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Abstract 

This paper analyses in detail the features offered by three distributions used in urban 

economics to describe city size distributions: lognormal, q -exponential and double 

Pareto lognormal, and another one of use in other areas of economics: the log-logistic. 

We use a large database which covers all cities with no size restriction in the US, Spain 

and Italy from 1900 until 2010, and, in addition, the last available year for the rest of the 

countries of the OECD. We estimate the previous four density functions by maximum 

likelihood. To check the goodness of the fit in all periods and for the thirty-four 

countries we use the Kolmogorov-Smirnov and Cramér-von Mises tests, and compute 

the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). 

The results show that the distribution which best fits the data in most of the cases 

(86.76%) is the double Pareto lognormal.  

Keywords: city size distribution, double Pareto lognormal, log-logistic, q -exponential, 

lognormal 

JEL: C13, C16, R00. 
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1. Introduction 

The study of city size distribution has a long tradition in urban economics. To cite just a 

few examples, see Rosen and Resnick (1980), Black and Henderson (2003), Ioannides 

and Overman (2003), Soo (2005), Anderson and Ge (2005), and Bosker et al. (2008). 

These distributions have an interest beyond the purely statistical, essentially for two 

reasons, which feed back to and influence each other. First, because city size 

distribution defines the resulting economic landscape. It may be more concentrated or 

dispersed, or biased towards an excessive number of large or small centres, with cities 

which are similar or very different in size, and all of this has a direct impact on the 

spatial distribution of income, on public investment in infrastructure of various kinds in 

certain areas, and on imbalances between territories in general. And second, because 

this size distribution is susceptible to change over time, according to certain, essentially 

economic, incentives. 

Over the years, the Pareto distribution (Pareto, 1896) has generated a huge amount of 

research and greater acceptance. Considering the rank r  (1 for the most populous city, 2 

for the second, and so on) of the N  cities, we can obtain the expression for the Pareto 

distribution usually estimated,  

ln . lnr const b x= − ,      (1)  

which relates the logarithm of rank with the logarithm of the size of the cities if they 

follow a Pareto distribution. In the case of 1=b , we obtain the well-known Zipf’s law 

(Zipf, 1949) or rank-size rule (see the surveys on this subject by Cheshire, 1999, and 

Gabaix and Ioannides, 2004).
1
 

                                                 
1 Zipf’s law also holds at the level of cities belonging to regions (Giesen and Suedekum, 2011) or when 

cities are defined as actual economic areas using different methods (Rozenfeld et al., 2011; Berry and 

Okulicz-Kozaryn, 2012). 
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 In an important paper regarding city size distributions, Eeckhout (2004) 

essentially proposes three ideas: (1) that when all cities are taken, without any size 

restriction, Pareto’s distribution breaks down and the best representation of the data is a 

lognormal function; (2) as a theoretical result, if the underlying distribution is 

lognormal, which generates a concave rank-size plot, the Pareto exponent decreases 

with sample size, meaning that a sample size can be found which verifies Zipf’s law 

exactly (these first two contributions clearly show the importance of taking all cities, as 

to do otherwise can lead to biased or spurious results); and (3) the data for all US cities 

in 1990 and 2000 support the hypothesis of lognormality and the fulfilment of Gibrat’s 

law, or the law of proportionate growth, something which was already anticipated from 

a theoretical viewpoint by Gibrat (1931) and Kalecki (1945). As a consequence, there 

has been a revival of interest in the lognormal distribution, proposed a long time ago as 

a good description of city size distribution (Parr and Suzuki, 1973).   

 Moreover, other statistical distributions have been proposed in studying city 

size: the q -exponential distribution (Malacarne et al., 2001; Soo, 2007) and double 

Pareto lognormal distribution (Reed, 2002, Giesen et al., 2010). Ioannides and Skouras 

(2013) have even proposed a new distribution function which switches between a 

lognormal and a power distribution. There is also an older literature that explores 

alternative functional forms; see, for example, Cameron (1990), Hsing (1990) or 

Kamecke (1990). This paper is in line with all this literature. 

With respect to the q -exponential distribution, Malacarne et al. (2001) show 

that, when all cities are taken, it has a very close fit to the data. They use data from 

American and Brazilian cities. As far as we know, the only other work to test this 

statement is that of Soo (2007) who, taking the largest cities of Malaysia (over 10,000 

inhabitants) obtains negative results regarding the features of the q -exponential, leading 
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us to think, as with the lognormal, that this distribution is suitable when no truncation 

point is defined.  

The double Pareto lognormal distribution proposed by Reed (2001) has strong 

theoretical foundations. Reed (2002) fits the distribution to the smallest settlements of 

two US states (West Virginia and California) in 1998 and two Spanish provinces 

(Cantabria and Barcelona) in 1996, obtaining good results. The recent paper by Giesen 

et al. (2010) shows that the double Pareto lognormal almost always offers a better 

description than the lognormal of the city size data for eight countries (Brazil, the Czech 

Republic, France, Germany, Hungary, Italy, Switzerland, and the US) in the first decade 

of the 21st century, offering the strongest evidence in favour of the double Pareto 

lognormal to date.  

Apart from these three distributions (the lognormal, the q -exponential and the 

double Pareto lognormal), we have observed that the log-logistic distribution also offers 

a close description of the data. Thus we add it to the study. The log-logistic has been 

used as a simple model of the distribution of wealth or income by Fisk (1961); hence 

the name of Fisk distribution in economics. In other fields, it is widely used in survival 

analysis when the failure rate function presents a unimodal shape; it has also been used 

in hydrology to model stream flow and precipitation. However, to the best of our 

knowledge, this is its first appearance in urban economics.  

Recently much more complete databases have been constructed, which enable us 

to bring more statistical information to bear on the problem dealt with in this work. 

Specifically, González-Val (2010) considers all the cities in the US during the entire 

20th century; González-Val et al. (2012) do the same for Spain and Italy, as well as for 

the US. If these data are used to represent the logarithm of the rank against the 

logarithm of city size, a clear deviation from linearity can be observed in all cases, 
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opening the way for the consideration of non-Pareto distributions. What we want to 

emphasise is that, except for Eeckhout (2004) and Giesen et al. (2010), no previous 

studies have considered the entire distribution of cities
2
, as all of them impose a 

truncation point, either explicitly by taking cities above a minimum population 

threshold, or implicitly by working with MSAs
3
. This is usually due to a practical 

reason of data availability. Furthermore, these few studies focus only on static city size 

distributions in one or two periods, as data over time is rarely available. 

Against this background, the first aim of this article is to estimate the density 

functions of the double Pareto lognormal, the lognormal, the q -exponential and the log-

logistic for describing city size distributions. Second, we perform standard statistical 

tests to assess when the proposed distributions have a close fit to the empirical ones. 

Third, standard AIC and BIC information criteria are computed to discriminate in an 

accurate way between the four distributions. In any case, as far as we know, this is the 

first time that these matters have been subjected to empirical testing with such 

comprehensive databases. On the one hand, we use un-truncated city population data; 

on the other hand, we take into account in an explicit way the temporal dimension 

(considering data from more than a hundred years for three countries: the US, Spain and 

Italy, a time span which can be considered as a long-term study) as well as the 

geographic or spatial dimension (we analyze data from the last census of the 34 

countries of the OECD, a cross-sectional sample of countries comprising many different 

urban systems). 

                                                 
2 Michaels et al. (2012) use data from minor civil divisions (MCDs) to track the evolution of population 

across both rural and urban areas in the United States from 1880 to 2000. 
3 In the US, classification as an MSA requires a city of at least 50,000 inhabitants or the presence of an 

urban area of at least 50,000 inhabitants and a total metropolitan population of a minimum of 100,000 

inhabitants (75,000 in New England), according to the official definition. Other countries follow similar 

criteria, although the minimum population threshold needed to be considered a metropolitan area may 

vary. 
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 The article is organised as follows. The second section recalls the definition and 

main properties of the four distributions studied. The third summarises and explains the 

databases used. Section four shows the results. In section five we discuss the main 

results. Finally, section six concludes.  

2. Description of the distributions  

2.1. The lognormal distribution (ln) 

The probability density function (pdf) of the lognormal is given by: 
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where erf  denotes the error function associated with the normal distribution.  

The lognormal distribution has been considered for many years to study city size 

(see Richardson, 1973, and references therein). More recently, Eeckhout (2004) 

estimates the lognormal distribution, with no truncation point, to study city size in the 

US. He defines an equilibrium theory of local externalities as a process generating data 

of such a distribution, and justifies the coexistence of proportionate growth and the 

resulting lognormal distribution. 

2.2. The q -exponential distribution (qe) 

The probability density function of the q -exponential is given by: 
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where 0>a  and 1>q are parameters and x  denotes the population of the cities. The 

expression of the corresponding cumulative distribution function is: 
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In the case that 1→q , ax
aexf

−→)( , a property which justifies the name of q -

exponential.  

This distribution has been used extensively by Tsallis (1988) and his group of 

collaborators, arguing for its theoretical applicability to systems with long-range 

interactions (Malacarne et al., 2001, can be included in this line of argument). Soo 

(2007) uses this distribution to study city size in the case of Malaysia, obtaining low 

descriptive performance probably due to the fact that he uses a cut-off of 10,000 

inhabitants to define the cities. However, the q -exponential is a particular case of the 

distribution known as generalised type II Pareto, which has been considered in various 

earlier works (for example, Hosking and Wallis, 1987; Grimshaw, 1993; Choulakian 

and Stephens, 2001).  

2.3. The double Pareto lognormal distribution (dPln) 

The probability density function of the double Pareto lognormal distribution (see Reed, 

2002) is: 
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where 0x >  and , , , 0α β μ σ >  are the distribution parameters. The dPln distribution has 

the property that it follows different power laws in its two tails, namely 1( )f x x
α− −≈  

when x →∞  and 1( )f x x
β −≈  when 0x → , hence the name of double Pareto. The 

central part of the distribution is approximately lognormal, although it is not possible to 

exactly delineate the lognormal body part and the Pareto tails (Giesen et al., 2010). 

The expression of the corresponding cumulative distribution function is: 
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 (7) 

The dPln distribution arises as the steady-state distribution of an evolutionary 

process of a simple stochastic model of settlement formation and growth based on 

Gibrat’s law and a Yule process; see Reed (2002) for details. For more recent work on 

an economic model which incorporates the stochastic derivation of Reed (2002), see 

Giesen and Suedekum (2012a). The key in this latest model is the endogenous city 

creation and the resulting age heterogeneity in cities within the distribution. Giesen and 

Suedekum (2012a) argue that Eeckhout’s (2004) theoretical framework and the 

lognormal distribution represent a particular scenario of their model, the case when 

there is no city creation and all cities are the same age. 
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2.4. The log-logistic distribution (ll) 

The probability density function of the log-logistic distribution is: 
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where , 0μ σ >  are the distribution parameters. This pdf can be written in other 

mathematically equivalent ways, but we have chosen this form to compare it with that 

of the ln and dPln (see Singh and Maddala, 2008, for references and for derivations of 

the log-logistic distribution). The cumulative distribution function can be written as: 
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Although there is no specific theoretical foundation for the log-logistic, Hsu (2012) 

develops a model of central place theory using an equilibrium entry model to generate a 

Pareto upper tail in the city size distribution if the distribution of scale economies is a 

regularly varying function. This class of distributions includes the log-logistic.
4
 As 

shown in the fourth section, the log-logistic provide a better fit to empirical city size 

data than the other studied distributions in some cases. 

3. The databases 

We use un-truncated city population data from all OECD member countries. We 

have taken the data corresponding to the last available census for each country, though 

for the US, Spain and Italy the data corresponding to the census of each decade of the 

20th century is also included. Table 1 shows the number of cities for each decade for 

                                                 
4 See Table C1 in Hsu (2012). 
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these last three countries, and the descriptive statistics, and Table 2 reports the number 

of cities and the descriptive statistics for the remaining OECD countries. 

The data on the geographical unit of reference of all countries comes from the 

official statistical information services. The urban unit considered is the lowest spatial 

subdivision, so they represent the whole territory of the country, with the exception of 

Israel, Ireland and the United States; the first because data is only available for 

municipalities with more than 5,000 inhabitants; the second because only incorporated 

places are taken into account until 2000
5
 (they represent 46.99% of the total population 

of the US in 1900 and 61.49% in 2000); and the third because legal towns have 

expanded beyond their legally defined boundaries and, as a result, a high number of 

persons in the communities is excluded. So, while there are problems of international 

comparability, because the administrative definition of a city varies from one country to 

another, they do have the major advantage that the size distribution of these ‘legal’ 

cities comprises, in general, 100% of the population of each country.  

This dataset considered is motivated, first, by the availability of a large number 

of countries in order to confirm the robustness of our results across countries but, 

second, also by the possibility of comparing the time evolution of the urban structure in 

three countries; Spain and Italy, as two examples of consolidated and old urban 

structures, in contrast to the US, a “young” country whose inhabitants are characterised 

by high mobility (Cheshire and Magrini, 2006). Moreover, unlike Italy and Spain, 

where urban growth is produced by the increase in population living in existing cities, in 

the US urban growth has a double dimension: as well as increases in city size, the 

                                                 
5 See González-Val (2010) for more information. For the US we consider two different samples for the 

year 2000: one sample including only the incorporated places and another sample including all places 

(incorporated and unincorporated), as in Eeckhout (2004). The US census in 2000 is the first to include all 

unincorporated places with no size restriction. Results are robust for both samples. The US sample for 

2010 also considers all the places (incorporated and unincorporated). 
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number of cities almost doubles in the period considered, with potentially different 

effects on city size distributions. Therefore, our databases seem to offer an excellent 

opportunity to test empirically the Giesen and Suedekum (2012a) and Eeckhout (2004) 

models and the influence of city creation on the shape of the city size distribution. 

4. Results 

4.1. Estimation of the distributions 

Maximum likelihood (ML) is a standard technique which allows the estimation 

of the parameters of distributions given a sample of data. Out of the four distributions 

used in this article, only one has a closed form for the corresponding estimators, namely 

for the lognormal. The estimators for μ  and σ  are, respectively, the mean and standard 

deviation of the logarithm of the data. For the q -exponential, double Pareto lognormal 

and log-logistic we must use numerical methods in order to maximise the log-likelihood 

value for each sample. However, the log-likelihood functions to be maximised are easy 

to find: see Reed and Jorgensen (2004) for the dPln and Shalizi (2007) for the qe. The 

case of ll can be treated in a similar fashion. The results of the estimations are shown for 

a selection of years in Table 3
6
.  

Figure 1 offers a first visual approximation of the goodness of the fit provided 

by the four proposed distributions (ln, qe, dPln and ll) to describe empirical city size 

distributions. We have taken the last available year of the US, Spain and Italy. We 

obtain similar graphs for the rest of the years and different countries.
7
 Thus, the figure 

shows the density kernel estimate of the empirical distribution using an adaptive kernel 

compared with the four distributions with the parameters estimated by ML. As in Levy 

(2009) and (Giesen et al., 2010), a zoom for the upper tail distribution is also shown. 

                                                 
6 The complete estimation results are available from the authors upon request. 
7 Again, all the results are available from the authors on request. 
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It is hard to find in Figure 1 any strong differences between the four competing 

distributions because all of them capture reasonably well the shape of the empirical one. 

Therefore, to be able to discriminate between the four functions, numerical methods and 

tests are required rather than graphical tools. Only in this way can we conclude which 

one is dominant (although the differences between them are very small) and, thus, 

which of the urban theories that are behind the distributions studied (see Sections 1 and 

2), are confirmed by the empirical data. This analysis is performed in Subsections 4.2 

and 4.3. 

4.2. Standard statistical tests 

In this subsection we aim to provide independent tests in order to verify the goodness of 

the fit in all cases. We have chosen the Kolmogorov-Smirnov (KS) test, which is 

mentioned in a study of similar characteristics to ours (Giesen et al., 2010) and is 

standard in the literature, and also the Cramér-von Mises (CM) test. The reason for 

including this second test is that its statistic measures the sum of the squared deviations 

of the cdf tested with respect to the empirical one. Thus, this statistic has an 

interpretation similar to Figures 2a, 2b and 2c in Giesen et al. (2010) and, in this way, 

they give similar information. Consequently, here we only show the p-values of the CM 

test.
8
 Moreover, the KS and CM tests have similar power: it is quite low for small 

sample sizes but very high for large ones (Razali et al., 2011). Both tests are extremely 

precise for large and very large sample sizes, not rejecting the null hypothesis just 

because of very small deviations. We recall that the null hypothesis of both KS and CM 

tests is that the empirical and the estimated statistical cdfs of the two samples are equal.  

                                                 
8 The accumulated squared deviations of the cdfs are available from the authors upon request. We have 

also plotted the accumulated absolute values of the deviations of the estimated and empirical cdfs. The 

results, not shown due to size restrictions, show that the distribution with the lower accumulated 

deviations in most of the cases is the double Pareto lognormal. 
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From a long-term perspective, the results for the US, Spain and Italy during the 

twentieth century are summarized as follows. The significance level is always 5%. For 

the US and Spain, the four distributions are rejected by both KS and CM in almost all 

years; the only exception is the dPln in 1900 and 1920 for the US using the CM test. In 

Italy the qe is always rejected, the ln almost always, the ll can never be rejected except 

in 1901, 2001 and 2010, and the dPln cannot be rejected in any case except in 1901. 

Table 4 reports cross-sectional evidence. It shows the p-values of both tests for 

our sample of the OECD countries, including the first decade of the 21st century for the 

US, Spain and Italy. The cases in which the statistical distribution cannot be rejected at 

the 5% significance level are highlighted in bold. Looking at the columns of the table 

corresponding to each distribution, the qe shows the highest number of rejections (59 

out of 66 contrasts performed, 89.39%). The second worst distribution is the ln (60.29% 

of rejections), followed by the ll (39.71%); the best distribution is the dPln, which can 

only be rejected in 18.51% of the tests performed.  

Reading the table by rows, we can observe that there are countries in which the 

four distributions can be rejected by both the KS and CM tests (Australia 2001, 

Germany 2010, Poland 2010, Spain 2010, Turkey 2011 and the US 2010), while in 

others none of the distributions can be rejected by any of the tests (Iceland 2012 and 

New Zealand 2006). The former group of six countries have a high number of cities, 

while the latter pair are the two countries with the lowest sample size. In general, 

although there are some counter-examples, the number of rejections tends to increase 

with sample size, something that could be anticipated because the power of the KS and 

CM tests increases with sample size. This result can explain the high number of 

rejections detected for the US, Spain and Italy during the twentieth century: since the 
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beginning of the century these countries have comprised a high number of cities, 

compared to other countries.  

 In summary, considering the overall results of the tests for each distribution (the 

sum of cases of non-rejections), it follows that the distributions which best fit the data 

(out of the four studied here) are, in descending order, the double Pareto lognormal, the 

log-logistic, followed closely by the lognormal, and finally the q -exponential. 

Therefore, a distribution which has been proposed in the literature, the q -exponential, is 

clearly outperformed by others more recently proposed, such as the double Pareto 

lognormal and the log-logistic.   

4.3. Information criteria  

In order to discriminate between the studied distributions, here we take another 

approach. We compute two information criteria that are very well suited to the 

maximum likelihood method which we have used previously to estimate the parameters 

of the four distributions studied: the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC; see, e.g., Giesen et al., 2010, and references therein). The 

results are shown in Tables 5, 6 and 7 for the US, Spain and Italy, respectively, and in 

Table 8 for the rest of the OECD countries. The interpretation is easy: the distribution 

with the lower numerical value out of the AIC or BIC is favoured. In general, the 

outcomes confirm most of the results obtained from the statistical tests carried out in 

Subsection 4.2. 

There are 68 cases: 13 periods for the US, 12 for Spain and Italy, and one for 

each of the rest of the 31 OECD countries. In 62 of them there is a coincidence between 

the AIC and BIC in the selection of the best fit. The discrepancies appear in Finland 

(2011), Greece (2011), Mexico (2010), Portugal (2011), Switzerland (2010) and the UK 
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(2001). In all of these, the AIC chooses the dPln, while the BIC selects the ln three 

times, the ll two times and the qe one time. In these six situations when the criteria do 

not agree, we follow Burnham and Anderson (2002, 2004), who argue with theoretical 

arguments and simulations that the AIC is preferable to the BIC. Therefore, out of the 

68 cases, the dPln is the selected model in 59 cases (86.76%), the ll in 7 cases (Belgium 

2010, Chile 2002, Denmark 2012, Estonia 2012, Israel 2008, New Zealand 2006 and 

Slovenia 2012), the ln in one case (Iceland 2012) and the qe also in one case (Korea 

2012).  

We wonder if there is any kind of geographic regularity in these results, but, 

apparently, there is not. However, we have observed a certain relationship between 

sample size and the best distribution for each country. When the sample size is below 

106 cities (three cases) the dPln never provides the best fit. If the sample size is above 

589 cities the dPln is always the selected distribution (51 cases). Finally, for between 

106 and 589 cities the result is mixed: the dPln is the best distribution in 8 out of 14 

cases. In short, there is a threshold in sample size (in our results around 600 cities) 

above which the dPln clearly dominates; the only way that any of the other studied 

distributions can be selected is if the sample size is low enough.
9
 

5. Discussion 

In this paper we compare four statistical distributions (the double Pareto lognormal, the 

lognormal, the q -exponential and the log-logistic) used to fit the overall city size 

distribution with un-truncated city size data. We combine a long-term perspective for 

three countries (the US, Spain and Italy) with a long cross-sectional sample of countries 

(the rest of the OECD countries).    

                                                 
9 For example, the lowest sample size out of the eight countries analyzed in Giesen et al. (2010) is 2,075 

cities. 
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A first important result is that the dPln is clearly in most of the cases and using 

several criteria the best distribution out of the four studied. This result confirms the 

conclusions obtained by Giesen et al. (2010) with a small sample of countries. It is a 

reassuring result because it allows us to reconcile all the old literature about the validity 

of the Pareto distribution (in the upper tail) and the particular case of Zipf´s law, with 

more recent studies which raise doubts about its performance for the overall city size 

distribution, and propose the lognormal as the most suitable distribution for un-

truncated city size data. There is indeed a new mainstream in the literature, to which we 

contribute with this work, that argues that the best fit to un-truncated city size data is 

provided by a mixture of Pareto and lognormal distributions, such as the dPln, which is 

lognormal in the body and Pareto in the tails. In this line we can also include the 

contribution by Ioannides and Skouras (2013), who have proposed a new statistical 

distribution, but also combining lognormal and Pareto. It seems that the discussion 

raised by Levy (2009) has been solved: “most cities obey a lognormal; but the upper tail 

and therefore most of the population obeys a Pareto law” (Ioannides and Skouras, 

2013). 

Regarding the other distributions, out of the 68 cases studied, and according to 

the AIC and BIC information criteria, the dPln is the best distribution in 59 of them 

(86.76%), the ll in 7 (Belgium, Chile, Denmark, Estonia, Israel, New Zealand and 

Slovenia), the ln in one case (Iceland) and the qe in another one (Korea). Considering 

all the statistical information, we can rank in descending order the performance of the 

distributions as follows: the dPln, the ll, the ln and finally the qe. It is surprising that a 

newcomer distribution to urban economics, the log-logistic, appears in second place, 

with the additional advantage of having a simpler functional form than the double 

Pareto lognormal and two parameters instead of four. 
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With so many results and so much information, we wonder if there is any kind 

of regularity that helps to explain the cases in which the dPln is the best or not. And we 

find that the key issue is the sample size. We have detected that below a very small 

sample size, in our data a lower bound around of 100 cities, the dPln is outperformed by 

other distributions; however, above a certain threshold of the sample size, in our data 

around 600 cities, the dPln clearly dominates the other studied distributions. For 

intermediate sample sizes between 100 and 600 cities, the dPln is the best in roughly 

half of the cases. 

Finally, we would like to discuss a difficult and technical, but interesting, issue, 

which is introduced in the theoretical model by Giesen and Suedekum (2012a): the 

effect of age heterogeneity across cities on city size distribution. Giesen and Suedekum 

(2012b) add empirical evidence relating to the cases of France and the US. Giesen and 

Suedekum’s (2012a) theoretical model generates a dPln city size distribution based on 

two basic features. Firstly, in each period new cities do enter at a constant rate. 

Secondly, the age distribution of cities is heterogeneous. Both assumptions are different 

from those of the theoretical model proposed by Eeckhout (2004), which yields to a 

lognormal city size distribution. Focusing on the US, Spain and Italy (the three 

countries we analyse from a temporal perspective), we find that the dPln is always 

better than the ln although, according to the theoretical predictions, the relative edge 

that the dPln has over the ln would be greater if the age heterogeneity arises from 

constant growth in the number of cities. In our results the dPln performs relatively better 

than the ln in the US. In Spain and Italy the lognormal performs not so badly (the mean 

AIC of the ln over the mean AIC of the dPln is 1.00401 for the US, 1.00298 for Spain 

and 1.00172 for Italy). Is this result consistent with the theoretical model of Giesen and 

Suedekum (2012a)? The answer to this question would require a detailed historical 



 

 

17

study of the entry rate of cities and their age distribution in the three countries, a study 

beyond the scope of this paper. We can only say that in our samples, considering the 

whole twentieth century, there is city entry in the US, while in Spain and Italy the 

number of cities remains almost constant. However, the age heterogeneity of the 

European cities is much higher (the foundation of many European cities dates back to 

the Middle Ages) than that of the United States (from 1600 to 2000 approximately). In 

short, this is an open question deserving further research. 

6. Conclusions 

City size distribution has been the subject of numerous empirical investigations by 

urban economists, statistical physicists, and urban geographers. From the point of view 

of urban economics, the study of city size distribution has deep economic implications 

related to labour markets, income distribution, public expenditure, etc.  

Elsewhere, since the work of Eeckhout (2004), the risks of considering only the 

largest cities have been demonstrated; that is, only the upper tail. In turn, if the 

availability of data allows it, the analysis of city size distribution should be done as a 

long-term analysis. With both considerations as premises, this article combines un-

truncated census data for the entire 20th century in decades, of three countries: the US, 

Spain and Italy, with cross-sectional data from the most recent census of the rest of the 

OECD countries. Using such comprehensives databases, with no size restriction, and 

such a vast temporal and spatial horizon undoubtedly adds robustness to the results. 

This work has minutely examined three density functions with relatively recent 

use in urban economics, namely the lognormal, the q -exponential, the double Pareto 

lognormal and an almost new distribution, the log-logistic. After estimating the 

parameters of the four distributions by maximum likelihood, we have tested the fit 
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provided by each distribution using the Kolmogorov-Smirnov and Cramér-von Mises 

tests. Afterwards, we have computed the AIC and BIC information criteria. Our results 

show that, in general, the best function to describe city size distribution, out of the four 

studied here, is the double Pareto lognormal. 
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Table 1. Number of cities and descriptive statistics: the US, Spain and Italy 

US           

Year Cities Mean 

Standard 

deviation Minimum Maximum 

1900 10,596 3,376.04 42,323.90 7 3,437,202 

1910 14,135 3,560.92 49,351.24 4 4,766,883 

1920 15,481 4,014.81 56,781.65 3 5,620,048 

1930 16,475 4,642.02 67,853.65 1 6,930,446 

1940 16,729 4,975.67 71,299.37 1 7,454,995 

1950 17,113 5,613.42 76,064.40 1 7,891,957 

1960 18,051 6,408.75 74,737.62 1 7,781,984 

1970 18,488 7,094.29 75,319.59 3 7,894,862 

1980 18,923 7,395.64 69,167.91 2 7,071,639 

1990 19,120 7,977.63 71,873.91 2 7,322,564 

2000 19,296 8,968.44 78,014.75 1 8,008,278 

2000 (all places) 25,358 8,231.53 68,390.23 1 8,008,278 

2010 (all places) 28,664 7,871.53 61,631.70 1 8,175,133 

Spain           

Year Cities Mean 

Standard 

deviation Minimum Maximum 

1900 7,800 2,282.40 10,177.75 78 539,835 

1910 7,806 2,452.01 11,217.02 92 599,807 

1920 7,812 2,621.92 13,501.02 82 750,896 

1930 7,875 2,892.18 17,513.90 79 1,005,565 

1940 7,896 3,180.65 20,099.96 11 1,088,647 

1950 7,901 3,479.86 26,033.29 64 1,618,435 

1960 7,910 3,801.71 33,652.11 51 2,259,931 

1970 7,956 4,240.98 43,971.93 10 3,146,071 

1981 8,034 4,701.40 45,995.35 5 3,188,297 

1991 8,077 4,882.27 45,219.85 2 3,084,673 

2001 8,077 5,039.37 43,079.46 7 2,938,723 

2010 8,114 7,795.05 47,529.80 5 3,273,049 

Italy           

Year Cities Mean 

Standard 

deviation Minimum Maximum 

1901 7,711 4,274.84 14,424.61 56 621,213 

1911 7,711 4,648.11 17,392.98 58 751,211 

1921 8,100 4,863.80 20,031.61 58 859,629 

1931 8,100 5,067.10 22,559.85 93 960,660 

1936 8,100 5,234.38 25,274.48 116 1,150,338 

1951 8,100 5,866.12 31,137.52 74 1,651,393 

1961 8,100 6,249.82 39,130.55 90 2,187,682 

1971 8,100 6,683.52 45,581.66 51 2,781,385 

1981 8,100 6,982.33 45,329.33 32 2,839,638 

1991 8,100 7,009.63 42,450.26 31 2,775,250 

2001 8,100 7,021.20 39,325.47 33 2,546,804 

2010 8,094 7,490.29 41,505.4 34 2,761,477 

 

Note: No census exists in Italy for 1941 due to its participation in the Second World 

War, so we have taken the data for 1936. 
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Table 2. Number of cities and descriptive statistics: Rest of the OECD countries 

 

 

Country Year Cities Mean 

Standard 

deviation Minimum Maximum 

Australia 2001 1,559 10,756.6 132,419 200 3,502,301 

Austria 2001 2,359 3,405.23 32,855.2 60 1,550,123 

Belgium 2010 589 18,403.9 29,353.6 80 483,505 

Canada 2011 4,931 6,789.03 57,345.8 5 2,615,060 

Chile 2002 342 44,200.1 68,452 130 492,915 

Czech Republic 2011 6,251 1,684.97 17,825 3 1,257,158 

Denmark 2012 99 56,435.2 65,246.2 104 551,900 

Estonia 2012 232 23,108.3 129,319 67 1,339,662 

Finland 2011 335 16,062.5 42,665.6 103 595,384 

France 2009 36,716 1,790.92 8,253.09 1 447,396 

Germany 2010 11,292 7,239.78 46,688.7 8 3,460,725 

Greece 2011 325 33,187.3 49,804.8 150 655,780 

Hungary 2001 3,121 3,245.99 33,161.7 12 1,777,921 

Iceland 2012 75 4,261 14,446.2 52 118,814 

Ireland 2011 824 3,850.91 39,696.9 90 1,110,627 

Israel 2008 169 39,203.6 76,876.4 5000 759,700 

Japan 2010 2,102 25,863 74,416.4 140 1,468,382 

Korea 2012 251 191,198 149,616 7,737 640,732 

Luxemburg 2012 106 4,951.44 10,370.9 677 99,852 

Mexico 2010 2,456 45,092.8 130,512 93 1,794,969 

Netherlands 2001 504 31,717.3 54,134.7 1,017 734,533 

New Zealand 2006 74 54,431.8 75,920.8 417 404,658 

Norway 2012 429 11,622.1 35,497.4 218 613,285 

Poland 2010 2,479 15,409.5 50,664 1,361 1,720,398 

Portugal 2011 308 34,291 56,055.8 430 547,631 

Slovakia 2001 2,926 1,844.51 5,857.66 8 105,842 

Slovenia 2012 211 9,741.69 21,846.4 379 280,607 

Sweden 2010 290 32,442.5 64,826.9 2,446 845,777 

Switzerland 2010 2,495 3,154.36 10,879.7 12 372,857 

Turkey 2011 2,934 21,362.9 75,364.6 328 831,229 

United Kingdom 2001 354 138,810 93,289.1 2,153 977,087 
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Table 3. Estimated parameters of the distributions 

 

 

 

 

  

Lognormal 

distribution 

q -exponential 

distribution 

Log-logistic 

distribution 

Double Pareto lognormal 

distribution 

 

Country Year μ  σ  q  a  μ  σ  α  β  μ  σ  

Australia 2001 7.04 1.33 1.75 0.0016 6.88 0.70 0.66 24.89 5.57 0.21 

Austria 2001 7.39 0.89 1.22 0.0006 7.37 0.48 1.59 1.98 7.27 0.37 

Belgium 2010 9.39 0.87 1.14 0.0001 9.38 0.47 1.85 2.26 9.30 0.50 

Canada 2011 6.66 1.86 2.05 0.0027 6.65 1.01 0.78 0.82 6.60 0.69 

Chile 2002 9.82 1.38 1.53 0.0001 9.82 0.77 2.89 1.42 10.18 1.14 

Czech Republic 2011 6.15 1.22 1.56 0.0030 6.07 0.67 1.07 4.72 5.43 0.77 

Denmark 2012 10.58 0.99 1.05 1.9e-5 10.66 0.43 -- -- -- -- 

Estonia 2012 7.84 1.33 1.73 0.0007 7.69 0.63 -- -- -- -- 

Finland 2011 8.78 1.21 1.49 0.0002 8.72 0.67 1.10 1.82 8.41 0.62 

France 2009 6.21 1.35 1.67 0.0031 6.14 0.75 1.00 3.32 5.52 0.88 

Germany 2010 7.52 1.51 1.77 0.0009 7.49 0.87 1.34 3.73 7.04 1.29 

Greece 2011 9.73 1.34 1.19 4.5e-5 9.84 0.72 2.46 0.88 10.46 0.60 

Hungary 2001 6.82 1.30 1.56 0.0015 6.78 0.72 1.18 2.05 6.47 0.86 

Iceland 2012 6.85 1.59 1.89 0.0020 6.79 0.90 1.00 3.93 6.10 1.21 

Ireland 2011 6.64 1.29 1.72 0.0023 6.49 0.69 0.76 13.91 5.39 0.37 

Israel 2008 9.89 1.03 1.38 0.0001 9.80 0.58 -- -- -- -- 

Italy 2010 7.85 1.34 1.55 0.0005 7.83 0.76 1.58 3.65 7.49 1.15 

Japan 2010 9.14 1.24 1.56 1.4e-4 9.07 0.68 0.99 1.69 8.72 0.48 

Korea 2012 11.76 0.98 0.62 2.3e-6 11.82 0.59 7.06 1.43 12.32 0.73 

Luxemburg 2012 7.96 0.88 1.25 0.0004 7.89 0.48 1.22 12.45 7.22 0.41 

Mexico 2010 9.41 1.55 1.77 0.0001 9.40 0.88 1.41 3.26 9.01 1.35 

Netherlands 2001 9.91 0.85 1.18 4.6e-5 9.86 0.47 1.52 2.78 9.61 0.42 

New Zealand 2006 10.25 1.22 1.27 3.2e-5 10.29 0.66 1.55 1.17 10.46 0.58 

Norway 2012 8.50 1.17 1.44 0.0002 8.45 0.66 1.29 5.66 7.90 0.86 

Poland 2010 9.07 0.82 1.25 0.0001 8.99 0.43 1.36 9.10 8.44 0.35 

Portugal 2011 9.73 1.14 1.40 0.0001 9.67 0.66 1.25 5.47 9.11 0.82 

Slovakia 2001 6.54 1.20 1.48 0.0018 6.50 0.65 1.21 1.77 6.27 0.64 

Slovenia 2012 8.58 0.99 1.26 0.0002 8.55 0.55 1.50 2.37 8.34 0.60 

Spain 2010 6.58 1.85 2.29 0.0041 6.49 1.07 0.75 3.84 5.52 1.31 

Sweden 2010 9.82 0.94 1.25 0.0001 9.76 0.53 1.33 8.58 9.19 0.59 

Switzerland 2010 7.11 1.32 1.48 0.0010 7.10 0.75 1.93 2.44 7.00 1.14 

Turkey 2011 8.27 1.44 1.92 0.0006 8.06 0.74 0.75 3.59 7.21 0.34 

United Kingdom 2001 11.68 0.59 -- -- 11.67 0.31 2.24 2.94 11.57 0.16 

US 2010 7.13 1.83 2.17 0.0020 7.09 1.05 1.17 2.97 6.61 1.59 

 

Note: It has not been possible to estimate the dPln for Denmark (2012), Estonia (2012), 

Israel (2008) and the qe for the UK (2001). In these few cases, the proposed density 

function seems to give rise to a poorly defined likelihood function and therefore cannot 

be estimated. The reason seems to be an extremely flat lower tail. 
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Table 4. p -values of the Kolmogorov-Smirnov (KS) and Cramér-von Mises (CM) tests 

 

Notes: The null hypothesis is that the empirical distribution follows the lognormal, q -

exponential, dPln or log-logistic distribution. The cases in which the statistical 

distribution cannot be rejected at the 5% significance level are highlighted in bold. It 

has not been possible to perform the tests for the dPln distribution for Australia (2001), 

Denmark (2012), Estonia (2012), Israel (2008), Luxembourg (2012), Poland (2010) and 

Sweden (2010), and for the qe distribution for the UK (2001). In these few cases, we 

could not generate the samples with which the test are performed in the same way as in 

the other cases. The reason seems to be the extremely flat lower tail in these cases. 

 

 

 

 

Lognormal 

distribution 

q -exponential 

distribution 

Double Pareto 

lognormal 

distribution 

Log-logistic 

distribution 

 KS CM KS CM KS CM KS CM 

Australia 2001 0 0 0 0 - - 0 0 

Austria 2001 0 0 0 0 0.854 0.809 0.181 0.164 

Belgium 2010 0.382 0.224 0 0 0.993 0.985 0.998 0.993 

Canada 2011 0 0 0.006 0.017 0.112 0.187 0.002 0.011 

Chile 2002 0.172 0.131 0 0 0.094 0.118 0.249 0.247 

Czech Republic 2011 0 0 0 0 0.173 0.362 0 0.007 

Denmark 2012 0 0 0 0 - - 0.434 0.266 

Estonia 2012 0.002 0 0 0 - - 0.045 0.619 

Finland 2011 0.134 0.177 0.002 0.015 0.963 0.970 0.736 0.619 

France 2009 0 0 0 0 0.046 0.070 0 0 

Germany 2010 0 0 0 0 0.002 0.008 0 0 

Greece 2011 0.001 0.009 0.172 0.376 0.706 0.766 0.300 0.259 

Hungary 2001 0.002 0.005 0 0 0.682 0.653 0.134 0.193 

Iceland 2012 0.855 0.932 0.959 0.980 0.987 0.992 0.979 0.991 

Ireland 2011 0 0 0 0 0.397 0.456 0 0 

Israel 2008 0.093 0.128 0 0 - - 0.060 0.276 

Italy 2010 0.096 0.062 0 0 0.978 0.942 0.016 0.017 

Japan 2010 0 0 0 0 0.435 0.483 0.027 0.009 

Korea 2012 0 0.003 0.043 0.096 0.002 0.008 0 0.002 

Luxemburg 2012 0.289 0.322 0 0.007 - - 0.662 0.617 

Mexico 2010 0.243 0.246 0 0 0.168 0.210 0.151 0.141 

Netherlands 2001 0.043 0.044 0 0 0.896 0.913 0.532 0.518 

New Zealand 2006 0.778 0.591 0.372 0.458 0.668 0.870 0.670 0.850 

Norway 2012 0.310 0.236 0 0 0.842 0.851 0.465 0.388 

Poland 2010 0 0 0 0 - - 0 0 

Portugal 2011 0.244 0.111 0 0 0.373 0.384 0.364 0.179 

Slovakia 2001 0 0 0 0 0.670 0.584 0.495 0.534 

Slovenia 2012 0.502 0.385 0 0.006 0.860 0.847 0.692 0.541 

Spain 2010 0 0 0 0 0 0 0 0 

Sweden 2010 0.015 0.066 0 0 - - 0.094 0.160 

Switzerland 2010 0.819 0.930 0 0 0.809 0.959 0.162 0.259 

Turkey 2011 0 0 0 0 0.001 0.005 0 0 

United Kingdom 2001 0.016 0.049 - - 0.500 0.476 0.385 0.257 

US 2010 0 0 0 0 0 0 0 0 
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Table 5. Results of the information criteria: the US 

 

Year     lognormal      q -exp.       dPln      log-logistic   

  Log-like. AIC BIC Log-like. AIC BIC  Log-like. AIC BIC Log-like. AIC BIC 

1900   -87943.3 175890.6 175905.1  -88340.2 176684.4 176698.9   -87253.9 174515.8 174544.9  -87662.8 175329.6 175344.1 

1910  -117640 235284 235299.1 -118120 236244 236259.1  -116727 233462 233492.2 -117327 234658 234673.1 

1920  -129580 259164 259179.3 -130014 260032 260047.3  -128521 257050 257080.6 -129191 258386 258401.3 

1930  -139194 278392 278407.4 -139443 278890 278905.4  -138129 276266 276296.8 -138813 277630 277645.4 

1940  -143097 286198 286213.4 -143334 286672 286687.4  -142179 284366 284396.9 -142815 285634 285649.4 

1950  -148254 296512 296527.5 -148396 296796 296811.5  -147593 295194 295225.0 -148066 296136 296151.5 

1960  -159142 318288 318303.6 -159224 318452 318467.6  -158679 317366 317397.2 -159091 318186 318201.6 

1970  -165171 330346 330361.6 -165233 330470 330485.6  -164831 329670 329701.3 -165187 330378 330393.6 

1980  -171088 342180 342195.7 -171194 342392 342407.7  -170777 341562 341593.4 -171146 342296 342311.7 

1990  -173472 346948 346963.7 -173547 347098 347113.7  -173243 346494 346525.4 -173576 347156 347171.7 

2000  -177127 354258 354273.7 -177211 354426 354441.7  -176931 353870 353901.5 -177270 354544 354559.7 

2000 (all places)  -234773 469550 469566 -235021 470046 470062  -234710 469428 469461 -235033 470070 470086 

2010 (all places)  -262440 524884 524901 -262686 525376 525393  -262375 524758 524791 -262733 525470 525487 

 

Note: The Akaike Information Criterion for distribution i  is computed as ( )iii LkAIC ln22 ⋅−⋅=  and the Schwarz Criterion as 

( ) ( )iii LNkBIC ln2ln ⋅−⋅= , where ik  is the number of free parameters of distribution i , N  is the number cities by year, and ( )iLln is the log-

likelihood (Giesen et al., 2010). 
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Table 6. Results of the information criteria: Spain 

 

Year     lognormal      q -exp.      dPln      log-logistic   

  Log-like. AIC BIC Log-like. AIC BIC Log-like. AIC BIC Log-like. AIC BIC 

1900   -65873.6 131751.2 131765.1  -66536.4 133076.8 133090.7  -65627.3 131262.6 131290.4  -65894.4 131792.8 131806.7 

1910  -66413.5 132831 132844.9 -67047.7 134099.4 134113.3 -66169.4 132346.8 132374.7 -66439.2 132882.4 132896.3 

1920  -66762.6 133529.2 133543.1 -67346.8 134697.6 134711.5 -66520.8 133049.6 133077.5 -66789.1 133582.2 133596.1 

1930  -67782.4 135568.8 135582.7 -68311.6 136627.2 136641.1 -67552.4 135112.8 135140.7 -67816.5 135637 135650.9 

1940  -68291.6 136587.2 136601.1 -68759.9 137523.8 137537.7 -68042.6 136093.2 136121.1 -68304.4 136612.8 136626.7 

1950  -68656.2 137316.4 137330.3 -69094.7 138193.4 138207.3 -68403.8 136815.6 136843.5 -68672.7 137349.4 137363.3 

1960  -68762 137528 137542.0 -69116.1 138236.2 138250.2 -68514.4 137036.8 137064.7 -68786.7 137577.4 137591.4 

1970  -68529.4 137062.8 137076.8 -68707.8 137419.6 137433.6 -68341.7 136691.4 136719.3 -68553 137110 137124.0 

1981  -68568.1 137140.2 137154.2 -68634.7 137273.4 137287.4 -68424.2 136856.4 136884.4 -68597.8 137199.6 137213.6 

1991  -68592.2 137188.4 137202.4 -68640.9 137285.8 137299.8 -68453.7 136915.4 136943.4 -68646.8 137297.6 137311.6 

2001   -68833.3 137670.6 137684.6  -68889.6 137783.2 137797.2  -68687.2 137382.4 137410.4  -68916.1 137836.2 137850.2 

2010  -69911.2 139826 139840 -69969.4 139943 139957 -69795.8 139600 139628 -70023.8 140052 140066 

 

Note: The Akaike Information Criterion for distribution i  is computed as ( )iii LkAIC ln22 ⋅−⋅=  and the Schwarz Criterion as 

( ) ( )iii LNkBIC ln2ln ⋅−⋅= , where ik  is the number of free parameters of distribution i , N  is the number cities by year, and ( )iLln is the log-

likelihood (Giesen et al., 2010). 
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Table 7. Results of the information criteria: Italy 

 

Year     lognormal      q -exp.      dPln      log-logistic   

  Log-like. AIC BIC Log-like. AIC BIC Log-like. AIC BIC Log-like. AIC BIC 

1901   -70325 140654 140667.9  -71222.5 142449 142462.9  -70148.4 140304.8 140332.6  -70204.2 140412.4 140426.3 

1911  -70871.9 141747.8 141761.7 -71725.1 143454.2 143468.1 -70698.2 141404.4 141432.2 -70758 141520 141533.9 

1921  -74657.4 149318.8 149332.8 -75471.4 150946.8 150960.8 -74474.5 148957 148985.0 -74548.2 149100.4 149114.4 

1931  -74918.2 149840.4 149854.4 -75648.8 151301.6 151315.6 -74757.6 149523.2 149551.2 -74827.9 149659.8 149673.8 

1936  -75091.6 150187.2 150201.2 -75767.9 151539.8 151553.8 -74942.3 149892.6 149920.6 -75003.9 150011.8 150025.8 

1951  -75830.9 151665.8 151679.8 -76415.1 152834.2 152848.2 -75689.6 151387.2 151415.2 -75747.8 151499.6 151513.6 

1961  -75836.7 151677.4 151691.4 -76335.2 152674.4 152688.4 -75675.3 151358.6 151386.6 -75743.8 151491.6 151505.6 

1971  -75951.9 151907.8 151921.8 -76324 152652 152666.0 -75798 151604 151632.0 -75878.3 151760.6 151774.6 

1981  -76390.6 152785.2 152799.2 -76679.9 153363.8 153377.8 -76284.1 152576.2 152604.2 -76358.4 152720.8 152734.8 

1991  -76653.1 153310.2 153324.2 -76893.6 153791.2 153805.2 -76583.2 153174.4 153202.4 -76645 153294 153308.0 

2001   -76865.2 153734.4 153748.4  -77074.6 154153.2 154167.2  -76818.1 153644.2 153672.2  -76872.1 153748.2 153762.2 

2010  -77390.1 154784 154798 -77570.4 155145 155159 -77359.4 154727 154755 -77417.2 154838 154852 

 

Note: The Akaike Information Criterion for distribution i  is computed as ( )iii LkAIC ln22 ⋅−⋅=  and the Schwarz Criterion as 

( ) ( )iii LNkBIC ln2ln ⋅−⋅= , where ik  is the number of free parameters of distribution i , N  is the number cities by year, and ( )iLln is the log-

likelihood (Giesen et al., 2010). 
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Table 8. Results of the information criteria: Rest of the OECD countries  

 

  lognormal   q -exp.   dPln   log-logistic  

Country Log-like. AIC BIC Log-like. AIC BIC Log-like. AIC BIC Log-like. AIC BIC 

Australia -13635.8 27276 27286 -13667.3 27339 27349 -13374.3 26757 26778 -13568.7 27141 27152 

Austria -20516.7 41037 41049 -20807.5 41619 41631 -20415.5 40839 40862 -20429.7 40863 40875 

Belgium -6282.8 12570 12578 -6377.9 12760 12768 -6267 12542 12560 -6268 12540 12549 

Canada -42872.2 85748 85761 -42784 85572 85585 -42772.8 85554 85580 -42784.7 85573 85586 

Chile -3955.8 7916 7923 -3972.5 7949 7957 -3953.8 7916 7931 -3954.2 7912 7920 

Czech Republic -48577.4 97159 97172 -48852.3 97709 97172 -48284.2 96576 96603 -48451 96906 96916 

Denmark -1187.1 2378 2383 -1181.8 2368 2373 -- -- -- -11.68.4 2341 2346 

Estonia -2215.1 4434 4441 -2211.3 4427 4433 -- -- -- -2185.6 4375 4382 

Finland -3480.2 6964 6972 -3494.1 6992 7000 -3472.3 6953 6968 -3475.7 6955 6963 

France -291228 582460 582477 -292189 584382 584399 -290114 580236 580270 -290877 581758 581775 

Germany -105632 211268 211283 -105818 211640 211655 -105586 211180 211209 -105736 211476 211491 

Greece -3717.3 7439 7446 -3697.1 7398 7406 -3694.9 7398 7413 -3709.1 7422 7430 

Hungary -26540.9 53086 53098 -26619.5 53243 53255 -26482.7 52973 52998 -26504.3 53013 53025 

Iceland -654.6 1313 1318 -655.3 1315 1319 -653.7 1315 1325 -654.8 1314 1318 

Ireland -6851.8 13708 13717 -6885.4 13775 13784 -6726.6 13461 13480 -6829.2 13662 13672 

Israel -1915.9 3836 3842 -1948.5 3901 3907 -- -- -- -1915.9 3836 3842 

Japan -22651.3 45307 45318 -22735 45474 45485 -22567.4 45143 45165 -22607.8 45220 45231 

Korea -3304.08 6612 6619 -3290.3 6585 6592 -3303.7 6615 6630 -3314.3 6633 6640 

Luxemburg -980.4 1965 1970 -997.3 1999 2004 -972.4 1953 1963 -978.7 1961 1967 

Mexico -27675.1 55354 55366 -27730.3 55465 55476 -27669.6 55347 55370 -27684.9 55374 55385 

Netherlands -5629.3 11263 11271 -5703.1 11410 11419 -5609.8 11228 11245 -5617.9 11240 11248 

New  Zealand -878.3 1761 1765 -877.4 1759 1763 -875.6 1759 1768 -876 1756 1761 
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Table 8. Results of the information criteria: Rest of the OECD countries – Continued 

 
   lognormal    q -exp.    dPln    log-logistic  

Country  Log-like. AIC BIC  Log-like. AIC BIC  Log-like. AIC BIC  Log-like. AIC BIC 

Norway  -4320.1 8644 8652  -4348.8 8702 8710  -4312.6 8633 8649  -4321.4 8647 8655 

Poland  -25511.7 51027 51039  -26012.2 52028 52040  -25212.4 50433 50456  -25392 50788 50800 

Portugal  -3473.8 6952 6959  -3509.1 7022 7030  -3470.6 6949 6964  -3477.8 6960 6967 

Slovakia  -23804.8 47614 47626  -23921.8 47848 47860  -23712.7 47433 47457  -23732.9 47470 47482 

Slovenia  -2107.6 4219 4226  -2126.8 4258 4264  -2104.1 4216 4230  -2105.4 4215 4222 

Sweden  -3242.6 6489 6497  -3319.2 6642 6650  -3233 6474 6489  -3242 6488 6495 

Switzerland  -21958.3 43921 43932  -22008.4 44021 44032  -21955.4 43919 43942  -21971.1 43946 43958 

Turkey  -29486.3 58977 58989  -29492.4 58989 59001  -28876.7 57761 57785  -29330.6 58665 58677 

United Kingdom  -4448.1 8900 8908  -- -- --  -4424.8 8858 8873  -4426.9 8858 8866 

 

Note: The Akaike Information Criterion for distribution i  is computed as ( )iii LkAIC ln22 ⋅−⋅=  and the Schwarz Criterion as 

( ) ( )iii LNkBIC ln2ln ⋅−⋅= , where ik  is the number of free parameters of distribution i , N  is the number cities by year, and ( )iLln is the log-

likelihood (Giesen et al., 2010). 
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Figure 1. Empirical and estimated pdfs in the US, Spain and Italy (2010) 
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