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Abstract

This article addresses two important issues in crowd-sourcing: ex ante uncer-
tainty about the quality and cost of different workers and strategic behaviour. We
present a novel multi-dimensional auction that incentivises the workers to make
partial enquiry into the task and to honestly report quality-cost estimates based on
which the crowd-sourcer can choose the worker that offers the best value for money.
The mechanism extends second score auction design to settings where the quality is
uncertain and it provides incentives to both collect information and deliver desired
qualities.

1 Introduction

The unprecedented scale of social interaction in the Internet has allowed people from dif-
ferent parts of the world to collaborate or compete for the completion of various projects.
The process of enlisting humans on-line to complete tasks has been labelled ’crowd-
sourcing ’ with a variety of such platforms focusing on several tasks, cf. e.g. [12] Top-
coder for software coding, Freelancer for photo moderation and tagging, MTurk for data
clean-up and translations among others and Innocentive for scientific research. Simplify-
ing a detailed definition in [13], we will think of crowd-sourcing’ .. as a process whereby

individuals propose to a group of individuals, via a flexible open call, the voluntary un-

dertaking of a task’. Those proposing a task are typically referred as ’crowd-sourcers’
and their target group as the ’crowd’ or the ’workers’. Those of the crowd who end up
participating in the project can receive a type of reward depending on the terms of the
crowd-sourcers, while the crowd-sourcers get to utilise the crowd’s labour.
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Although crowd-sourcing can increase productivity by turning the world into one
virtual working place, it also has some less favourable aspects. Crowd-sourcing, shares
with the rest of the Internet, the existence of many layers of malicious behaviour. Similar
elements of strategic behaviour which can be tracked even in well researched Internet ven-
tures such as electronic marketplaces, can be found in crowd-sourcing platforms. Indeed,
certain workers may be tempted to produce work of poor quality, while some crowd-
sourcers may abuse existing protection mechanisms or the lack of them to dismiss the
offered work. Specifically, it is documented that in the Chinese crowd-sourcing platform,
Taskcn, it is common for members of the crowd to bid for difficult and complex tasks
assuming it will be easier to get selected due to lower competition occurring in complex
projects, while others will bid for several projects hoping that they will be selected for
a few [34]. Also, In Topcoder workers abuse an existing safeguard, when those of high
reputation involved in projects of significant economic value, rush to register to a com-
petition, in order to deter others from doing so, without necessarily intending to submit
any solution [1]. Finally, it has been observed in MTurk that crowd-sourcers may at-
tempt to manipulate the position of their task in the search queries, given that a task
with favourable positioning may get completed faster and for less money than one in
an unfavourable position, and that workers rarely browse after page 10 in the search
results[10]. The latter suggests a lack of interest on behalf of the workers which can be
attributed to their limited capacity to influence their payments. This problem is mag-
nified by crowd-sourcers rarely taking into consideration the cost (time, money or other
resources) involved in completing a task. The consequences of arbitrary and possible in-
appropriate rewards, has been acknowledged by Sorokin and Forsyth, who crowd-sourced
data annotation tasks in a computer vision project through MTurk [32]. They suggest
that if the price for completing a task is too low, workers may participate out of plain
curiosity but they may feel underpaid, hence invest little effort, while if the price is high
there will be inefficiencies.

The impact of the crowd’s strategic behaviour has been acknowledged by some crowd-
sourcing platforms and some workarounds are already in place, albeit very basic. For ex-
ample, in MTurk the crowd-sourcers can reject a completed assignment and consequently
refuse payment to the worker if they are not satisfied by the final result. It is appar-
ent that existing crowd-sourcing systems have not benefited as much as other sectors of
internet-based commerce by the advancements in trust and reputation systems (survey
of the related literature in [29, 18]), but they also lack the structure that will allow such
breakthroughs.

It is exactly the development of such structures which we attempt to address in this
paper, by taking a more fundamental approach. We use Mechanism Design [23] and
Auction Theory [22] to model the interactions between the crowd-sourcer (principal) and
the workers (agents) and design a payment scheme that incentivises honest reporting and
production of appropriate quality, after the workers have invested sufficient resources (i.e.
time) in determining their quality. We assume that workers operate in an environment of
uncertainty where they report to the crowd-sourcer the distribution of their production.
The bias in realising their production is in-line with their lack of interest in carefully
determining an appropriate task, and can lead to poor results.

As a starting point, we address the crowd-sourcing problem as a multi-dimensional
procurement auction. Single-dimensional auctions are designed to procure a given service
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from the supplier with the lowest cost. Multi-dimensional auctions, on the other hand
are used when the service can take many forms. Multi-dimensional auctions take into
account not only the price but also the service characteristics or quality when selecting a
winner. This is well-suited for crowd-sourcing, where even simple tasks may have several
parameters. A software application may for example depend on responsiveness, usability
of interface and resource management. In his seminal paper Che [9] designed a series
of multi-dimensional auctions (first score, second score and second preferred score) to
address such cases where the quality of a product is of equal importance to its cost. In
these auctions, suppliers report their production quality and the associated costs, and the
mechanism maps the multi-dimensional bid into a single-dimensional quantity, named as
’score’. All three auctions are incentive compatible, and based on the assumption that
costs are independently distributed, they also result in equal expected utility for the
buyer, while the first and second score auctions implement the optimal outcome for the
buyer (allocatively efficient). The assumption regarding the distribution of costs was
relaxed by Branco [6] who introduced a two-stage optimal multi-dimensional auction in
a setting in which there was correlation among suppliers’ costs. A mechanism proposed
by Bogetoft and Nielsen [5] further exploited the correlations among the costs of different
agents through the introduction of a Data Envelopment Analysis (DEA [7, 8]) based
competition.

There is a significant amount of work that links multi-dimensional auctions with ap-
plications related to Computer Science and in particular to multi-agent systems and
e-commerce [16]. Bichler[3] paves the way for possible e-commerce applications of multi-
dimensional auctions by showing that they result in significant higher utility when com-
pared to single-dimensional auctions in a web-based experimental setting. Furthermore,
Beil and Wein [2] propose an iterative mechanism in which the buyer sequentially es-
timates each bidder’s cost function through a series of score auctions. Parkes and
Kalagnanam [28] also propose an iterative multi-attribute procurement price-based auc-
tion in which suppliers in each round submit their bids and a winner maximizing the
buyer’s preference is selected. They show that their mechanism terminates with a modi-
fied Vickrey-Clarke-Groves allocation. Furthermore, multi-dimensional auctions can also
be applied in settings where multiple suppliers are necessary to satisfy the principal’s
demand [4].

Unfortunately, these approaches all assume that the principal can enforce the agents
to truthfully report their production quality, through the use of external means. In the
few cases where the possibility of misreporting is considered it is explicitly stated that the
auction will be cancelled, or an extremely heavy fine will be issued to the winner of the
auction if the observed output deviates from its report. Most importantly, literature fails
to take into account the real world challenge of ensuring truthful reporting when there is
uncertainty about the quality and of ensuring the final production when this cannot be
fully controlled.

This dual challenge can be addressed by incorporating a strictly proper scoring rule

payment with a multi-dimensional auction. Strictly proper scoring rules are designed
to elicit accurate predictions by rewarding forecasters based on how close the actual
outcome is to their prediction[30, 17, 14]. Strictly proper scoring rules have been widely
used in mechanism design to elicit accurate information and in particular for the design
of reputation systems to promote truthful reporting of feedback regarding the quality of
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a service experienced [19, 20, 21]. Furthermore, Miller et al. [24, 25] have shown how
an appropriately scaled strictly proper scoring rule can be used to incentivise agents to
invest costly resources when generating their forecasts. Extensions are given in [27] and
[33], and a brief summary of the main insights used in this paper is provided in Section
3.

In this paper we combine elements from multi-dimensional auctions and information
elicitation mechanisms. We consider a setting where the worker is not certain of the
quality of its future production when reporting it to the crowd-sourcer. Workers base their
beliefs on some initial and costly investigations modelled as the observation of a sample
of independent Gaussian distributions. After the auction is completed the winner starts
working on its assigned task and the crowd-sourcer observes the outcome after the work
is finished. Based on this observation and the initial report, the crowd-sourcer penalises
the selected worker (winner) for any deviation from its report, while compensating the
worker’s actual cost and quality.

We provide solid theoretical results as we prove the economic properties of our mech-
anism i.e. incentive compatibility and individual rationality and we also show that our
mechanisms in expectation converges to the outcome of the second score auction in which
agents are able to directly report their actual quality outcomes. We also numerically
evaluate our mechanism though simulations and discuss the computational aspects of the
mechanism.

The rest of the paper is organised as follows: In Section 2 we describe the setting
in more details, and in Section 3 we provide the background relevant to strictly proper
scoring rules. In Section 4 we define the mechanism, while in Section 5 we outline the
economic properties and provide numerical evaluations in Section 6. Finally, in Section
7 we conclude.

2 The Context

We consider a principal (the crowd-sourcer) interested in procuring a task or a service
from one of N rational and risk neutral agents (the crowd or the workers). The provided
task or service is characterised by multiple parameters defined by an s-dimensional vector
of qualities yi0 ∈ R

s with yi0 > 0 and i ∈ I = {1, . . . N}. To simplify the analysis, we
assume that for each agent the parameters of its service can be aggregated in one vari-
able, hence each agent has a single quality profile denoted by yi0. We depart from existing
literature by introducing uncertainty regarding agent’s qualities. We model uncertainty
by assuming that N rational and risk neutral agents will attempt to estimate their in-
dividual productions yi0 with i ∈ {1, ..., N} by generating a sample of M independent
observations yij each with j ∈ {1, ...,M}.

In this context, the agents do not know their quality ex ante but instead have a
priori beliefs and can collect additional information. Since Gaussian distributions are
commonly used in the data fusion literature [15, 11], we will also use them to model
the agents’ stochastic outputs and the data collection. We assume that the agent i’s a
priori belief about yi0 is given yi0 ∼ N (yiµ, 1/θ

i
µ), and that he is able to collect further

information about yi0 by generating M independent and identically distributed random
observations {yi1, yi2, ... , yiM} with yij ∼ N (yi0, 1/θ

i
0). Using these observations, the agent
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can update the a priori beliefs to the posterior belief

yi0 ∼ N (
yiµθ

i
µ + θiȳi

θiµ + θi
,

1

θiµ + θi
) (1)

where ȳi is the mean of the observations {yi1, yi2, ... , yiM} and θi the resulting precision of
the sample average ȳi, equal to Mθi0.

It is natural to assume that the cost of collecting information about the likely quality
will increase as the precision θi increases, hence we model data collection cost ci(θi) as a
convex, increasing and double differentiable function such as c(θ) = C iθ2, where C i > 0
is a parameter which represents different base costs for each agent. Typically, costs in
data collection introduce constraints in the overall precision since it will be impossible
to either have an infinite sample or a finite sample of very costly observations. This
constraint is denoted as θi ≤ θi∗.

Now, regarding the production costs, we follow existing literature [9] by assuming
that agents are capable of producing different levels of outputs, and that in order to
produce the quality yi0 agent i needs inputs which depend on each agent’s efficiencies.
These inputs are the costs involved in production and should not be confused with the
costs involved in the estimation of the quality. Here, costs are private information to each
agent and cannot be verified by any third party (i.e. the principal or other agents). The
cost agent i faces in the production of its quality is modelled as a function of quality yi0
and is denoted as xi(yi0, l

i), where li represents the agent’s private information about their
production cost efficiency. While agents are aware of their cost parameters, the principal
has only access to their distribution. We assume that li is independently and identically
distributed over [l, l] with 0 < l < l < +∞ according to a distribution with positive and
continuously differentiable density function. Finally, the cost function is increasing in
both quality and the cost efficiency parameter and that is convex regarding the quality.

Based on the above, the time-line of the game is as follows. Initially, each agent col-
lects information about his likely production quality and production costs. By spending
information collection costs ci(θi) it is able to predict its quality yi0 as (y

i
µθ

i
µ+ȳiθi)/(θiµ+θi)

with precision θiµ + θi, and the cost of the expected production as xi(yi0, l
i) . We assume

that the agent can send possibly manipulated signals about his production (quality) level
and production costs, and the precision of his prediction to the principal before the prin-
cipal decides on the provider. Let the signalled production be ŷi, the signalled data
collection effort be θ̂i, and the signalled cost be x̂i. The principal can use these signals to
choose the provider and he can use this information together with the realised production
yi0 to determine reimbursement. If the principal picks agent i as the provider, his value of
the realised quality yi0 will be given by V (yi0) where V (·) is increasing, concave and twice
differentiable function of the quality.

To sum up, in this setting the principal has to deal with poor quality and costs esti-
mates generated by agents not committing significant resources, with misreporting of the
estimates and with incentivising the selected agent to actually produce the final outputs.
The challenge will be to design a mechanism that will induce the agents to commit re-
sources to generating their estimates, and truthfully report them, and to actually produce
the desired quality.
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3 Strictly Proper Scoring Rules

Before turning to the details of the mechanism, it is convenient to discuss the simpler
problem of inducing agents to collect information about their production and reveal their
findings.

So-called strictly proper scoring rules are used as a tool for eliciting forecasters’ beliefs
of future events in various domains ranging from meteorology and weather forecasting to
computer science and online trust and reputation systems. Such scoring rules incentivise a
risk neutral forecaster to truthfully report its forecast by maximizing its expected reward.
Imagine a forecaster whose believe the outcome of an event y is generated by a probability
density function Q(y), and who reports a probability distribution R(y).The forecaster’s
expected score is therefore:

S(Q,R) =

∫ ∞

−∞
Q(y)S(y|R)dy (2)

and a scoring rule is defined as strictly proper if its expected value is maximised on truthful
reporting i.e. S(Q,Q) ≥ S(Q,R) for all R. Due to this property, a payment based on
such a scoring rule creates can incentives truthful behaviour for utility maximizing agents.

The four most popular strictly proper scoring rules considered by the literature are
the quadratic, spherical, logarithmic and the parametric family, known as the power rule
family [31]. For the special case where an agent’s posterior belief of its quality y0 is

represented by a Gaussian distribution N (y, 1/θ) and its report is (ŷ, θ̂) the four strictly

proper scoring rules, S(y0; ŷ, θ̂), the four scoring functions become :

1. Quadratic: 2N (y0; ŷ, 1/θ̂)−
1

2

√
θ̂

π

2. Spherical:

(
4π

θ̂

) 1

4

N (y0; ŷ, 1/θ̂)

3. Logarithmic: logN (y0; ŷ, 1/θ̂)

4. Parametric: kN (y0; ŷ, θ)
(k−1) − k − 1√

k

(
2π

θ̂

) 1−k

2

where k ∈ (1, 3), and when k = 2 the parametric rule takes the form of the quadratic
rule.

As mentioned in the introduction, misreporting of the agents’ estimates of their pro-
duction qualities and their precision is not the only element of an agent’s strategic be-
haviour, since in terms of the crowd-sourcing scenario, a worker may attempt to manip-
ulate the crowd-sourcer by not committing a realistic amount of resources in generating
its estimate. Therefore, it is interesting to note that strictly proper scoring rules not
only can guarantee truthful reporting, but also sufficient data collection effort on behalf
of the agents. This process is described by Miller et. [24] who note that through an
affine transformation α + βS of a strictly proper scoring rule S it is possible to induce
an agent to make and truthfully report of an estimate at a specific precision, while not
compromising the incentive compatibility property.
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Let the payment that an agent expects to receive, P (θ), be:

P (θ) = αS(θ) + β

where α and β are the scaling parameters of an affine transformation, θ is the agent’s true
precision and S(θ) the expected score which can be easily calculated by integrating over
the above expressions of the four scoring rules. Parameter α guarantees the estimate will
be generated at that precision, while β compensates the agent for the cost of its estimate.

Specifically in our model, θ is equal to θµ + θ′, with θµ being the precision of the
agent’s prior belief and θ′ the precision of the sample average. The expected utility to an
agent net of data collection costs is therefore:

U(θ′) = αS(θ′) + β − c(θ′)

Now, if there is a constraint θ∗ in the agent’s precision (i.e. θ′ ≤ θ∗), it is on the best
interest of a principal solely interested in data collection to elicit an estimate at that
maximum precision. Hence, the principal will choose a value for α so that the agent’s
precision is equal to θ∗. That is, the principal selects an α which maximises the agent’s

expected utility at θ∗. To do so, it solves
dU

dθ′

∣∣∣
θ∗

= 0 to give:

α =
c′(θ∗)

S
′
(θ∗)

(3)

The β parameter serves only to ensure participation in the mechanism by ensuring
that their expected utility is always positive. Presuming that the expected utility from
the data collection and reporting alone shall be at least 0 we get

β = c(θ∗)− c′(θ∗)

S
′
(θ∗)

S(θ∗) (4)

Based on Equations 3 and 4 we calculate the specific formulas of parameters α and
β depending on which one of the strictly proper scoring rule is used. This raises the
important issue of which rule should be selected by the principal. Indeed, each one of
the aforementioned four strictly proper scoring rules has additional properties, besides
incentivising truthful reporting and eliciting effort if appropriately scaled. For example,
the logarithmic scoring rule and the parametric one for k → 1 lead to the lowest ex-
pected payments, but they have no lower bounds. It is suggested by Papakonstantinou’s
comparison of the four strictly proper scoring rules [26] that the parametric scoring rule
offers a good compromise. Selecting a value for the parameter k within (1, 1.5) keeps
the payment relatively low for the majority of the agents, while the existence of a finite
lower bound protects the agents who generate inaccurate estimates (N → 0). For the
parametric rule parameters α and β are denoted as follows:

α =
2c′(θ∗)(θµ + θ∗)

√
k

k − 1

(
θµ + θ∗

2π

) 1−k

2

(5)

and

β = c(θ∗)− 2(θµ + θ∗)

k − 1
c′(θ∗) (6)
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4 The Mechanism

Our proposed mechanism implements a two-step payment to the winner of a second score
auction based on the agents’ reported beliefs of their qualities. The first payment to the
winner is equal to the second score auction’s payment based on that reported belief and
is received before the actual production. Once that agent produces its quality and its
observed by the principal, it receives its secondary payment. This payment consists of
the three following parts:

1. A symmetric penalty if the selected agent produced an inaccurate report.

2. A compensation for the costs involved in the generation of the estimate based on
its accuracy.

3. A compensation for the selected agent’s production based on the realised quality.

We introduce a scaled strictly proper scoring rule to evaluate the selected agent’s
probabilistic estimate. Although the use of scoring rules does not guarantee that the
selected agent’s reported belief will be close to its actual production, since an agent’s
sample can always include a significant number of poor observations, it does motivate
the agent to invest all its available resources when generating its estimate and then to
truthfully report it.

The mechanism is formally defined as follows:

1. Principal asks N agents to participate in the procurement auction

2. Agents generate and report estimates of their outputs yi, their precision θ̂i, and
their costs (x̂i, for i ∈ {1, ..., N}.

3. Each bid is assigned with a score Ŝi = S(x̂
i, ŷi) = V (ŷi)− x̂i, for i ∈ {1, ..., N}

4. The agent with the highest score wins the auction and is allocated the project.

5. The winner1 agent receives its first payment from the principal: P̂ = V (ŷ)− Ŝ(2)

similar to the payment in a second score auction.

6. Winning agent produces quality y0.

7. Principal observes winning agent’s quality production and issues the second pay-

ment:

B(y0; ŷ, θ̂) = d(y0; ŷ, θ̂)[V (ŷ)− Ŝ(2)] + αS(y0; ŷ, θ̂) + β + [V (y0)− Ŝ(2)]

where d(y0; ŷ, θ̂) is a function that evaluates the selected agent’s reported estimate
based on the observed actual production and parameters α and β are the eliciting
effort parameters for the scaled strictly proper scoring rule S(y0; ŷ, θ̂), and S(2) the
score of the runner up agent in the initial second score auction (Step 5).

1In order to simplify our notation we omit the use of subscript (1) to denote the winner of the auction,
while we maintain the use of (2) for the runner-up agent.
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The function d(·) serves to guaranteeing truthful reporting by penalizing deviation
from truth telling. Since an agent’s report can deviate from its actual production due to
unforeseen circumstances (inherent poor observations) and due to strategic behaviour as
well, we let the deviation function d(·) be based on a scaled strictly proper scoring rule
which elicits truthful behaviour and maximises agent’s effort. The function is defined as
following:

d(y0; ŷ, θ̂) = S(y0; ŷ, θ̂)− S(θ̂∗)− 1 (7)

where θ̂∗ is the agent’s reported constraint, S(y0; ŷ, θ̂) is the scoring rule and S(θ̂∗) is the

expected score as a function of the reported constraint θ̂∗.
The total payment a truthful agent expects to derive by this mechanism is the follow-

ing:
P (θ) = [S(θ)− S(θ̂∗)][V (y)− S(2)] + αS(θ)− β + V (y0)− S(2) (8)

In the following section, where we prove the mechanism’s economic properties, we
also show in detail how the above expression is derived.

5 Economic Properties

Having described in detail the mechanism, we now identify and prove its economic prop-
erties. Specifically we show that:

1. Agents are incentivised to generate their estimates at their reported maximum
precisions, and truthfully report their quality and its precision.

2. Truthful revelation of agents’ costs is a weakly dominant strategy given a truthful
report of an agent’s estimate and a precision equal to its reported maximum.

3. The mechanism is immune to the effects of combined strategic behaviour (if it
occurs).

4. The mechanism is individually rational for the selected agent.

Lemma 1. Truthful revelation of the selected agent’s estimates of its quality and its

precision is a dominant strategy with that precision being equal to its reported constraint.

Proof. We show that truthful revelation of the selected agent’s (auction winner) parame-
ters is a dominant strategy by showing that its expected utility is maximised on truthful
reporting. In addition to this we show that the agent is generating the estimate at its
reported maximum precision.

The selected agent’s utility is the following:

U(ŷ) = V (ŷ)−S(2)+[S(y0; ŷ, θ̂)−S(θ̂∗)−1][V (ŷ)−S(2)]+αS(y0; ŷ, θ̂)+β+V (y0)+S(2)−x(y0)−c(θ)

where α and β are the strictly proper scoring rules scaling parameters defined in Appendix
A.
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By integrating over the set of possible outputs y0 we derive the winner’s expected
utility:

U(ŷ) =

∫ ∞

−∞
N (y0; y, 1/θ)[V (ŷ)− S(2)]dy0

+

∫ ∞

−∞
N (y0; y, 1/θ)[S(y0; ŷ, θ̂)− S(θ̂∗)− 1][V (ŷ)− S(2)]dy0

+

∫ ∞

−∞
N (y0; y, 1/θ)[αS(y0; ŷ, θ̂) + β]dy0

+

∫ ∞

−∞
N (y0; y, 1/θ)[V (y0) + S(2) − x(y0)− c(θ)]dy0

Given that the initial payment does not depend on the final outcome and based on
the definition of probability

∫∞
−∞ N (y0; y, 1/θ) = 1 a simpler expression can be derived:

U(ŷ, θ̂) = [V (ŷ)− S(2)]

∫ ∞

−∞
N (y0; y, 1/θ)[S(y0; ŷ, θ̂)− S(θ̂∗)]dy0

+

∫ ∞

−∞
αN (y0; y, 1/θ)S(y0; ŷ, θ̂)dy0+β− c(θ)+

∫ ∞

−∞
N (y0; y, 1/θ)[V (y0)−x(y0)]dy0+S(2)

The above expression can be further simplified through the use of the notation of the
expected score:

S(N̂ ,N ) =

∫ ∞

−∞
N (y0; y, 1/θ)S(y0; ŷ, 1/θ̂)dy0

where N̂ represents the distribution of the selected agent’s reported estimates and N the
distribution of its true estimates.

To sum up, the selected agent’s selected utility is expressed as following:

U(ŷ, θ̂) = [V (ŷ)− S(2)][S(N̂ ,N )− S(θ̂∗)] + αS(N̂ ,N ) + β

+

∫ ∞

−∞
N (y0; y, 1/θ)[V (y0)− x(y0)]dy0 + S(2) − c(θ)

Due to the use of a strictly proper scoring rule, the expected scoring rule is maximised
at N̂ = N ,hence (y, θ) is a local maximum for the expected score. For (ŷ, θ̂) = (y, θ),
the expected score is expressed as a function of precision θ (S(θ): see Appendix A for

details) and the partial derivatives w.r.t ŷ and θ̂ are equal to 0.

Initially, we show that (y, θ∗) is a critical point by solving
∂U

∂ŷ
= 0 and

∂U

∂θ̂
= 0:

∂U

∂ŷ
= V ′(ŷ)[S(N̂ ,N )− S(θ̂∗)] + [V (ŷ)− S(2) + α]

∂S(N̂ ,N )

∂ŷ
= 0 (9)

∂U

∂θ̂
= [V (ŷ)− S(2) + α]

∂S(N̂ ,N )

∂θ̂
= 0 (10)

S is a strictly proper scoring rule, hence solving the above two equations identifies

(y, θ∗) as a critical point since
∂S(N̂ ,N )

∂ŷ
=

∂S(N̂ ,N )

∂θ̂
= 0 for (ŷ, θ̂) = (y, θ∗)
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After calculating
∂2U

∂ŷ2
,
∂2U

∂θ̂2
,
∂2U

∂ŷ∂θ̂
and

∂2U

∂θ̂∂ŷ
for (ŷ, θ̂) = (y, θ∗). The determinant of

the Hessian matrix is the following:

Det(H(U))(y, θ∗) = [V (y)− S(2) + α]2[
∂2S

∂ŷ2
∂2S

∂θ̂2
− ∂2S

∂ŷ∂θ̂

∂2S

∂θ̂∂ŷ
] =

= [V (y)− S(2) + α]2Det(H(S))(y, θ∗) (11)

which is positive given that [V (y) − S(2) + α]2 > 0 and Det(H(S))(y, θ∗) > 0 since
(y, θ) is a maximum for the expected score S and θ = θ∗.

Having shown that (y, θ∗) is a maximum for U(ŷ, θ̂) given that θ̂ = θ he have shown
that truthful revelation of an agent’s quality and its precision is a dominant strategy and
that the agent is incentivised to generate its estimate at a precision equal to its reported
constraint.

Lemma 2. Truthful revelation of the agents’ costs is a weakly dominant strategy given

that their reported outputs are equal to their reports.

Proof. A truthful selected agent expects the following utility:

U(y) =

∫ ∞

−∞
N (y0; y, 1/θ)[V (y0)− x(y0)]dy0 − S(2)

Representing the Gaussian probability distribution as the Dirac delta function, leads
to a transformation which simplifies the above expression. Based on the following prop-
erty of the Dirac delta function:

∫∞
−∞ f(y0)δ(y0 − y)dy0 = f(y), where f(y0) is equal

to V (y0) − x(y0) and δ(y0 − y) =
1

√
2√
θ

√
π
exp (−θ(y0 − ŷ)2/2) the Dirac delta function

δα(y) =
1

α
√
π
exp(−y2/α2) with α =

√
2√
π
.

Now it possible to replace
∫∞
−∞ N (y0; y, 1/θ)[V (y0)−x(y0)]dy0 with V (y)−x(y) which

is in fact the selected agent’s true parameters. Hence:

U(y) = V (y)− x(y)− S(2) = S(1) − S(2)

Given this insight, we prove the Lemma by contradiction:
Let x and y be an agent’s true cost and quality, and S the score that corresponds to

these true values, while x̂, ŷ and Ŝ the reported ones. Furthermore, let x(2), y(2), S(2) be

the bids, and the score of the runner up agent (i.e. Ŝ > S(2)).
First, let the agent’s misreporting have an effect on the outcome of the auction. We

consider the following two cases:

1. Agent wins by misreporting while it would have lost if truthful.

2. Agent loses by misreporting while it would have won if truthful.
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• In Case (1) agent reports its cost s.t Ŝ > S(2) given that S < S(2). The agent
achieves this by reporting a lower cost than its actual one i.e. x̂ < x. Under
optimal reporting of quality, the utility of an agent misreporting its cost in Case
(1) will be negative i.e. U(y) = V (y)− x(y)− S(2) = S(1) − S(2) < 0.

• In Case (2) agent reports its cost s.t. Ŝ < S(2) given that S > S(2). The agent
would have won the auction, but instead reports a cost greater than its actual one
i.e. x̂ > x. As a result, the agent loses the auction and consequently receives
negative utility (since it still faces the costs of determining its quality).

Second, we assume that the agent misreports its cost of production without this af-
fecting whether he wins the auction or not. If the agent had already lost the auction,
misreporting would have no additional effect given that the utility would be negative due
to the cost of determining its quality without any dependence on the cost of production.
Had the agent already won the auction, misreporting would not result to additional ben-
efits. Specifically, both payments depend on the second lower score and, the reported and
actually produced (for the second stage) quality and the compensation for its estimate.

Theorem 1. The mechanism is immune to combined misreporting of quality and cost.

Proof. In the above proofs we showed that truthful reporting of the production quality is
an optimal strategy if the agent reports truthfully its cost, and that the same holds for an
agent’s costs, given that it generated an accurate estimate of its quality by investing the
maximum amount of resources in determining it. However, given the multi-dimensional
nature of the bids an agent could attempt to manipulate the principal by misreporting
both costs while speculating on the precision of its quality’s estimate.

In this proof we examine agents’ strategic behaviour as a whole and the complexities
that arise from combining possible misreporting of production costs with an attempt to
manipulate the process by producing inaccurate reports. We will show that even when
it is possible for some type of misreporting to occur, there is no negative impact on the
principal.

In order to demonstrate how it is not optimal for an agent to deviate from truthful
behaviour we consider the four following general cases of misreporting:

1. Agent wins the auction by misreporting both its estimate of quality and precision
and production cost

2. Agent wins the auction with the misreporting having no effect on the auction’s
outcome

3. Agent loses the auction due to its misreporting

4. Agent loses the auction despite its misreporting

• In Case (1) the agent reports its estimate of quality and cost s.t. Ŝ > S(2), while
S < S(2), with its precision not necessarily equal to its reported constraint. We will

12



show that the misreporting agent’s expected utility U(ŷ, θ̂) will always be less or

equal to the utility of a truthful agent U(y, θ̂∗):

U(ŷ, θ̂)− U(y, θ̂∗) = [V (ŷ)− S(2)][S(N̂ ,N )− S(θ̂∗)] + αS(N̂ ,N ) + β − c(θ) (12)

Regarding V (ŷ) − S(2) we have assumed that it is a positive quantity since Ŝ >

S(2) ⇒ V (ŷ)− x̂(ŷ) > S(2) ⇒ V (ŷ) > S(2), while S(N̂ ,N )− S(θ̂∗) is negative since

S(N̂ ,N ) ≤ S(θ̂∗) given that S is a strictly proper scoring rule.

Finally, after replacing α and β it can be shown that αS(N̂ ,N ) + β − c(θ) < 0:

c′(θ̂∗)

S ′(θ̂∗)
[S(N̂ ,N )− S(θ̂∗)] + c(θ̂∗)− c(θ)

which is negative since S(N̂ ,N ) ≤ S(θ̂∗) and c(θ̂∗)−c(θ) < 0 since it is not optimal
for an agent to report a constraint lower than its intended precision if it knows that
it will be paid based on its constraint, and consequently lose by doing so.

• In Case (2) the agent would have won the auction anyway, and although mis-
reporting of cost and quality will have no impact on the outcome of the auc-
tion, it may have on the secondary payment. Having shown from Case (1) that

U(ŷ, θ̂) ≤ U(y, θ̂∗) is enough for this case also. Even if we assume that the esti-
mate’s precision is equal to the reported constraint, it is still the misreporting of
the estimate and the production cost which makes this strategy suboptimal

Cases (3) and (4) are simpler. For both cases it is obvious that the utility of an agent
not winning the initial auction will solely consist of the cost of data collection. In Case
(3) the agent deliberately misreports its estimate and its production cost in order to lose.
It would be in its best interest to invest minimum resources in generating its estimate,
so it can minimise its inevitable loss. However, that is not a straightforward decision.
Estimates of low precision may end up winning the auction and inflicting additional losses,
while estimates of high precision will increase its losses. Effectively, an agent who wants
to lose the auction has no reason to participate. Now, in Case (4) the agent misreports
with the intention to win but ends up losing the auction. Had the agent won, it would
result in negative utility as shown in Case (1) and given that the agent intends to win it
will invest maximum resources in generating its estimate.

Having shown that combined misreporting of costs, estimates of qualities and their
precision leads to either negative utility or a non-optimal outcome, we proved that the
mechanism is immune to this type of strategic behaviour.

Theorem 2. The mechanism is individually rational for the winning agent.

Proof. The utility an agent which has truthfully reported its estimates, its precisions and
the productions costs is given by:

U(y) = V (y)− x(y)− S(2) = S(1) − S(2)

Given that V (y)− x(y) is the selected agent’s true score, the expected utility is positive
and consequently the mechanism individually rational.
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6 Numerical Evaluation

In this section we initially demonstrate how this mechanism works through an example
and then proceed to undertake a series of simulations to get a better understanding of
its performance. In order to highlight the costs of the uncertainty regarding the agents’
predictions of their output, we compare our mechanism with the standard second score
auction (SSA) where agents also report their predictions, under the assumption that
the principal can predict the same output and can enforce its supply through external
means. As a benchmark, we use the same auction under the assumption that there is no
uncertainty, that is, agents report directly their realised outcomes y0.

We consider a specific case in which the parameters yiµ of the agents’ prior beliefs
of their production qualities are drawn from the uniform distribution U(2, 5), while we
assume that the agents’ precisions in both priors and individual observations during data
collection are equal to 1. Consequently, given our model, the actual production quality
level follows the Gaussian distribution N (yiµ, 1). Furthermore, the agents’ production
cost functions are given by xi(y) = X iy2, where X i ∼ U(0, 1), while the costs of data
collection are linear functions, given by ci(θ) = C iθ, where C∼U(0.001, 0.002). Note
that the bounds in the distribution of the data collection cost parameter are selected
so that even for relative large samples the overall cost is relative small compared to the
actual production cost. A scenario whereby data collection cost would be higher than
the production cost is not considered realistic, since an agent would not be capable of
providing such precision.

The principal’s value function is given by V (y) = B(1 − e−y), with B = 20 guaran-
teeing that there will be some agents with positive scores V (y) − x(y) at the range of
qualities we use. This particular value function is both increasing and concave and it pro-
vides some curvature, as opposed to more conventional approaches such as V (y) = B

√
y

which are almost linear when B is selected in order to achieve similar results in terms of
the sign of the score.

The mechanism is simulated 105 times, while the precision of each agent’s sample
average, and consequently its sample of observations, M , ranges from 1 to 100. For each
iteration we record the selected agent’ utility, its payment by the principle, its prediction
and production costs and whether the agent selected by our mechanism is the agent that
would have been selected had there been no uncertainty (we refer to such a winner as a
’proper winner’). For the calculations that involve a lack of uncertainty, the agents will
report their actual outcome yi0 directly. In a given iteration all agents face underlying cost
functions of the same form, but their priors, sample observations and cost parameters
differ. Due to the number of iterations the standard error in the mean values plotted is
in the range of 10−4 to 10−−5 and thus we omit plotting for clurity.

6.1 A Snapshot of the Mechanism

For a single iteration of the mechanism, we calculate several of the mechanisms elements
i.e. winners, payments and costs as the sample’s precision increases. Specifically, in
Table 1 we list the winner of our mechanism and the winner of the second score auction
with no uncertainty, denoted as w and w′ respectively. We also calculate the parts of
the secondary payment i.e. the d function: S(y0; ŷ, θ̂) − S(θ̂∗) − 1 and the penalty for
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inaccuracies: d(y0; ŷ, θ̂)[V (ŷ) − Ŝ(2)], while listing the first and secondary payments of

Table 1: A single iteration of the mechanism.
θ w w

′ d() Penalty 1st Pay 2nd Pay Total P Utility Cost ratio

1 11 14 -1.5862 -1.7624 1.1111 -3.4723 -2.3612 -2.5621 110.09
4 14 14 -0.9166 -0.5276 0.5756 -0.1340 0.4417 0.0692 49.88
10 14 14 -0.9125 -0.9636 1.0560 -0.0171 1.0389 0.6554 19.95
16 14 14 -0.8846 -0.7820 0.8840 0.1577 1.0417 0.6472 12.47
22 14 14 -0.9417 -0.6751 0.7169 0.2874 1.0043 0.5989 9.07
28 14 14 -0.8786 -0.7433 0.8460 0.2266 1.0726 0.6562 7.13
34 14 14 -0.9168 -0.9277 1.0119 0.0906 1.1024 0.6751 5.87
40 14 14 -0.9382 -0.9601 1.0233 0.0581 1.0814 0.6430 4.99
46 14 14 -0.9213 -0.9190 0.9975 0.1251 1.1225 0.6732 4.34
52 14 14 -0.8727 -0.8030 0.9201 0.3023 1.2224 0.7621 3.84
58 14 14 -0.9004 -0.7504 0.8334 0.3573 1.1907 0.7194 3.44
64 14 14 -0.8758 -0.7663 0.8750 0.3885 1.2635 0.7812 3.12
70 14 14 -0.8820 -0.7550 0.8561 0.4070 1.2631 0.7698 2.85
76 14 14 -0.8658 -0.7755 0.8958 0.4239 1.3197 0.8154 2.63
82 14 14 -0.8671 -0.7665 0.8840 0.4551 1.3391 0.8239 2.43
88 14 14 -0.8638 -0.7765 0.8990 0.4678 1.3668 0.8406 2.27
94 14 14 -0.8645 -0.7864 0.9096 0.4791 1.3887 0.8515 2.12

100 14 14 -0.8687 -0.7578 0.8724 0.5239 1.3964 0.8482 2.00

the mechanism (Steps 5 and 7 respectively), the total payment and the winner’s utility.
Finally, in the last column, we list the ratio between the cost of production x(y) and data
collection c(θ).

From Table 1 it can be seen that in this particular instance, at a sample precision
of 4 our auction’s winner is the winner of the second score auction with no uncertainty,
w = w′. This shows that our mechanism identified the ’proper’ winner, the agent who
should have won based solely on actual production, after it generated a sample of 4
observations. However, d() function is not equal to −1, as it is on expectation, which
leads to a heavier fine for the winner of the auction, hence the 2nd Pay, total payment
and utility are negative at some precisions. Specifically regarding the winner’s utility,
it is interesting to observe the loss of an imprecise agent, and the relation with our
theoretical results in Section 5, where we discussed how estimates of low precision may
end up winning the auction but infilicting additional losses instead of gains (Theorem 1,
Case (3)). Still, despite the good intution that this analysis provides for our mechanism,
it should be noted that these results are from a single iteration, hence exposed to heavy
bias from the random inputs (i.e. costs and qualities).

6.2 Numerical Simulations

Having detailed the simulation’s input parameters and analysed a snapshot of the mech-
anism, we now present our numerical findings after simulating the mechanism for 105

times. In Fig. 1 we summarise the behaviour of the our mechanism. It can be seen
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Figure 1: The selected agent’s percentage of winning the auction under no uncertainty
and its expected utility.

that for our specific scenario, it takes a relatively small sample precision i.e. sample of
observations in data collection, for the outcome of our mechanism to be the same with
outcome of the second score auction under no uncertainty where agents report directly
their realised qualities.

In fact, after around 50 observations the winner of our auction is the winner of the
second score auction in more than 95% of the iterations of the mechanism (Fig. 1(a)). In
addition to this, our analytical findings in Section 5 are validated in Fig. 1(b), where we
notice that the selected agent’s expected utility increases as the precision of the samping
increases. The utility the winner of our auction expects to derive is less than the second
score auction’s winner expected utility (labelled as ’Second Score: Belief’), had it been
able to generate and report its belief of its quality freely. As it is expected, as the precision
increases both auctions approach the second score auction in a setting with no uncertainty
where the winner can report its actual production from the beginning (labelled as ’Second
Score: Outcome’). The differences that appear are attributed to those cases where the
winners of the two auctions do not coincide, hence the winner faces losses.

The payment the selected agent expects to derive and is average costs for precision
θ ∈ [1, 100] are shown in Fig. 2. There is a clear effect of the penalties for inaccuracies, but
also of the principal’s compensation for the data collection costs in the expected payment
shown (Fig 2(a)). The expected payment for our mechanism starts lower than the two
benchmark auctions, but it increases as the precision increases. The lower payments
for both auctions based on agents’ beliefs are to be expected as they represent the cost
of uncertainty, while the higher payments will not be an issue in realistic applications
since the data collection cost tends to be significantly lower than the production costs;
also note that the payments’ differences are highlighted in the plot due to its scale. In
fact, this issue is related to the particular implementation of the simulations and not the
mechanism itself, since even after setting the upper bound of the cost collection parameter
equal to 0.002 and using a linear cost function, for relatively high precisions that cost
ends up very close to some agents’ production costs. We demonstrate this data sensitivity
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Figure 2: The selected agents’ expected payment and average costs.

in Fig 2(b), where we plot the logarithmic ratio of the production to the prediction costs.

7 Conclusions

There are many benefits attached to the rapid increase in the popularity of crowd-sourcing
platforms. However, before this technology can meet its full potential there are several
issues related to both crowd-sourcers and workers which must be addressed. For example,
crowd-sourcers rarely focus on anything else than the final cost of the project, and they
lack the means to assess the workers, beside unsophisticated procedures such as discarding
a completed task. On the other hand, workers expecting minimum or circumstantial
rewards are inclined to dedicate the least of their time or other resources, if any at all,
in completing their tasks. Even in more complex tasks, with substantial rewards, crowd-
workers may decide to use a contract as a placeholder and bid for it without intending
to honour it.

In this article we present a conceptual mechanism for addressing these challenges based
on a multi-dimensional procurement auction modified so it can address effectively workers’
strategic behaviour. The use of a multi-dimensional auctions allows crowd-sourcers to
focus on other elements of the workers’ output and therefore gives them incentives to
improve them while balancing the costs. Furthermore, we introduced uncertainty on how
workers determine their production qualities by modelling them as probabilistic estimates,
and assuming that each worker generates a sample of independent estimates of the same
precision. We further depart from standard multi-dimensional approaches by denying
the crowd-sourcer of the ability to enforce truthful reporting of agents’ qualities through
external means (i.e. cancelling the auction or large arbitrary fines).

Initially the crowd-sourcer procures a task from the crowd by implementing a standard
second score auction, only now the workers’ ranking is calculated based on their reported
estimates of their qualities and costs. The winner of the auction receives the second
score payment and after it fulfils its part of the contract it receives a secondary payment
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based on both the reported estimate and the actual production, production costs and
costs involved in generating the estimate. The secondary payment uses a strictly proper
scoring rule to evaluate the worker’s posterior belief of its quality once the task is finished
and the crowd-sourcer can witness the outcome.

We showed that the mechanism is immune to workers’ combined misreporting i.e. with
respect to the reported estimates of their outputs and the reported costs. In addition to
that we showed that they invest the maximum of the resources available to them when
generating that estimate, while individually rationality is maintained for the winner of
the auction.

However, there are some limitations regarding practical elements of the mechanism.
Although we proved analytically that the mechanism implements the same outcome with
the standard second score auction with the selected worker’s expected utility depending
on its true belief, numerical simulations demonstrated how sensitive the mechanism is to
the prediction of the worker’s quality, and hence on the resources invested in data collec-
tion. The latter issue is also highlighted by the fact that only the winner of the auction is
compensated of the cost of generating its estimate. To overcome these problems, workers
must be rewarded so they can participate in the mechanism. These rewards could be
monetary or special privileges, such as moderator status, cosmetic customisation or cer-
tificates of specialisation. Experience of the past combined with the rate of advancements
in internet based commerce suggests that these drawbacks will be addressed.
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