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Abstract

The probability density function for survivals, that is for transitions without hitting
a barrier, for a collection of particles driven by correlated Brownian motions is analyzed.
The analysis is known to lead to a study of the spectrum of the Laplacian on domains on
the sphere in higher dimensions. The first eigenvalue of the Laplacian governs the large
time behavior of the probability density function and the asymptotics of the hitting
time distribution. It is found that the solution leads naturally to a spectral function, a
‘generating function’ for the eigenvalues and multiplicities of the Laplacian. Analytical
properties of the spectral function suggest a simple scaling procedure for determining
the eigenvalues, readily applicable for a homogeneous collection of correlated particles.
Comparison of the first eigenvalue with the available theoretical and numerical results
for some specific domains shows remarkable agreement.

The case of a particle obeying Brownian motion on the real line under different boundary
conditions have been well studied. For instance, in the simplest case of a single barrier, the
probability density function for transition without hitting the barrier is expressible in closed
form. No closed form solutions exist in the case of a collection of such particles driven by
correlated Brownian motions. The problem of n particles each restricted by a barrier can
be recast into that of solving the heat equation or the diffusion equation in a conical region
in n dimensions. Within such a context, the problem has been addressed by various authors
in the past and series solutions have been obtained. The n = 2 solution was obtained by
Sommerfeld [1894]. It has been addressed within the context of default correlation by Zhou
[2001]. The n = 3 case was considered within the context of circular cones by Carslaw
and Jaeger [1959]. For higher dimensions, the applicable solution has been presented by
Cheeger [1983]. The probability of survival as such was obtained by DeBlassie [1987] and
its implications for hitting times discussed.

The radial component of the diffusion equation is identifiable with the differential equa-
tion for a Bessel process whose solution is well-known. The angular component of the series
solution governing n Brownian particles involves the eigenvalues and the eigenfunctions of
the Laplacian on a domain on the n − 1 dimensional sphere. The first eigenvalue of the
Laplacian determines the large time behavior of the survival probability and hence the
finiteness of the expected hitting time. It is found that the solution leads naturally to a
spectral function, a ‘generating function’ for the eigenvalues and their multiplicities, ex-
pressible in closed form for certain domains on the sphere such as the octant triangle on the
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two-sphere and analogous ones on higher dimensional spheres. Analytical properties of the
spectral function suggest a simple scaling procedure to estimate the first few eigenvalues
for related domains, readily applicable to the case of a homogeneous collection of correlated
particles. The estimates for some specific domains are found to be in excellent agreement
with the available theoretical and numerical results.

The article is organized as follows. Sections 1, 2 and 3 address the solutions for one,
two and many particle systems. Section 4 discusses a spectral function for the Laplacian
arising from the series solution. Section 5 analyzes some of the analytical properties of the
spectral function. Section 6 discusses a scaling procedure to estimate the eigenvalues and
their applicability to a homogeneous collection of correlated particles. Section 7 compares
the estimates with some of the available theoretical and numerical results. An extension of
the scaling procedure is presented in the appendix.

1 One Particle

Consider a particle driven by Brownian motion on the real line with position variable x.
The probability density f(x, x′, τ) that the particle at position x at any time t reaches x′

at time t+ τ is obtained by solving the differential equation

∂f

∂τ
=

1

2

∂2f

∂x2
. (1)

A constant drift term may be present but is ignored for simplicity. A scaling of x is done
to standardize the coefficient of the second order term. The above is the well-studied heat
equation or the diffusion equation in one dimension having the fundamental solution

f(x, x′, τ) =
1√
2πτ

e−
1

2τ
(x−x′)2 . (2)

As required, f(x, x′, τ) → δ(x− x′) as τ → 0.
Consider next a barrier at x = 0. We will now be interested in the probability density

that the particle at x > 0 at any time t reaches x′ > 0 at time t + τ without hitting the
barrier. The requirement that the particle does not hit the barrier can be stated as Dirichlet
boundary condition f(0, x′, τ) = 0 corresponding to a perfectly absorbing boundary. The
solution to the differential equation is easily obtained by the method of images,

f(x, x′, τ) =
1√
2πτ

(
e−

1

2τ
(x−x′)2 − e−

1

2τ
(x+x′)2

)
=

√
2

πτ
e−

1

2τ (x
2+x′2) sinh

(
xx′

τ

)
. (3)

The total probability p(x, τ) that the particle travels without hitting the barrier, the prob-
ability of surviving absorption at the boundary, is then

p(x, τ) =

∫ ∞

0
dx′f(x, x′, τ) = 1− 2N

(
− x√

τ

)
, (4)

where N is the cumulative standard normal distribution function. This has the large-time
behavior ∼ τ−

1

2 resulting in an infinite expected hitting time.
Though our concern in the article is with Dirichlet boundary conditions, we may note

here that under Neumann boundary condition ∂f
∂x

(0, x′, τ) = 0 corresponding to a perfectly
reflecting boundary, one would have cosh in place of sinh in (3). We may also note that a
constant drift at rate µ would result in an additional term µ∂f

∂x
on the right hand side of

(1) whose effect is to multiply the Dirichlet solution (3) with e−µ(x−x′)− 1

2
µ2τ .
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2 Two Particles

Next consider two particles on the real line with positions x1 and x2, together denoted x,
driven by Brownian motions correlated with a correlation parameter ρ. Let the barriers be
at zero, that is at x1 = 0 for the first particle and x2 = 0 for the second. The domain we
are concerned with for x is hence the first quadrant in the (x1, x2) plane. The transition
probability density 1√

1−ρ2
f(x,x′, τ) that the particles at x > 0, that is x1 > 0 and x2 > 0,

at any time t reach x
′ > 0 at time t + τ without either of them hitting the barrier is now

governed by the differential equation

∂f

∂τ
=

1

2

[
∂2f

∂x21
+ 2ρ

∂2f

∂x1∂x2
+

∂2f

∂x22

]
, (5)

subject to Dirichlet boundary conditions f(x,x′, τ) |x1=0 = f(x,x′, τ) |x2=0 = 0. As before,
for simplicity, constant drift terms are ignored and a suitable scaling of x1 and x2 is done
to standardize the coefficients. The above equation can be diagonalized with change of
coordinates, for instance with

y1 =
1√

1− ρ2
(x1 − ρx2), y2 = x2. (6)

In the new system of coordinates, the differential equation becomes

∂f

∂τ
=

1

2

[
∂2f

∂y21
+

∂2f

∂y22

]
. (7)

This is the heat equation or the diffusion equation in two dimensions. The boundaries
x1 = 0, x2 > 0 and x2 = 0, x1 > 0 in the new coordinate system read

y1 = − ρ√
1− ρ2

y2, y2 > 0 and y2 = 0, y1 > 0. (8)

It is convenient to go to polar coordinates r and θ where

r =
√

y21 + y22, θ = cos−1
(y1
r

)
, 0 ≤ θ ≤ ϕ = cos−1(−ρ). (9)

The boundaries are now at θ = 0 and θ = ϕ. The differential equation to be solved reads

∂f

∂τ
=

1

2

[
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2
∂2f

∂θ2

]
. (10)

Angular functions sin(νθ) can be chosen to vanish on the boundaries so that f(x,x′, τ) can
be expanded in Fourier series as

f(x,x′, τ) =
∑

ν

gν(r,x
′, τ)rν sin(νθ), ν =

kπ

ϕ
, k = 1, 2, · · · . (11)

The differential equation now reduces to

∂gν

∂τ
=

1

2

∂2gν

∂r2
+

2ν + 1

2r

∂gν

∂r
. (12)
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This is the differential equation describing the Bessel process. Its solution is well-known: r′2

τ

is distributed as the non-central chi-squared distribution with 2(ν + 1) degrees of freedom

and non-centrality parameter r2

τ
. We thus have for the r′-distribution

gν
(
r,x′, τ

)
∼ 2r′

τ
χ2

(
r′2

τ
, 2(ν + 1),

r2

τ

)
=

r′

τ

( r

r′

)−ν

e−
1

2τ (r
2+r′2)Iν

(
rr′

τ

)
, (13)

where Iν is the modified Bessel function. Putting together, we have

f(x,x′, τ) =
2

ϕτ
e−

1

2τ (r
2+r′2)

∑

ν

Iν

(
rr′

τ

)
sin(νθ) sin(νθ′). (14)

To verify the factors, note that dx1dx2 =
√

1− ρ2rdrdθ, and that f(x,x′, t) → 1
r′
δ(r −

r′)δ(θ − θ′) =
√
1− ρ2δ(x1 − x′1)δ(x2 − x′2) in the limit τ → 0. The asymptotic behavior

Iν(x) → (2πx)−
1

2 ex, x → ∞ for fixed ν gives rise to δ(r−r′) in the form of a limiting normal
distribution in 1√

τ
(r − r′) (roughly, since the series involves sum over ν → ∞).

The above result was obtained differently by Sommerfeld [1894]. It has been addressed
within the context of default correlation by Zhou [2001]. The total probability of survival
p(x, τ) can be obtained by integrating over r′ and θ′,

p(x, τ) =

√
2π

τ

r

ϕ
e−

r2

4τ

∑

ν odd

1

ν

[
I ν+1

2

(
r2

4τ

)
+ I ν−1

2

(
r2

4τ

)]
sin(νθ), (15)

where by ν odd, it is meant that the integers k in (11) are restricted to be odd.

3 Many Particles

We now come to a collection of n particles on the real line with positions xi, i = 1, 2, · · · , n,
together denoted by a position vector x, driven by Brownian motions correlated with a
correlation matrix R. The barriers are set at zero, that is at xi = 0 for the ith particle,
so that the domain Dn we are concerned with for x is xi > 0, i = 1, · · · , n. The transition
probability density 1√

detR
f(x,x′, τ) that the particles at x within the domain at any time

t reach x
′ within the domain at time t + τ without any of them hitting the barrier is now

governed by the differential equation

∂f

∂τ
=

1

2

∑

ij

Rij
∂2f

∂xi∂xj
, (16)

subject to Dirichlet boundary conditions on the boundary of Dn: f(x,x′, τ) |xi=0 = 0 (that
is, when any one of the xi’s is set to zero). It is also expected that f(x,x′, τ) → 0 when
any one of the xi’s is taken to infinity. Generally one would have a covariance matrix on
the right hand side above. For convenience, xi’s are suitably scaled so that the covariance
matrix is replaced by the correlation matrix. Constant drift terms may also be present but
are ignored for simplicity.

As before, it is convenient to work in the diagonalized system that diagonalizes R and
scales it into identity so that the differential equation involves the Laplacian ∇2,

∂f

∂τ
=

1

2
∇2f, ∇2 =

∑

i

∂2

∂y2i
. (17)
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This is the heat equation or the diffusion equation in n dimensions. Dot-products defined as
u · v =

∑
ij R

−1
ij uivj for any two vectors u and v and the implied lengths remain invariant

but now get diagonalized expressions. It is further convenient to split the coordinates y

into radial and angular parts, r and r̂,

r2 =
∑

i

y2i =
∑

ij

R−1
ij xixj , r̂ =

y

r
. (18)

In the diagonalized system, domain Dn remains conical intersecting into a domain Ωn−1

traced out by the unit radial vectors r̂ on the n − 1 dimensional sphere Sn−1 at r2 = 1.
Dirichlet boundary conditions require f(x,x′, τ) to vanish on the boundary ∂Ωn−1. If
desired, Neumann boundary conditions can be defined in the diagonalized system as usual
with the normal derivatives required to vanish on the boundary.

Functions on Ωn−1 can be equivalently expressed as zero-degree (positive-)homogeneous
functions in Dn. Solving the Laplace equation ∇2(rνhνσ) = 0 in Dn for a ν-degree homo-
geneous function rνhνσ(r̂) is equivalent to solving the Laplacian eigenvalue problem1

∇2
Shνσ(r̂) = −λhνσ(r̂), λ = ν(ν + n− 2) (19)

for a zero-degree homogeneous function hνσ(r̂). Here ∇2
S = r2∇2 acting on functions of

r̂ is the Laplacian on Sn−1 and hence on Ωn−1, and hνσ(r̂) is the eigenfunction vanishing
on ∂Ωn−1, σ labeling any multiplicity. Boundary value problems of the above kind have
been extensively studied and it turns out that the eigenvalues are all real, non-negative and
discrete, and that the eigenfunctions can be taken to be real and form a complete system.
Hence ν’s can also be taken to be real, non-negative and discrete and we will assume that
the eigenfunctions are normalized to form an orthonormal system

∫

Ωn−1

dn−1r̂hνσ(r̂)hν′σ′(r̂) = δνν′δσσ′ , (20)

where dn−1r̂ is the volume element on the unit sphere Sn−1 (area element if S2).
The complete system of eigenfunctions hνσ(r̂) enables us to expand f(x,x′, τ) as

f(x,x′, τ) =
∑

νσ

gνσ(r,x
′, τ)rνhνσ(r̂). (21)

The Laplacian on gνσr
νhνσ separates into that on gνσr

ν and hνσ. Its action on hνσ is given
by (19) so that the differential equation for f(x,x′, τ) gives rise to

∂gνσ

∂τ
=

1

2

∂2gνσ

∂r2
+

2ν + n− 1

2r

∂gνσ

∂r
. (22)

This is again the differential equation describing the Bessel process. Hence, r′2

τ
is distributed

as the non-central chi-squared distribution with 2ν+n degrees of freedom and non-centrality
parameter r2

τ
. We thus have for the r′-distribution,

gνσ
(
r,x′, τ

)
∼ 2r′

τ
χ2

(
r′2

τ
, 2ν + n,

r2

τ

)
=

r′

τ
e−

1

2τ (r
2+r′2)

( r

r′

)−ν−n−2

2

Iν+n−2

2

(
rr′

τ

)
, (23)

1
∇

2 acting on a product g(r)h(r̂) separates into (∇2g)h+ g(∇2h) when h(r̂) is zero-degree homogeneous
function because of the vanishing of the cross term (∇g) · (∇h) = ∂r(g)r

−1(y · ∇)h = 0.
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where again Iν is the modified Bessel function. Putting these together, we have

f(x,x′, τ) =
1

τ
(rr′)−

n−2

2 e−
1

2τ (r
2+r′2)

∑

ν

Iν+n−2

2

(
rr′

τ

)∑

σ

hνσ(r̂)hνσ(r̂
′). (24)

To verify the factors, note that the integration measure is dnx =
√
detRrn−1drdn−1r̂, and

that f(x,x′, τ) →
√
detRδ(x − x

′) in the limit τ → 0. The asymptotic behavior Iν(x) →
(2πx)−

1

2 ex, x → ∞ for fixed ν gives rise to δ(r − r′) in the form of a limiting normal
distribution in 1√

τ
(r−r′) (roughly, since the series involves sum over ν → ∞). The presence

of a constant drift at rate µ would result in an additional term
∑

i µi
∂f
∂xi

on the right hand

side of (16) whose effect is to multiply f(x,x′, τ) with e−µ·(x−x
′)− 1

2
µ

2τ .
The above result was obtained differently under different contexts by various authors.

For n = 2 it was obtained by Sommerfeld [1894]. For n = 3, it was considered within the
context of circular cones by Carslaw and Jaeger [1959]. For general dimensions, it has been
presented by Cheeger [1983]. The leading term in the series (24) can be obtained by making
use of the expansion for the Bessel functions,

f(x,x′, τ) ∼ 2

Γ
(
ν1 +

n
2

)
(2τ)

n
2

(
rr′

2τ

)ν1

e−
1

2τ (r
2+r′2)hν1(r̂)hν1(r̂

′), (25)

where ν1 is the first ν and Γ is the Gamma function. In the case of an independent collection
of particles in the presence of barrier, we know that f(x,x′, τ) is given by the product of
individual expressions (3) so that

f(x,x′, τ) =

(
2

πτ

)n
2

e−
1

2τ (r
2+r′2)

n∏

i=1

sinh

(
xix

′
i

τ

)
. (26)

In this case, series (24) provides an expansion of product of sinh’s in terms of modified
Bessel functions.

The total probability of survival p(x, τ) can be obtained by integrating f(x,x′, τ) with
respect to x

′ on Dn giving (in the absence of drift)

p(x, τ) = τ
n
2 r−ne−

r2

2τ

∑

ν

Ĩν+n−2

2

(
r2

τ

)∑

σ

hνσ(r̂)h̃νσ, (27)

where

Ĩν+n−2

2

(a) =

∫ ∞

0
dt t

n
2 e−

t2

2a Iν+n−2

2

(t) and h̃νσ =

∫

Ωn−1

dn−1r̂hνσ(r̂). (28)

This result in terms of a hypergeometric function was obtained as the solution of a differ-
ential equation by DeBlassie [1987] who also discussed its implications for hitting times.
The first term in the series is guaranteed to be positive since it is well known that the first
hνσ can be taken to be positive within the domain. For large τ , p(x, τ) has the behavior

∼ τ−
ν1
2 , implying that the expected hitting time will be finite if ν1 > 2. As discussed in the

next section, for an independent collection of particles, ν1 = n so that the expected hitting
time will be finite for n ≥ 3. For a positively correlated collection of particles we expect
ν1 < n but greater than n− 1 as long as correlations are not too large so that the expected
hitting time will remain finite for n ≥ 3.
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4 Spectrum On The Sphere

The solution for the transition probability density obtained in the last section is expressed
in terms of the eigenvalues and the eigenfunctions of the Laplacian on the sphere. Hence,
let us have a look into the spectrum of the Laplacian on a domain Ωn−1 on the sphere Sn−1

in n-dimensions corresponding to a collection of n particles.
Domain Ωn−1 for n independent particles in the presence of barrier, denoted as Ωn−1

0 ,
occupies (2−n)th of Sn−1 obtained by cutting away the sphere into half, n-times. For
instance, Ω1

0 is given by the quadrant circular arc. Ω2
0 is given by the octant triangle on the

two-sphere, a triangular region having three 90◦ angles. It can be viewed as an extension
of Ω1

0 into the third dimension. Ωn−1
0 in higher dimension can be similarly approached. For

the correlated case in the presence of barrier, Ω1 is a circular arc, Ω2 is a spherical triangle,
Ω3 is a spherical tetrahedron and Ωn−1 in higher dimension is an analogous domain (a
spherical polytope) on Sn−1. Ωn−1 has n boundary segments corresponding to n barriers,
each of which is part of a great sphere Sn−2 and is of type Ωn−2 with the elements of the
correlation matrix R as the cosine of the angles between their normals.

Many results are known in general about the eigenvalues and eigenfunctions of the
Laplacian for such domains. For instance, the first eigenvalue has no multiplicity and the
corresponding eigenfunction can be taken to be positive within the domain. In the case of
independent particles in the absence of barrier, the domain is the whole of Sn−1 and the
resulting spectrum is well-known. In this case ν is an integer taking values from zero to
infinity. The first ν, denoted ν1, is zero corresponding to a constant function on Sn−1. The
multiplicities of the eigenvalues will be revisited below.

In the independent case in the presence of barrier, it is straightforward to show that
ν1 = n. In fact, being independent, the simplest homogeneous function solving the Laplace
equation in Dn and vanishing on the boundaries is of degree n and is given simply by the
product of the n-coordinates consistent with equation (26). It is further clear that adding
an independent particle with barrier to a correlated collection would increase ν1 by one. If
the added independent particle is not subject to the boundary condition, ν1 would remain
the same. These observations are not trivial when formulated on the sphere.

To say more about the spectrum of the Laplacian on the sphere, let us next derive a
spectral function, a ‘generating function’ for the eigenvalues and multiplicities in terms of
f(x,x′, τ). Towards this end, let us set x′ = x and τ = 1 to obtain

f(x,x, 1) = r2−ne−r2
∑

ν

Iν+n−2

2

(
r2
)∑

σ

(hνσ(r̂))
2. (29)

Note that a further operation of integrating over y, along with any r̂-independent weight,
would integrate (hνσ(r̂))

2 to unity (its normalization) introducing the multiplicity mν . This
procedure derives the following expression for the spectral function M(z) making use of the
Laplace transform of Iν ,

M(z) ≡
∑

ν

mνz
ν =

(
1− z2

)
z−

n
2

∫

Dn

dny e−
1

2z
(1−z)2r2f(x,x, 1), (30)

where 0 < z < 1 and r is the length of x or y as given by (18). If the right side can be
computed, this would provide us with both the eigenvalues and the multiplicities.

The above function arose naturally from the solution of the heat equation on the cone.
It differs from the usually studied trace of the heat kernel, Tret∇

2
S , in that it is not the
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eigenvalues ν(ν + n − 2) of −∇2
S that appear in the exponents, but rather ν’s themselves.

Its derivation did not assume any specific character of the domain, except that Dn is conical
intersecting Sn−1 into some domain Ωn−1. But its applicability depends on our knowledge
of f(x,x, 1). This is not expected to be the case in general. Below, let us first consider
some special cases for which we do know f(x,x, 1).

Consider again the case of independent particles with no barrier. In this case the
integration range covers all of x, that is, it includes x < 0 as well. Knowing f(x,x, 1) =
(2π)−

n
2 as a product from n-individual free Brownian motions at x = x

′, τ = 1 (see (2)),
one readily obtains

M(z) = (1− z2)(1− z)−n = 1 + nz +
∞∑

k=2

[(
n+ k − 1

k

)
−
(
n+ k − 3

k − 2

)]
zk. (31)

This gives the right eigenvalues and multiplicities on the whole sphere Sn−1. The two
terms inside square brackets are the dimensions of the spaces of degree k and degree k − 2
homogeneous polynomials in n variables, and the role of 1 − z2 is hence to choose the
difference for the dimension of the space of degree k harmonic homogeneous polynomials,
that is those satisfying the Laplace equation in n-dimensions.

In the case of independent particles with barrier, f(x,x, 1) is given by (26) that generates
the spectral function

M(z) = zn(1− z2)1−n =

∞∑

k=1

(
n+ k − 3

k − 1

)
zn+2k−2. (32)

As noted earlier, this corresponds to a domain Ωn−1
0 on Sn−1 that is 2−n of its size obtained

by cutting away the sphere into half, n-times: a quadrant arc on S1, an octant triangle on
S2 or an analogous domain on a higher dimensional sphere. In the case of two correlated
particles, we know from section 2 that ν’s are multiples of π

ϕ
and are all of multiplicity one.

Its spectral function is hence z
π
ϕ (1 − z

π
ϕ )−1 that becomes z2(1 − z2)−1 in the independent

case corresponding to a quadrant arc in agreement with (32). For Neumann boundary
conditions, factor zn in front above is absent.

Note that M(z), except for the factor 1 − z2, factorizes across subsystems that are
mutually independent but may well be internally dependent. Hence, M(z) for a system
comprising of two subsystems independent of each other with spectral functions M1(z) and
M2(z) that are not necessarily of the independent types is given by

M(z) =
1

1− z2
M1(z)M2(z). (33)

For example, if we have n = p+ q independent particles of which p particles have no barrier
and q ones do, the product system has

M(z) = zq(1− z)−p(1− z2)1−q. (34)

This corresponds to a domain on Sn−1 that is obtained by cutting away the sphere into
half, q-times. For instance, with p = n − 1, q = 1, this gives M(z) = z(1 − z)1−n as the
spectral function for the half-sphere. Knowing the spectral function for correlated pairs of
particles, one or more of such pairs can also be included in the above expression.
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If we are interested in exploring the hνσ(r̂) functions themselves, we could rederive our
results without the angular integration to obtain

M(r̂, r̂′, z) ≡
∑

ν

mν(r̂, r̂
′)zν = (1− z2)z−

n
2

∫ ∞

0
dr rn−1e−

1

2z
(1−z)2r2f(rx̂, rx̂′, 1), (35)

where mν(r̂, r̂
′) =

∑
σ hνσ(r̂)hνσ(r̂

′). This provides us with a spectral function for the pro-
jections on to the eigenspaces. As a function of zr̂ with z considered as a radial coordinate,
it can be identified as a kernel satisfying the Laplace equation on the cone inside the unit
sphere under Dirichlet boundary conditions tending to δ(r̂ − r̂

′) as z → 1. In the case of n
independent particles without barrier, that is on the whole sphere Sn−1, we get

M(r̂, r̂′, z) =
1

|Sn−1|
1− z2

(1− 2z cos θ + z2)
n
2

,
∣∣Sn−1

∣∣ = 2π
n
2

Γ
(
n
2

) , (36)

where θ is the angle between r̂ and r̂
′, and

∣∣Sn−1
∣∣ is the size of the sphere Sn−1 (surface

area if S2). This is the Poisson kernel of the n-dimensional unit ball at points zr̂ and r̂
′

that when expanded in powers of z gives rise to zonal harmonics as projections in terms
of Gegenbauer (ultraspherical) polynomials. Expressions involving more such terms can be
obtained in other independent cases by setting one or more directions to have barrier.

One may also be interested in inverting (30) to obtain information about the heat kernel
on the cone when the spectral function on a domain on the sphere is known. Given M(z)
on a domain Ωn−1, one can obtain fΩn−1(t), where fΩn−1(r2) = rn−2

∫
Ωn−1 d

n−1r̂ f(x,x, 1),

as the Laplace inverse of f̂Ωn−1(s) = 2z
n
2

1−z2
M(z), z = 1 + s−

√
s(s+ 2), or obtain its ‘trace’∫ r

0 drrfΩn−1(r2) as the Laplace inverse of 1
2s f̂Ωn−1(s). For instance, in the independent case

with barrier, knowing M(z) from (32), fΩn−1(r2) can be obtained as the Laplace inverse of

1
2n−1

(
1+s−

√
s(s+2)

s(s+2)

)n
2

. The inverse is easily carried out for n = 2 to give

∫

Ω1
0

dr̂ f(x,x, 1) =
1

4
− 1

2
I0
(
r2
)
e−r2 +

1

4
e−2r2 . (37)

Here Ω1
0 is the quadrant arc and I0 is the modified Bessel function of order zero (this can

also be obtained directly from the series solution (14); alternately, knowing M(z), Laplace
inverse can be viewed as summing up certain series of Bessel functions.). More generally,

one can obtain rn−2f(rx̂, rx̂′, 1) inverting (35) as the Laplace inverse of 2z
n
2

1−z2
M(r̂, r̂′, z).

5 Analytical Properties

On continuing from the z < 1 region, M(z) exhibits a singularity at z = 1. At least for
the various cases considered, the singularity is a pole of order n − 1 (the dimension of the
sphere) so that we may write around z = 1

M(z) =
c0

(1− z)n−1
+

c1

(1− z)n−2
+ · · · . (38)

Coefficients c0 and c1 can be determined,

c0 = 2

∣∣Ωn−1
∣∣

|Sn−1| , c1 = −1

2
c0 −

1

2

∣∣∂Ωn−1
∣∣

|Sn−2| . (39)

9



It is convenient to write c1 = −1
2(1 + γ)c0 introducing

γ = −2
c1

c0
− 1 =

1

2

∣∣Sn−1
∣∣

|Sn−2|

∣∣∂Ωn−1
∣∣

|Ωn−1| . (40)

Here,
∣∣Sn−1

∣∣ and
∣∣Sn−2

∣∣ are the sizes of n − 1 and n − 2 dimensional spheres of unit radii
respectively.

∣∣Ωn−1
∣∣ is the size of the domain Ωn−1 and

∣∣∂Ωn−1
∣∣ is that of its boundary

∂Ωn−1. Sizes of Ωn−1 and ∂Ωn−1 are measured in units set by the n− 1 dimensional sphere
Sn−1 of unit radius on which they reside. For Neumann boundary conditions, the expression
for γ will have a negative sign.

The leading coefficient c0 can be determined by letting z → 1 in the expression for M(z).
Note that the exponential inside the integral would no longer provide the suppression as
r → ∞. As r → ∞, f(x,x, 1) away from the boundary tends to a constant (2π)−

n
2 (n

factors from (2) at x = x
′, τ = 1). The integral is thus dominated by regions near r = ∞

where the angular integral contributes
∣∣Ωn−1

∣∣. This gives, as ǫ = 1− z → 0,

M(1− ǫ) ∼ 2ǫ

∫ ∞

0
dr rn−1e−

1

2
ǫ2r2

∣∣Ωn−1
∣∣

(2π)
n
2

= 2
Γ
(
n
2

)

2π
n
2

∣∣Ωn−1
∣∣

ǫn−1
. (41)

The factors in front can be identified as twice the inverse size of the sphere Sn−1.
The next coefficient c1 can be determined by the method of images. To start with, note

that the contribution to M(z) coming from the source alone,

c0

2

1 + z

(1− z)n−1
=

c0

(1− z)n−1
− 1

2

c0

(1− z)n−2
, (42)

makes an order n − 1 contribution as well. In the method of images, the source placed
within the domain induces images across the boundary that cancel out the source effect on
the boundary to ensure zero boundary condition. Since f(x,x, 1) is evaluated at the source
location itself, as x is varied, the source moves and the images follow the source. As r → ∞
many of the images will recede away from the source. The leading contribution comes
from the image brought closest to the source by taking the source close to the boundary.
Its contribution is ∼ −(2π)−

n
2 e−2y2

⊥ . Here y⊥ is the perpendicular distance of the source
to the boundary so that the image to source distance is 2y⊥. The image contribution as
ǫ = 1− z → 0 is

− 2ǫ

(2π)
n
2

∫ ∞

0
dr rn−2e−

1

2
ǫ2r2

∫

∂Ω⊥
dy⊥ e−2y2

⊥ = −1

2

Γ
(
n−1
2

)

2π
n−1

2

∣∣∂Ωn−1
∣∣

ǫn−2
. (43)

The factors in front can be identified as half the inverse size of the sphere Sn−2. A negative
sign is chosen to satisfy Dirichlet boundary conditions on the boundary. For Neumann
boundary conditions, the sign will be positive.

Expansion (38) is a result of an expansion of f(x,x, 1) in r−1 in the expression (30) for

M(z). Since τ
n
2 f(x,x, τ) is function of the combination r2

τ
, an expansion of f(x,x, 1) in

r−1 is in fact an expansion of f(x,x, τ) in
√
τ at τ = 1. This is the well-known expansion

of the heat kernel (see for instance Vassilevich [2003]), in our case on the cone Dn. Because
the higher order terms of this expansion bring in more powers of r into the denominator
inside the integral in (30), as such it can only be used upto coefficient cn−1. If the remainder
falls off faster than r−n as r → ∞, its integral will be finite at z = 1 because of the r → 0

10



behavior of f(x,x, 1) evident from (29). Also note here that the heat kernel expansion
being an expansion in r−1 does not see any terms of the type e−r for instance. That such
terms are present can be seen by taking the example of the n = 2 independent system with
barrier for which we know

∫
Ω1

0

dr̂ f(x,x, 1) from (37). The first two terms on the right hand

side of (37) give rise to the heat kernel expansion while the last term, not visible to the
heat kernel asymptotics, is required for the r → 0 behavior.

Expansion (38) can also be obtained from the heat kernel expansion on Ωn−1 on the
sphere itself. This can be done using the identity

M
(
e−s
)
=

seℓs

2
√
π

∫ ∞

0

dt

t
3

2

e−ℓ2t− s2

4t Tret∇
2
S , (44)

where Tr refers to trace and ℓ = 1
2(n − 2). Analogous relation can be written down for

the pointwise object M(r̂, r̂′, z). Inverse relations can be obtained by expressing them as
Laplace transforms, giving rise to identities for the heat kernel such as the one involving
the Jacobi θ-function on S1.

The series expansion of the kind at the z = 1 pole are useful in estimating the growth
of the spectrum at large eigenvalues. This is done with the help of a counting function
W (ν) =

∑
ν′ mν′1ν′≤ν , where 1ν′≤ν is the step-function, that counts the eigenvalues, in-

cluding multiplicity, up to ν. Its Laplace transform is

W̃ (s) =

∫ ∞

0
dνW (ν)e−sν =

1

s
M(e−s). (45)

As we have noted, M(e−s) is expected to have a pole of order n−1 at s = 0. Here it should
arise from the large ν behavior of W (ν). One finds

W (ν) ∼ c0ν
n−1

(n− 1)!
+

1

2
(n− 2− γ)

c0ν
n−2

(n− 2)!
+ · · · . (46)

Expressed in terms of the eigenvalues λ = ν(ν + n− 2) ∼ ν2 of the Laplacian on Ωn−1, this
is consistent with the Weyl scaling law (true for more general domains).

As a Dirichlet series in s, one expects M(e−s) defined on the positive real s-axis to
be analytic on the half-plane Re(s) > 0. Its behavior for Re(s) ≤ 0 is less clear. Result
(30) indicates naively a relation M

(
z−1
)
= −zn−2M(z). However, this is not expected

to hold as an approach to z−1 from z along the real axis encounters the singularity at
z = 1. For the cases considered earlier, one finds instead M

(
z−1
)
= (−1)n−1zn−2−γM(z)

as well as MD

(
z−1
)
= (−1)n−1zn−2MN (z) where subscripts refer to Dirichlet and Neumann

boundary conditions. Being consistent with the product formula (33), these will also hold
for domains factorizable into such cases. They are however restrictive to hold in general,
but when one does, M(e−s) can be expected to be analytic on the half-plane Re(s) < 0
(with singularities along the imaginary s-axis).

6 A Scaling Procedure

It is a result that the eigenvalues of the Laplacian do not increase as the domain is enlarged.
For a positively correlated collection of particles, domain Ωn−1 tends to be larger compared
to Ωn−1

0 of the independent case, and hence we expect the eigenvalues to be nonincreasing
with respect to overall correlation. Having dimensions of inverse coordinate squared, eigen-
values can be expected to scale accordingly, though in general approximately, suggesting

11



that we look for a scaling procedure to estimate the eigenvalues in the correlated system.
However, applying scaling to the eigenvalues itself, as is usually done, turns out to be not
satisfactory. Let us hence look for a spectral function M(z) on a target domain Ωn−1 of the
form (for Dirichlet boundary conditions)

M(z) = zαM0(z
β), (47)

where M0(z) is the known spectral function on a reference domain Ωn−1
0 . This implies that,

given the eigenvalues λ0k = ν0k(ν0k + n − 2), k = 1, 2, · · · of the Laplacian on Ωn−1
0 , the

eigenvalues λk = νk(νk + n− 2) on Ωn−1 can be estimated according to

νk = α+ βν0k, k = 1, 2, · · · . (48)

Parameters α and β can be determined by expanding M(z) and M0(z) into their series (38)
at z = 1 and matching the first two coefficients (39) for the two domains,

α =
1

2
[γ − βγ0 + (β − 1)(n− 2)] , β =

[∣∣Ωn−1
0

∣∣
|Ωn−1|

] 1

n−1

, (49)

where γ and γ0 for Ωn−1 and Ωn−1
0 are as given by (40). This estimation procedure can

also be expressed as a scaling of the combination ν + 1
2(n − 2 − γ). Note that this does

not change multiplicities. If Ωn−1 and Ωn−1
0 are closely related and the eigenvalues are

well separated, this may be a reasonable assumption to make; at least for the first few
eigenvalues. Eigenfunctions will of course be different.

The above procedure requires computing the domain sizes
∣∣Ωn−1

∣∣ and
∣∣∂Ωn−1

∣∣. For a
correlated system,

∣∣Ωn−1
∣∣ can be computed as

∣∣Ωn−1
∣∣ =

∣∣Sn−1
∣∣

√
detR(2π)

n
2

∫ ∞

0
dnx e−

1

2
xTR−1x, (50)

while for the independent case it is given by
∣∣Ωn−1

0

∣∣ = 2−n
∣∣Sn−1

∣∣.
∣∣∂Ωn−1

∣∣ can be computed
using the same formula with R−1 restricted to one dimension less. An example of a cor-
related system is a homogeneous collection of particles with a single correlation parameter
ρ ≥ 0 such that the correlation matrix is

Rij = (1− ρ)δij + ρ, R−1
ij =

1

1− ρ
δij −

ρ

(1− ρ)(1 + (n− 1)ρ)
. (51)

This matrix has determinant detR = (1−ρ)n−1(1+(n−1)ρ). Diagonalization to coordinates
yi can be carried out for instance by

xi = ayi + b

n∑

j=1

yj , yi =
1

a
xi −

b

a(a+ nb)

n∑

j=1

xj ,

a =
√

1− ρ, b =
1

n

(√
1 + (n− 1)ρ−

√
1− ρ

)
. (52)

As noted in section 3, in the diagonalized coordinate system, ρ can be identified as the cosine
of the angle between the normals to boundary segments. For this homogeneous system, the
domain size expression (50) simplifies to

∣∣Ωn−1
∣∣ =

∣∣Sn−1
∣∣
∫ ∞

−∞

du√
2π

e−
1

2
u2

[
N

( √
ρ u√
1− ρ

)]n
, (53)
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where N is the cumulative standard normal distribution function. The same expression
upon setting n → n − 1 and ρ → ρ

1+ρ
gives 1

n

∣∣∂Ωn−1
∣∣. It can be evaluated for ρ = 1

2

for any n giving
∣∣Ωn−1

∣∣ = 1
n+1

∣∣Sn−1
∣∣ corresponding to a domain on Sn−1 analogous to a

tetrahedral triangle on the two-sphere. For general ρ, fn(ρ) =
|Ωn−1|
|Ωn−1

0 | obeys the recursive

differential equation
∂

∂ρ
fn(ρ) =

n(n− 1)

π
√

1− ρ2
fn−2

(
ρ

1 + 2ρ

)
, (54)

with f0(ρ) = f1(ρ) = fn(0) = 1. For n = 2, this gives
∣∣Ω1
∣∣ = cos−1(−ρ) in agreement with

section 1 and for n = 3, it gives
∣∣Ω2
∣∣ = 3 cos−1(−ρ) − π consistent with the identification

of cos−1(−ρ) as the vertex angle of the spherical equilateral triangle Ω2 (having
∣∣∂Ω2

∣∣ =
3 cos−1

(
− ρ

1+ρ

)
). For very small ρ, fn(ρ) ≈ 1 + 1

π
n(n − 1)ρ so that α ≈ − 1

π
n(n − 2)ρ

and β ≈ 1 − 1
π
nρ giving ν1 ≈ n − 2

π
n(n − 1)ρ. Since fn(ρ) is an increasing function of

ρ, we have
∣∣Ωn−1

∣∣ >
∣∣Ωn−1

0

∣∣. As ρ → 1, fn(ρ) → 2n−1 so that Ωn−1 tends to cover half
the sphere. Since M(z) = z(1 − z)1−n of the half-sphere is exactly related by scaling to
M0(z) = zn(1− z2)1−n of the ρ = 0 domain Ωn−1

0 , scaling estimates could be reasonable for
ρ in-between. This is confirmed by a numerical comparison discussed below.

7 Numerical Comparisons

The following numerical comparisons are for domains on the two-sphere of unit radius. For
clarity, area

∣∣Ω2
∣∣ is denoted as A and the perimeter

∣∣∂Ω2
∣∣ as L so that for the scaling

parameters (49), we have γ = L
A
, γ0 =

L0

A0
, β =

√
A0

A
, α = 1

2 [γ − 1− β(γ0 − 1)].

The domain on the two-sphere corresponding to a homogeneous collection of three
correlated particles having correlation ρ is a spherical equilateral triangle of vertex an-

gle cos−1(−ρ). It has A = 3 cos−1(−ρ) − π and L = 3 cos−1
(
− ρ

1+ρ

)
. In this case, the

reference domain for scaling estimation can be chosen to be the octant triangle having
M0(z) = z3(1 − z2)−2, A0 = π

2 , L0 = 3π
2 , γ0 = ν01 = 3. Ratzkin and Treibergs [2009]

have studied a capture problem that can be recast into that of a homogeneous collection
having ρ = 1

2 . For ρ = 1
2 , the spherical equilateral triangle is a tetrahedral triangle having

A = π, L = 3 cos−1
(
−1

3

)
. The authors present a theoretical and numerical result 5.159 for

the first eigenvalue λ1 = ν1(ν1 + 1) of the Laplacian on the tetrahedral triangle. Scaling
estimate gives ν1 = 1.826 and λ1 = 5.162 in excellent agreement with their result, indicating
that the scaling procedure should be satisfactory for homogeneous collections.

A spherical cap is a circular domain on the two-sphere. If its radius relative to its center
in angles is θ, it has A = 2π(1− cos θ) and L = 2π sin θ. In this case the reference domain
can be chosen to be the half-sphere that has M0(z) = z(1− z)−2, γ0 = ν01 = 1 so that

ν1 =
1

2

(
cot

θ

2
− 1

)
+

ν01√
2 sin θ

2

. (55)

The usual scaling procedure applied to the eigenvalues of the Laplacian itself is based on
just the size of the domain, and hence is not able to differentiate the effects of the boundary.
Ratzkin and Treibergs [2009] present a theoretical result λ1 = 4.936 for the first eigenvalue
on a spherical cap (θ = π

3 ) having the same area as the tetrahedral triangle. Scaling with
(55) gives λ1 = 4.949 in excellent agreement.

13



A sector of the spherical cap making an angle ϕ has A = ϕ(1−cos θ) and L = ϕ sin θ+2θ.
Choosing the reference domain to be such a sector on the half-sphere that has M0(z) =

z
1+ π

ϕ (1− z2)−1
(
1− z

π
ϕ

)−1
, γ0 = ν01 = 1 + π

ϕ
, we get

ν1 =
1

2

(
cot

θ

2
+

θ

ϕ sin2 θ
2

− π√
2ϕ sin θ

2

− 1

)
+

ν01√
2 sin θ

2

. (56)

Ratzkin and Treibergs [2009] present a theoretical result λ1 = 5.0046 for the case ϕ = 2π
3

and θ = cos−1
(
−1√
3

)
whereas the scaling procedure gives λ1 = 5.1046.

As a domain on the sphere is shrunk retaining its shape, it tends to approximate a flat
domain in the limit, allowing for a comparison to the available solutions on flat domains. For
instance, as the spherical cap has its radius θ → δ ∼ 0, its ν1 → (1 +

√
2)δ−1 = 2.4142δ−1

that compares well with the flat disk solution
√
λ1 = j0,1δ

−1 = 2.4048δ−1 (j0,1 being the
first zero of the Bessel function J0). The second one ν2 ∼ (1 + 2

√
2)δ−1 = 3.8284δ−1 also

compares well with
√
λ2 = j1,1δ

−1 = 3.8317δ−1. The next one ν3 ∼ 5.2426 is close to√
λ3 = 5.1356. As expected, higher ones start showing up significant differences.
Complete solution on the equilateral triangle on the plane was obtained by Lamé [1833].

Comparing the octant triangle on the sphere, one finds for the equilateral triangle of side

length δ on the plane ν1 ∼
(
2
√
3 + 2

√
2π√
3

)
δ−1 = 7.273δ−1 that compares well with Lamé’s

result
√
λ1 = 4π√

3
δ−1 = 7.255δ−1. The second one ν2 ∼

(
2
√
3 + 4

√
2π√
3

)
δ−1 = 11.083δ−1

also compares well with
√
λ2 =

4π
√
7

3 δ−1 = 11.082δ−1. The next one ν3 ∼ 14.892 is close to√
λ3 = 14.510. Here too, higher ones start showing up significant differences.
More generally, one can use the flat domain solution to estimate the first few eigenvalues

on a similar domain on the sphere. Given A and L for a domain Ω2 on the sphere and A0

and L0 for a similar domain Ω2
0 on the plane, one finds for νk, k = 1, 2, · · · on Ω2,

νk =
1

2

(
L

A
− L0√

AA0
− 1

)
+

√
A0λ0k

A
, (57)

where λ0k, k = 1, 2, · · · are the eigenvalues of the Laplacian on Ω2
0. This may be viewed as

providing a curvature correction to the flat space eigenvalues. Note that the length scale
on Ω2

0 cancels out, and that A,L and ν1 are in units set by the unit sphere.
Viewed as an extension of scaling of the Laplacian eigenvalues on flat domains to include

curvature effects, the discrepancies in the scaling estimates could become significant as
domains get too large relative to say the half-sphere. Also, the linear scaling procedure
based on just two parameters is not expected to yield good results for all the eigenvalues, but
its potential to do so for the first few is intriguing, especially because it is based on the first
two coefficients of the series that governs the growth of the spectrum at large eigenvalues.
Better results can be obtained with improved scaling estimates involving more parameters
to match other coefficients in the series such as a quadratic scaling procedure discussed in
the appendix. It will be interesting to study the applicability of a similar scaling procedure
to the spectrum of other differential operators, or to more general domains extended to
a cone or by taking (44) as defining M(z). Also, of interest to study is the concept of
factorizability of domains arising from the independence of particle subsystems, that is,
from the separability of the solutions to the heat equation.
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A Extended Scaling Procedure

The linear scaling estimate (48) with its two parameters is able to match the first two
coefficients of the series expansion (38). It is helpful to have it extended to involve three
parameters capable of matching the third coefficient of the series as well. The following
derives such an extension making use of the heat kernel expansion on the sphere. Towards
this end, consider the expansion for M (e−s),

M
(
e−s
)
≃ b0

sn−1
+

b1

sn−2
+

b2

sn−3
+ · · · . (58)

This gives rise to an expansion for the counting function W (ν) of the kind (46),

W (ν) ≃ b0ν
n−1

(n− 1)!
+

b1ν
n−2

(n− 2)!
+

b2ν
n−3

(n− 3)!
+ · · · . (59)

We already know b0 and b1, and b2 is yet to be determined. A convenient approach to deriv-
ing a scaling procedure without affecting multiplicities is to require the counting function to
agree for the two comparison domains. The first two terms can be together approximated
for large ν as ∼ b0

(n−1)!(ν + p)n−1 where p = b1
b0
. To this order, one then obtains the scaling

procedure (48) as a scaling of the linear combination ν+p. To include the next order term,
let us look for a quadratic combination (ν + p)2 + q for some p and q such that, for large ν,
W (ν) can be approximated as

W (ν) ∼ b0

(n− 1)!

[
(ν + p)2 + q

]n−1

2 . (60)

Expanding this and comparing the coefficients, one finds

p =
b1

b0
, q = (n− 2)

(
2b2
b0

− p2
)
. (61)

To determine b2, consider the heat kernel expansion on the sphere,

Tret∇
2
S ≃ (4πt)−

n−1

2

(
a0 + a1

√
t+ a2t+ · · ·

)
. (62)

The a-coefficients of this expansion are well-known (see for instance Vassilevich [2003]), the
first three of which are

a0 =
∣∣Ωn−1

∣∣ , a1 = −
√
π

2

∣∣∂Ωn−1
∣∣ , a2 =

1

6

∫

Ωn−1

R+
1

3

∫

∂Ωn−1

K. (63)

Here R = (n − 1)(n − 2) is the scalar curvature of Sn−1 and hence that of Ωn−1, and K

is the trace of the extrinsic curvature of the boundary ∂Ωn−1 relative to Ωn−1. Use of this
expansion in the identity (44) rewritten as

M
(
e−s
)
=

eℓs√
π

∫ ∞

0

dt√
t
e−t− ℓ2s2

4t Tre
s2

4t
∇2

S , (64)

where ℓ = 1
2(n− 2), gives us the b-coefficients that yields

p = ℓ− γ

2
, q = −ℓ2 − 1

4
(n− 2)γ2 +

a2

|Ωn−1| , (65)
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where γ is as defined in (40). Thus, given p and q as above, (ν + p)2 + q for a domain Ωn−1

can be estimated as β2 times the same combination for a reference domain Ωn−1
0 . Scaling

factor β is the same as before given by (49).
The quadratic scaling procedure thus defined is quite general applicable to domains

with smooth boundaries. It can also be used on domains without boundaries in which case
it becomes a linear procedure applied to the eigenvalues of the Laplacian itself. On the
sphere, it can be used for instance on a spherical cap on Sn−1 (K = (n− 2) cot θ, where θ

is its radius in angles), but it turns out to be identical to the linear procedure in the case of
the spherical cap on S2. For domains that have corners on their boundaries, the procedure
is applicable with additional contributions to a2 coming from corner regions of dimension
n− 3. On a triangular domain on S2, each vertex of angle ϕ on the boundary contributes
1
6

(
π2

ϕ
− ϕ

)
to a2 (making use of a result attributed to Kac [1966] that can be inferred in

the present framework from the trace of the heat kernel on the n = 2 cone following the
discussion at the end of section 4). For our earlier numerical comparisons, this extended
procedure offers the improvements: λ1 = 5.1625 → 5.1606 for the tetrahedral triangle,
λ1 = 5.1046 → 5.0187 for the sector of a spherical cap and

√
λ1 = 7.2734δ−1 → 7.2613δ−1

for the equilateral triangle on the plane.
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