative Rule appears to be the one which is most likely to survive in

17



strategic environments.

We believe that the contribution of this study to the previous literature on mate

search is at least twofold. First, we add some new results to a very thin literature

dealing with the stability issues in agent-based search models, hoping to narrow down

the existing gap between the priorities of stable matching theory and agent-based

mate search. However, unlike the previous works (Eriksson and Hägsström, 2008;

Eriksson and Strimling, 2009), our focus is on the stability of mate search heuristics,

using the Nash equilibrium concept, instead of the stability of matching outcome

in the usual definitions of blocking individuals or pairs, since the latter can be a

relevant measure of success to distinguish between alternative search heuristics in

mate search models only if these heuristics are themselves stable in the long-run

with respect to the invasion of alternative heuristics. Second, since a particular

search heuristic can be stable, or form a Nash equilibrium, only if no individual in

the population has any incentive to unilaterally switch to an alternative heuristic,

our results shows the robustness of some of the search heuristics considered by Todd

and Miller (1997, 1999) with respect to the assumption that the whole population

uses the same particular heuristic during the mate search.

One potential criticism to our study, as it deals with the stability of simple heuris-

tical search rules in a model with assumedly non-optimizing agents, could be that

we restrict our stability notion, for the calculational simplicity, to an ‘intelligent’

concept such as Nash equilibrium, which requires that the beliefs of each individ-

ual about what strategies are likely to be played by other individuals are common

knowledge and also that each individual is endowed with the skill of performing

optimization over the outcomes of alternative strategies. However, our appeal to

the Nash equilibrium concept is not wholly illegitimate since an observation that

the play of a particular heuristic by the whole population is not a Nash equilibrium

would directly point to the existence of a better heuristic from the viewpoint of a

unilaterally deviating individual. Clearly, such an individual could find the merit of

playing this alternative heuristic also under the notion of evolutionary stable strate-
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gies introduced by the evolutionary model of Maynard Smith and Price (1973) and

Maynard Smith (1974), which involve non-optimizing individuals (players) some of

whom may deviate from a particular common (incumbent) rule only because they

are programmed to do so or alternatively by ‘simple’ or ‘unsophisticated’ reasons,

involving mistakes, ignorance, etc, simply called ‘mutations’.8

Finally, we should notice that the possibility of unilateral deviations of individu-

als - under the stability concept we have considered - from a particular search rule

commonly used by the whole population to another search rule naturally brings in

a broader question as to why the mate search model does not set, in the first place,

each individual in the mating population entirely free, in using any available search

rule during the mate search, independent from the set of rules used by other indi-

viduals. Constructing such a heterogenous model of mate search, the future research

may profitably deal with finding the efficient distributions of search rules among the

individuals in a given mating population (or equivalently, the optimal asymmetry

level in the model) that will optimize a particular measure of mating success. Using

the approach in this paper, one could also search for stable distributions of search

rules, and in particular the stable distributions among the efficient ones.
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