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Abstract - Bidding of flexible reservoir hydropower in

day-ahead (spot) auctions needs to be done under uncer-

tainty of electricity prices and inflow to reservoirs. The pres-

ence of reservoirs also means that the short-term problem of

determining bids for the next 12–36 hours is a part of a long-

term problem in which the question is whether to release wa-

ter now or store it for the future. This multi-scale challenge

is usually addressed by using several models for hydropower

planning, at least one long-term model and one short-term

model. We present a multistage stochastic mixed integer pro-

gramming model that has a fine time resolution on near term,

and a coarser resolution going forward. It handles price as a

stochastic parameter and assumes deterministic inflow as it

is intended for use in the winter season.

Keywords - Hydropower scheduling, bidding strate-
gies, stochastic programming.

1 Introduction

FOR hydropower producers with reservoirs, an impor-

tant issue in the daily planning is that of choosing

whether to generate power tomorrow or at some future

time. This challenge is manifested in restructured elec-

tricity markets in the form of the bidding problem, in

which the producers need to decide their willingness to

produce for each of the next 12–36 hours, or half-hours

in some markets. For price-taking producers, the opti-

mal bid is marginal cost, however, for reservoir hydro-

power, this marginal cost is characterized by the interac-

tion of production relationships such as startup costs, a

possibly non-linear and non-convex production function,

flow- and time dependent operating constraints (this also

holds for thermal generation), a possibly complex topol-

ogy of reservoirs, rivers and power stations, and the value

of production tomorrow versus more distant production.

For this reason the bidding problem is tightly integrated

with short-term scheduling. In this paper we limit the

bidding problem to the reservoir winter season of a price-

taking producer, and inflow is assumed low enough to be

assumed deterministic. The sensitivity analysis in Section

3.3 justifies this assumption. This leaves price as the only

stochastic variable in the model.

In the Nordic power system the total reservoir capac-

ity is 217 TWh, and the average-year hydropower genera-

tion is 213 TWh, i.e. around 52 % of total energy genera-

tion. We use the Leirdøla power plant for the case study,

because the topology is relatively simple. It consists of

one reservoir, Tunsbergsdalsvatnet, and one power station,

which has a single generator and turbine. Simplicity of the

power plant allows us to focus on the tradeoffs involved

in the timing of water releases and disregard the physical

complexity often encountered in practice. The framework

we use, stochastic multistage mixed integer programming,

is able to deal with more complex systems, so the model

should be extendible.

Our work can be regarded as an extension of [4]. The

most important novelties include the modeling horizon,

and the treatment of water values. As in [4] the model

presented in this paper uses binary variables to describe

the state of the generator in terms of whether it is run-

ning or not. This allows for modeling startup- and shut-

down costs, minimum production level and non-convex

efficiency curves. Our modeling horizon spans from the

day ahead to the end of the drawdown season, up to six

months ahead. Making the water values, that is the op-

portunity costs of the water in C/MWh, endogenous is our

main scientific contribution and makes the model less de-

pendent of input in the form of water values from long-

term models, which is an important practical advantage. In

practical planning ([7]), there might even be intermediate-

term models that link water values in one-reservoir equiva-

lents in a long-term model to multiple-reservoir water val-

ues that serve as input to short-term planning models such

as ([8, 19]). Since the long-term model is not updated ev-

ery day information gets lost. In practice, the information

from the long-term model is often simplified in order to be

interpretable, e.g. in the form of a single number for the

marginal water value, as opposed to a function of reservoir

level and other state variables.

Multiple reservoirs in long-term hydro planning can

also be handled directly as shown in the seminal paper

by [16], however, their approach assumes randomness in

the right-hand side only, and cannot directly be used when

there is exogenous price uncertainty. A paper that is simi-

lar in spirit to ours is [17], who use dynamic programming

to study the multi-scale aspect of the reservoir hydro-

power bidding problem under uncertainty of spot prices

and inflow. The approach in [18] is also relevant, but may

be more suitable for small reservoirs. For a two-hour-

ahead market with piecewise constant bids, [3] introduce

a stochastic programming model supporting the bidding

process. The day-ahead aspect of our model, presented

in Section 2, is based on [4]. Recently, [11] combines

a stochastic programming approach a la [4] for the day-

ahead problem, with a Markov decision process approach

for approximating the value of water in storage for future

generation [13].



Optimization models supporting the bidding process

for price-taking electricity producers are also given in

[1, 2, 12, 14]. Reviews are given by [10, 20].

A mathematical model is presented in Section 2 be-

fore the result from the case study is presented. The paper

concludes in Section 4.

2 The model

Definitions

Each stage is a day or one week in the model.

The first seven stages are days followed by twenty-

one weeks, thus the model consists of twenty-eight

stages.

Price points are sixty-four given prices for each

hour and the producer/the model has to bid a gen-

eration volume for each of the sixty-four prices at

the first stage without knowing the clearing price.

A price segment is a set of hours with similar price

level, irrespective of the chronological order of the

hours.

Our aim is to support the bidding process of hydro-

power generation while integrating the long-term aspects,

taking into account that information is likely to be lost in

the process of transferring information about water values

from long-term models into the short-term bidding prob-

lem. We implement this by extending the planning horizon

from a few days ahead, which is usual in short-term hydro-

electric planning, to a few months ahead, specifically, until

the next end of drawdown season in the spring. The for-

ward curve is used to find the value of future exchange of

electricity, as opposed to price forecasting. This ensures

that the production and bidding strategy recommended is

consistent with how the market evaluates current versus

future delivery of electricity1.

Because the level of detail needed to achieve realistic

bid curves in the first stage of the formulation is unneces-

sary in later stages, there is a detailed formulation applied

for the first 12–36 hours, and a more rough and flexible

multistage formulation designed for variable stage length

used for the rest of the horizon. We denote these the day-

ahead part and long-term parts of the model.

The details of the bidding process in the Nordic elec-

tricity market are explained in [4] and [5] . The long-term

part of the model, as opposed to the day-ahead part, does

not operate with hours as an index, but rather price seg-

ments. I.e., time chronology is not respected within each

stage, and the reservoir balance is only enforced at the end

of each stage2. Furthermore, bidding and market clear-

ing process at Elspot is abstracted from; we assume that

the prices within the stage are known, that is we have pre-

fixed price points, and the producer needs only to decide

upon the generation level. Startup- and shutdown cost as-

pects are not as important on the long-term time scale, and

are neglected since each stage is rather long compared to

the effect of single startups or shutdowns. Finally, turbine

efficiencies are characterized in less detail as compared to

the day-ahead part.

Table 1 lists the definition of the sets and their corre-

sponding indexes, and Table 2 lists the decision variables

determined in the model.

Table 1: The sets and indexes in the optimization model.

Set Index Explanation

H = {1, . . . , H} h ∈ H Sets of day-ahead hours.

I = {1, . . . , I} i ∈ I Pre-fixed price points.

S = {1, . . . , S} s ∈ S Price segments in each stage.

N = {1, . . . , N} n ∈ N Nodes of scenario tree.

T = {1, . . . , T } t ∈ T Stages.

Nt n ∈ Nt Nodes for stage t.

Table 2: Decision variables

Variable Explanation

un
h 1 if the generator is running, 0 else.

vnh 1 if there is a startup or a shutdown in hour

h, 0 else.

w
(b.p.)
s

n

The amount generated at best point produc-

tion level in price segment s in node n.

w
(max)
s

n

The amount generated at maximum produc-

tion level in price segment s in node n.

wn
h Production during hour h of node n.

xi,h Hourly bid at price point i in hour h.

lnh Reservoir level in hour h of node n.

qnh Flow rate of water for hour h of node n.

rnh Spill over the dam during hour h of node n.

The following constraints are enforced:

wn
h =

ρnh − Pi−1

Pi − Pi−1
x+
i,h

Pi − ρnh
Pi − Pi−1

xi−1,h,

n∈Nt |t = 1, h∈H, i∈{2, ..., I} | Pi−1≤ρnh < Pi

(1)

xi,h ≥ xi−1,h, h ∈ H, i ∈ {2, ..., I} (2)

xi=I,h ≤ Wmax
h , h ∈ H (3)

Q̂xi=I,1 ≤ Lstart, with Q̂ =

W b.p.

Ŵ b.p.
+ Wmax

Ŵmax

W b.p. +Wmax
(4)

Q̂xi=I,h ≤ lnh−1, n ∈ Nt|t = 1, h ∈ {2, ...,H} (5)

wn
h ≤ fj(u

n
h, q

n
h),

n ∈ Nt |t = 1, h ∈ H, j ∈ {1, 2, 3}
(6)

Wmin
h un

h ≤ wn
h ≤ Wmax

h un
h,

n ∈ Nt |t = 1, h ∈ H
(7)

1Using forward prices does not mean that Leirdøla will get average prices over the delivery periods of the forwards; our price scenarios have hourly

resolution and the power plant can and will produce more at higher prices, and less at lower prices.
2If the model is used for cascaded reservoirs, this way of modelling time will overestimate revenues.



v ≥ g(u, u′) in t = 1 (8)

l = l′ − q − r + F (9)

Lmin ≤ l ≤ Lmax (10)

qn =
∑

s∈S

Kt

Ŵ b.p.
w(b.p.)

s

n
+
∑

s∈S

Kt

Ŵmax
w(max)

s

n
,

n ∈ Nt | t ≥ Tl.t.

(11)

w(b.p.)
s

n
≤ W b.p., w(max)

s

n
≤ Wmax,

n ∈ Nt | t ≥ Tl.t., s ∈ S
(12)

For hourly bids, (1) links bid volume to committed

production during the next day. Price point i has price

level Pi, and ρnh is the market clearing price in hour h at

node n. Tl.t. = t for the first stage at which the long term

relationships apply. In the case study we set Tl.t. = 2
which means that the day-ahead part of the model uses

a two-stage structure. For a more detailed description of

these constraints, see [4]. Constraint (2) ensures an in-

creasing bid curve. The first and the last price point is usu-

ally set to zero and a very large number, respectively. Thus

it is necessary to assure that no volume is bid at the first

price point and to restrict the volume bid at the last price

point to the maximum available capacity, which is done in

(3). Furthermore the constraints (3) to (5) together with

the constraints (2) ensure that none of the xi,h-variables

exceeds the available capacity. Q̂ is a necessary factor

in order to distinguish between water used for production

and the output generation.

The relationship between water flow rate and gener-

ated power is modeled in (6) and (11) for the day-ahead

and the long-term part, respectively. In the day-ahead part,

we use three supporting cuts of the efficiency curve of

the generator, described by the functions fj , while two

sets of variables, one for best point generation and one for

maximum generation level, are used in the long-term for-

mulation. The efficiency coefficient is Ŵ , and Kt is the

number of hours in each price segment at stage t. Gen-

eration bounds (7) and (12) restrict the production in the

day-ahead and the long-term part, respectively. Startup-

and shutdown variables are linked to unit states u through

(8). The function g(u, u′) is one whenever there is a dif-

ference between u and u′, where u′ represents the status of

the generator in the preceding hour or the last hour in the

preceding stage. Remember, these constraints hold only

in the short-term part of the model (t = 1). Reservoir

balance is ensured via (9) throughout the horizon. There

are special cases of transitions, both between stages and

the two parts of the model, however, in general, l is the

reservoir level of a given node in a given hour in the short-

term part and the reservoir level in node n in the simplified

long-term model, respectively. l′ is the reservoir level of

the preceding hour/node or the last hour/node of the pre-

ceding stage. The flow rate of water, spillage and inflow

is denoted q, r and F , respectively. Reservoir bounds are

enforced in (10). In addition, there are nonnegativity con-

straints on all decision variables and u is binary.

The objective function of the problem is

max (zda + zlt) (13)

zda=
∑

n∈Nt |t=1

πn
∑

h∈H

(ρnhw
n
h − Cvnh ) (14)

zlt=β
∑

n∈Nt|t≥Tl.t.

eντ
t

(

∑

s∈S

πnKtρns (w
(b.p.)n+w(max)n)

)

(15)

where (14) and (15) are the expected revenues less startup-

and shutdown costs from the day-ahead formulation and

the discounted (and adjusted by β3) revenues from the

long-term formulation, respectively. The unconditional

probability of being in node n at the corresponding stage

t is πn. C is the cost related to startup or shutdown of the

generator. The discount interest rate is denoted ν, and τ t

is the time until stage t. In this paper there is no end-of-

horizon water value λ because the end of the model hori-

zon is spring and thus there is a lot of inflow at this time.

That is why left water in the reservoir at the end of winter

would have no value since there is enough inflow.

3 Case analysis

This section investigates how the model performs on

Leirdøla power station. The model is tested on a base

scenario set consisting of 1000 scenarios with prices from

21.11.2006 to 29.04.2007, shown in Figure 1.

Date

P
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ce
[C

/M
W

h
]

max
75%
median
25%
min

21.11 08.12 25.12 11.01 28.01 14.02 03.03 20.03 06.04 23.04

0

50

100

150

200

Figure 1: A scenario tree with 1000 (fan) scenarios, used as input before

scenario reduction. Note the price reduction expected during Christmas

and Easter.

First the bid curves and the generation for 21.11.2006

are presented. In subsection 3.2 we will start with a gen-

eral test concerning the size of the model. The main focus

of the case analysis is to justify the assumption of a deter-

ministic inflow and to illustrate the stability of the model.

This will be done in the subsections 3.3 and 3.4.

The main focus of this paper is to generate bid curves

as this is the only output that depends on the expectation

on future prices rather than the actual realizations. The

quality of the model is therefore defined as the quality of

the bid curves generated. The stability is in the same man-

ner defined as whether the model generates the same bid

3β is used to compensate the overestimated revenues in the long-term part of the model, thus it is set to β = 0.9.



curves for the same underlying forward curve and assump-

tions and finally the sensitivity of the model is defined as

to which degree changes in the assumptions alter the bid

curves.

3.1 Presenting bid curves and generation

In order to present the bid curves and the generation

simply, we use two charts in this section. The first one

(Figure 2) presents the optimal bidding during the day.

The different hours are distinguished by their color. Best

point production, that is most efficient water usage for

generation, is achieved at approximately 85 MW. Max-

imum production on best point is at about 93 MW and

115 MW is the maximum generation capacity. The sec-

ond chart (Figure 3) illustrates the expected clearing price

and the expected generation for each hour of the day.
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Figure 2: Bidding curves for 21.11.2006

We aggregated hours with a similar bidding structure

to stabilize the model and, as a secondary effect, to reduce

the model size. Due to this it is also easier to show (Figure

2) nearly all bidding curves of the day4. At first sight it

seems to be surprising that there is no bidding during the

hours 1 till 7, 23 and 24. The reason for that is the low ex-

pected price during these hours and the low reservoir level

during the whole observation period. At the beginning the

reservoir level is one third of its maximum level and, since

it is winter, there is just a small amount of inflow. There

is no production in the optimal solution in these hours and

so there is no reason for bidding in these hours.

Hour

objective value: 5, 02 MC Price [C/MWh]
Generation [MW]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

10

20
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Figure 3: Expected price and expected generation for 21.11.2006

As one can see in Figure 3 there is one production peak

in the morning and two peaks in the early evening. This

is an expected result, since people need more electricity in

the morning and when they come home from work, thus

the expected prices are higher, making it profitable to pro-

duce during these hours.

3.2 General test

In this test, the model is run with a set of 1000 price

scenarios. The aim is to check the size of the model and to

test the influence on the model and especially the objective

value when block bids are allowed. Block bids are special

bids that concern a connected set of from 2 to 24 hours.

They are convenient to avoid risk of repeated/extra starts

of generators. For further information on block bids and

their modelling see [4]. The model will be run both with

and without block bids. When block bids are allowed, first

a very small set of five blocks are included, four consist-

ing of six consecutive hours and one block representing

the entire 24 hour period. In a second test 20 additional

blocks are included in the model, which is already a quite

high number, thus it will give reliable results.
Table 3: Performance with and without allowing block bids.

No block bids 25 block bids

Constraints 69 128 74 397

Decision variables 1 080 018 1 086 714

Binary variables 2 496 2 496

Nonzero elements 2 183 121 2 330 043

Simplex iterations 40 277 122 051

Objective value 5.02431 · 106 5.02448 · 106

Optimality gap total C 90 C 10

Optimality gap % ≈ 0.00001791 ≈ 0.00000199

Solution time 30.9 sec 410.5 sec

As one can see from Table 3, the performance in terms

of the objective function is not very dependent on whether

or not block bids are allowed. The difference is even less

when only five block bids are included, that is why this

case is not demonstrated in the table.

The difference between the objective values in the case

where block bids are allowed and where they are not is the

value of allowing block bids. We assert that the bound

from the linear relaxation of the problem and the objective

value is higher when block bids are allowed. This should

be expected as the model with allowing block bids is a re-

laxation of the one disallowing ones. In case of including

25 block bids the upper bound is C 90 higher and the ob-

jective value is C 170 higher than in the model without

block bids. As shown in Table 3, the optimality gap is

small enough for both models to get an acceptable solu-

tion. Also worth mentioning is the fact that the computa-

tion time is low even with handling 25 block bids.

The conclusion of this section is therefore that the

model seems to be able to handle block bids and this in

an acceptable time, but the value of allowing such bids is

small. The analysis will thus be proceeded without allow-

ing block bids to be able to compare the following results

more easily.

3.3 Sensitivity towards inflow

The use of deterministic inflow in the Leirdøla case is

motivated and justified by the fact that the model is made

4All hours in an aggregated hour set have the same bidding in each price point. Still one has to keep in mind that the price points of the hours within

an hour set differ slightly.



for the winter season, in which the inflow is very low. We

test how sensitive the result is to big changes in the in-

flow. If even large changes do not alter the solution, we

argue that a stochastic representation of the inflow is not

necessary. In this section, the model will be run for a 25%

upward and downward shift in the inflow. Because the in-

flow during the modeling horizon only constitutes about

31% of the total amount of water (reservoir level at the

start of the horizon and total inflow), the change in to-

tal amount of water from a 25% change in inflow is only

±7, 8%. One should therefore not expect the impact from

a change in the inflow to be very large. The Figures 4, 5

and the Figures 6, 7 show the results from the sensitivity

analysis on the inflow.

As one can see from the figures 2, 4 and 6, the dif-

ferences in the bid curves are as expected not very large.

We expect that bid curves are more sensitive to inflow to-

wards the end of the drawdown season. Modelling inflow

as stochastic is particularly valuable when reservoirs are

nearly full or nearly empty [6]. However, in our case,

it seems to be justified to use deterministic inflow. In

19 hours of the day our model, Figure 2 and the test

model with 25% more inflow have exactly the same bid-

ding curves and the other 5 hours hardly differ as well. If

one compares our model with the lower inflow test model,

the results become a bit worse, but are still satisfactory. In

11 hours the two models have exactly the same bidding

curves and the other hours differ slightly.

The expected generation in case of high inflow is also

nearly the same as in our case, see Figures 3 and 5. A

comparison between Figures 3 and 7 shows a bigger dif-

ference between the generation in case of 75% inflow and

in our case. This indicates that even small changes in the

bid curves alter the expected generation significantly.

The difference in the objective value is -6.68% and

+6.78% in case of low and high inflow, respectively. These

are small numbers if one keeps the inflow change of 25%

in mind.

Summing up the sensitivity analysis justifies to a large

extent the use of deterministic inflow in the winter season.

Although the expected generation differs in some hours

in case of low inflow, the main results are satisfactory

because the bidding curves are the most important indica-

tors5.
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Figure 4: Bid curves for high inflow (125 %

of normal inflow).
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Figure 5: Expected price and expected gen-

eration for high inflow (125 % of normal in-

flow).

Production [MW]

P
ri

ce
[C

/M
W

]

1-7 and 23-24
8-9
10-12
13-16
17-18
20-22

0 20 40 60 80 85 93 100 115

40

45

50

55

60

Figure 6: Bid curves for low inflow (75 %

of normal inflow).
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Figure 7: Expected price and expected gen-

eration for low inflow (75 % of normal in-

flow).

5We also did a sensitivity analysis towards the start-up cost with a 50% upward and downward shift but the results were nearly the same as with the

initial start-up costs, thus this is not further mentionable. The reason for this result is the in general low start-up cost for hydro power stations. For further

information on the impact of start-up costs see [15].



3.4 Test of stability
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Figure 8: 950 scenarios
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Figure 9: 900 scenarios
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Figure 10: 800 scenarios
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Figure 11: 750 scenarios

Stability tests for scenario trees used in stochastic pro-

gramming are discussed in [9]. It is distinguished between

in sample and out of sample stability and we will test the

in sample stability in respect to the bidding curves. The

in sample stability is a measure of the stability of the so-

lutions when different scenario trees with the same under-

lying distribution are used in the model. The same under-

lying distribution should give fairly the same results. In

addition, we will check the stability of the objective value.

The aim of the in sample stability test is to figure out

which is the smallest number of scenarios that still gives

stable results, that is, how many scenarios can be removed

from the initial 1000 ones. Figures 8 to 11 show the bid

curves for four smaller sets of scenarios. As one can see

from the four figures, the stability in the cases of 950, 900

and 800 scenarios are satisfying. A comparison between

Figure 2 and Figure 8 shows that 12 hours of the day have

exactly the same bidding curves and the other 12 ones are

quite similar, which is acceptable. In case of 900 scenar-

ios, Figure 9, there are still 9 hours in which the bidding is

exactly the same as in the case of 1000 scenarios and the

other 15 hours are also still satisfactory. With 800 scenar-

ios there are 13 hours in which the bidding matches the

one with 1000 scenarios and the other 11 hours are simi-

lar as well. In case of 750 or less scenarios the results get

worse and the bidding curves differ more from the bidding

curves in Figure 2. There are still 9 hours in which the

bidding curves coincide with the ones in the initial case,

but the other hours differ too much. Thus, it is possible

to reduce the number of scenarios by 20% of the initial

scenario quantity and still get stable bidding curves.

In a second test we compare the initial objective value

(1000 scenarios) with the objective value of 18 smaller

sets consisting of 100 to 950 scenarios. Figure 12 shows

the increasing stability of the objective value in cases of

100 to 1000 scenarios. At the two peaks of the graph, with

200 and 500 scenarios, the change in the objective values

amounts only −2.61% and +1.73% to the initial objective

value (1000 scenarios), respectively.
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Figure 12: Objective values of 19 scenario sets.

In conclusion we assert that the stability of the results

is satisfying in both tests. Especially in case of the objec-

tive value the model seems stable.

4 Conclusion

An advantage of the suggested model is that it is much

less dependent on other models with longer time horizon.

For the timespan beyond six months into the future, i.e.

beyond the horizon of our model, information from long-

term models or possibly from the forward market can be

used. The result is a model that is satisfactorily detailed

for short-term bidding and scheduling and yet solvable for



a rather long time horizon.

On the other hand, the model is limited to use in the

winter season, and when looking at rivers with cascaded

reservoirs, one should be careful about possible overesti-

mation arising when using non-chronological time.

The overall result from the case analysis is that the

assumption of deterministic inflow in winter is justified

and that the model exhibits a good stability in case of the

bidding curves and the objective value. Additionally the

model can handle block bids in a short computation time

but the benefit of allowing those is slight.
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