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Abstract

Experimental evidence suggests that people tend to be overconfident in the sense
that they overestimate the accuracy of their private information. In this paper we
show that risk-averse principals might prefer overconfident agents in various strategic
interactions because these agents help diversify the aggregate risk. This may help
understanding why successful analysts and entrepreneurs tend to be overconfident.
In addition, a different interpretation of the model presents a novel evolutionary
foundation for overconfidence, and explains various stylized facts about this bias.
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1 Introduction

In many experimental studies participants are asked to answer trivia questions, and to report
the level of confidence (subjective probability) that they answered each of these questions
correctly. The typical result in such experiments is that people are overconfident: their confi-
dence systematically exceeds the true accuracy (as discussed in Section 5.2). That is, people
overestimate the accuracy of their private information, personal judgment and intuition.
Various evidence suggest that overconfidence substantially influences economic behavior
of analysts (Friesen and Weller, 2006), investors (Berber and Odean, 2001), entrepreneurs
(Cooper, Woo and Dunkelberg, 1988), managers (Rabin and Schrag, 1999; Gervais, Heaton
and Odean, 2010), and consumers (Grubb, 2009).
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In this paper we study the strategic interaction between a risk-averse principal and privately-
informed agents, and show why the principal may prefer overconfident agents. For example,
consider the following interaction between a CEO and analysts.

Example 1 A risk-averse CEO of a venture capital fund is in charge of several analysts.
Each analyst manages the investments of the fund in his area: he investigates several startup
companies, and selects one of them. The fund invests money in the startup companies that
were selected by the different analysts. Each analyst may either make: (1) a conventional
choice - follow accepted gquidelines and choose what a typical analyst would in such a situ-
ation, or (2) an unconventional choice based on his personal judgment and intuition. Each
wmwvestment may either succeed or fail. The outcomes of conventional choices are positively
correlated, as they all depend on the effectiveness of the accepted guidelines. The outcomes
of unconventional choices are independent, as they are induced by diverse intuitions. Each
analyst wishes to mazimize the success probability of his investment. The CEO wishes to
mazximize the total number of successful investments, and each additional success has a
smaller marginal payoff. Finally, the CEO can boost (or decrease) agents’ confidence in
making unconventional choices.

Example 1 is formalized as follows. There is a strategic interaction between a risk-averse
principal and many agents that includes two stages. At stage 1 the principal uses his man-
agerial skills to influence agents’ confidence in relying on their personal judgment.? For
tractability, we assume that the principal may induce any bias function g, which determines
how agents evaluate the accuracy of personal judgment: if the real accuracy is p, each agent
believes it to be g (p). Similar qualitative results would hold if the model is amended by
adding a moderate cost to the principal’s influence or by somewhat limiting its accuracy.

At stage 2, all agents receive signal ¢ - the success probability of a conventional choice. In
addition, each agent ¢ privately receives signal p; (evaluated as g (p;)) - the success probability
of an unconventional choice (the p;-s are independent and identically distributed). Then
each agent chooses whether to make a conventional choice or an unconventional one. Each
agent who makes a conventional choice succeeds with probability ¢; outcomes of different
agents who make conventional choices are positively correlated as they depend on a common
unknown factor (the effectiveness of the accepted guidelines in Example 1). Each agent ¢ who
makes an unconventional choice succeeds with probability p; independent of other agents.

Conventional choices bear a larger aggregate risk due to the positive correlation between the
outcomes of different agents. This creates a conflict of interests between calibrated agents
(9 (p;) = p;) who maximize their probability of success, and the risk-averse principal. The
principal has a tradeoff between two objectives: (1) maximizing the expected number of
successes, and (2) reducing the variance in the number of successes. The first goal is fully
consistent with the interests of calibrated agents. However, due to the second goal, the
principal would like agents with p; a little bit smaller than ¢ to follow their less accurate
personal judgment, in order to reduce the variance and achieve a better diversification of

2 The principal can also influence agents’ confidence by screening candidates: obtaining a signal
about the confidence of each candidate, and adjusting the hiring priorities accordingly.



risk.

Our first result shows that if the number of agents is sufficiently large, then this conflict
is optimally resolved by having overconfident agents. That is, there is a continuous and
increasing bias function ¢*, which always overestimates the perceived accuracy of agent’s
personal judgment (g* (p) > p for every 0 < p < 1), such that if all agents have this bias
function, it approximately induces the “first-best” outcome for the principal - the outcome
he would achieve if he could receive all the private signals and directly control the actions of
all agents. We further show that ¢* is unique: all other bias profiles, including heterogeneous
profiles in which agents have different bias functions, induce strictly worse outcomes. Our
third result shows that the principal prefers more overconfident agents if: (1) he becomes
more risk-averse, or (2) the correlation coefficient between the outcomes of conventional
choices becomes larger. The intuition of both results is that both changes deepen the conflict
of interests between the principal and calibrated agents, and more overconfidence is required
to compensate for it.

The conflict of interests between the principal and the agents can also be resolved by having
calibrated agents and affecting their payoffs with monetary incentives. For example, paying
each agent: (1) some percentage of the firm’s overall profit, or (2) a bonus when he makes
an unconventional choice. Our model offers the same optimal level of conflict resolution
using the non-standard mechanism of boosting agents’ confidence. There are situations of
economic interest in which the principal is limited in his ability to use monetary incentives,
and our mechanism may be easier to implement. In particular, risk-averse CEOs are typi-
cally supervised by the firm’s shareholders, which tend to risk-neutrality due to diversified
portfolios. Such shareholders will not approve monetary mechanisms that reduce the aggre-
gate risk by lowering the expected profit. Thus, in such cases, the CEO must rely only on

informal mechanisms, such as boosting the agents’ confidence. 3

Another example for such situations is the case in which the principal is a risk-averse angel
wnwvestor and the agents are entrepreneurs who work in related areas. The investor would
like to encourage the entrepreneurs to make unconventional choices in order to reduce the
aggregate risk. Using monetary incentives for this may be too expensive: if each entrepreneur
holds a large share of his company, then large bonuses are required to encourage unconven-
tional choices with smaller success probabilities. Contrary to this, it might be relatively easy
to boost the confidence of inexperienced entrepreneurs. This presents a novel explanation for
the high levels of overconfidence among entrepreneurs (see Cooper, Woo, and Dunkelberg,
1988; and Busenitz and Barney, 1997).4

Next we note that a different interpretation of the model presents a novel evolutionary foun-
dation for overconfidence (as detailed in section 4). Consider a large population with several
types, where each type induces a bias function for its members. In each generation, each

3 In addition, monetary incentives are also constrained by the limited liability of the agents.

4 This explanation has a unique falsifiable prediction: entrepreneurs in areas in which typical
investors are individuals and area-specific funds would be more overconfident, than entrepreneurs
in areas in which the typical investors are large multi-area funds or a government.



individual has to take either a conventional action or an unconventional one, and the out-
come influences his fitness. The size of the each type in the next generation is determined by
its average fitness (replicator dynamics). A simple adaptation of an existing result (Robson,
1996) shows that in the long run a unique type prevails over the entire population: the type
that maximizes the logarithm of the average fitness. That is, all individuals present the op-
timal confidence bias g* of the principal-agent model, where the principal has a logarithmic
utility.

Our last result is motivated by the evolutionary interpretation. It assumes that the prin-
cipal’s utility has constant relative risk aversion, and it shows that the optimal level of
overconfidence is higher if: (1) there is a larger difference between the payoffs of success and
failure; this result is in accordance with the experimental finding of Sieber (1974) which sug-
gests that people are more overconfident with respect to more important decisions; and (2)
the success probabilities of the unconventional choices tend to be lower (first-order stochastic
dominance); this result is in accordance with the experimentally observed hard-easy effect
(Lichtenstein, Fischhoff, and Phillips, 1982): the more difficult the task, the greater the
observed overconfidence. In addition, we characterize conditions that induce the false cer-
tainty effect (Fischhoff, Slovic, and Lichtenstein, 1977): people are often wrong when they
are certain about their private information.

This paper is structured as follows. Section 2 presents the model and Section 3 presents the
results. The evolutionary interpretation is described in Section 4. In Section 5 we briefly
describe several variants and extensions (which are detailed in the online appendix) and
discuss the related literature. Formal proofs appear in the appendix.

2 Model

Our model includes seven parameters: (I, p, fy, fp, L, H,h). I = {1,...,n} is a set of agents,
and we assume that n >> 1 (see online appendix for discussing the cases in which the number
of agents is small or endogenous). A typical agent is denoted by ¢ or j. Each agent faces a
choice between two actions: a. and a,. The former (resp., latter) is interpreted as making a
conventional (resp., unconventional) choice by following accepted guidelines (resp., personal
judgment). Parameter 0 < p < 1 is the correlation coefficient between the outcomes of two
agents who make conventional choices. If at least one of the agents makes an unconventional
choice, then their successes are independent.

Parameters L, H € R (H > L) are the payoffs an agent may obtain: success yields H and
failure yields L. In the principal-agent interactions (like Example 1) one can assume that
H =1and L =0. In the evolutionary interpretation (see Section 4) H (L) is the fitness of
a successful (unsuccessful) agent. Function h : [L, H] — R is the utility of the risk-averse
principal. It is strictly concave and increasing and it satisfies decreasing absolute risk aversion
(DARA). That is: (1) &’ >0, (2) A" < 0, and (3) Arrow-Pratt coefficient r4 (x) = —};Ll,l((j)) is
decreasing in x. (DARA assumption is required for part 2 of Theorem 1 and for Theorem
3.)




The unknown state of nature determines the value of the tuple of random variables

(. (P)icr o (G Gia)ics) € (10,1 x 0,1]7 x {0, 1} x ({0, 1} ,{0,1})") .

The random variable q ~ f, is the (unconditional) success probability of each agent who
makes a conventional choice. For each ¢ € I, the variable p; ~ f, is the success probability
of agent ¢ if he makes an unconventional choice. The variables (q, (Pi)e N) are independent.
Distributions f, and f, are continuous probability density functions with full support: V0 <
p,g <1, f,(p) >0, f;(q) > 0. The full support assumption is not essential and it is used
to simplify the presentation of the results.

Variable &, is equal to 1 with probability q (and 0 otherwise). When £, = 1 (resp., {, = 0) the
accepted guidelines are effective (resp., non-effective) and conventional choices have higher
(resp., lower) success probability: each &, , is equal to 1 with probability: VPt (1 — \/ﬁ) -q
(resp., (1 - \/ﬁ) -q). A conventional choice yields agent ¢ high (low) payoff when ¢, , = 1
(€iq = 0). For each i € I, &, is equal to 1 with probability p; (and 0 otherwise). When
&ip =1 (resp., &, = 0) the personal judgment of agent 7 is correct (resp., incorrect), and
an unconventional choice would yield agent ¢ high (resp., low) payoff. Variables (& 4, &ip);cn

are independent conditionally on (q,§,), and variables <§q, (&ip)ic N) are independent.

Note that without conditioning on &, the success probability of a conventional choice is q:

P&g=1a=q)=0-9)-(0=-vp)-g+q-(p+{1=Vp)-q) =g

Also observe that conditionally on q, the correlation coefficient between the outcomes of
each two agents i, 7 who follow the public signal is p. That is, for each ¢ € [0, 1]:

E (g &qla=q9) —E(ga=q) - E(4la=q)
Jvar (&ila = @) - var (§ila = q)

p (i &iald=q) =

B q(vo+(1-p) ~Q)2+(1—Q)((1—\/5) -Q)2—q2 = +ap

Jal—aa(—q) a=q) "
The strategic interaction between the principal and the agents includes two stages. At stage
1 the principal (who has no information on the state of nature) chooses a profile of bias
functions (g;),.;- Each function g; : [0,1] — [0,1] determines the bias of agent i when
estimating the accuracy of his own judgment. That is, if the true success probability of an
unconventional choice based on personal judgment is p;, then agent ¢ mistakenly believes it
to be g; (p;) (see online appendix for allowing also biases with respect to the conventional
choice.). As discussed in the introduction, the choice of the bias profile (g;),.; is interpreted
to be the result of using managerial skills to influence the confidence of the different agents.
The principal knows all aspects of the model, while each agent is not aware that he has a
confidence bias. (See the related experimental findings of Friesen and Weller (2006) which
suggest that: (1) analysts are overconfident; (2) an analyst is not aware of his own bias; and
(3) an analyst is aware that other analysts tend to be overconfident.)




After stage 1, all agents are publicly informed about the value of q, and each agent i with
bias function g;, is privately misinformed that the value of p; is g; (p;). At stage 2 each
agent ¢ chooses an action a; € {a., a,}, where a. (a,) is interpreted as a conventional
(unconventional) choice. The payoff of agent i is (see online appendix for discussing a safer
conventional choice):

H itg, , =1 H if¢, =1
u; (a.) = 18 , and w; (a,) = Sy :
L oif&, =0 L oif&,=0

Our assumption that f, and f, are continuous guarantee that the inequality q # ¢ (p;)
holds with probability 1. Thus, each bias profile (g;),.; induces a strictly dominant strategy
profile for each agent i: taking a conventional action if q > g¢; (p;), and an unconventional
one if q < g; (p;) (and playing arbitrary if q = ¢ (p;) - a O-probability event). Let u; (¢;) =
i (Gi, Pis D€ g ips Eiig) be the random payoff of agent i who uses this dominant strategy.

The principal is an expected utility maximizer with a payoff function that is strictly concave
and increasing in the average agent payoff (or, equivalently, the number of successful agents):

1
u <(gl)1el) = E(Pz‘),‘g[’q,(fi,pvgi,q)iej (h’ (n Z u; (.%))) '

il
3 Results

A few auxiliary definitions are required before presenting our results. Let the first-best payoff
of the game, be the payoff that can be achieved by the principal when he obtains all the
private signals p;-s and has full control over the actions of the agents. A bias profile e-induces
the first-best payoff if its payoff is as good as the first-best payoff up to €. Bias profile (g;),,
is homogeneous if all agents have the same bias function: Vi, j € I, g; = g;. With some abuse
of notations, we identify function g : [0,1] — [0, 1] with the homogeneous profile (g),.; -
We say that g asymptotically induces the first-best payoff if for every e > 0, there is large
enough ng such that, for any game with at least ng agents, g e-induces the first-best payoft.

The following theorem characterizes the unique optimal bias function.

Theorem 1 There exists a unique bias function g* that asymptotically induces the first-best
payoff. Moreover, g* satisfies the following properties:

(1) Owerconfidence: g* (p) > p for every 0 < p < 1.

(2) Continuous and strictly increasing: %}Em >0V0<p<l1,g (0)=0, and g* (1) = 1.

(3) g* does not depend on the distribution f,.

The intuition for Theorem 1 is as follows. There is a conflict of interest between calibrated
agents (g; (p;) = p;) who maximize their probability of success, and the principal who wishes
some agents with p, < q to make unconventional choices in order to achieve better risk



diversification and to reduce the variance of the fraction of successes. The optimal action
of agent ¢ in the principal’s first-best profile (if the principal could observe agents’ private
signals) generally depends on the entire realized profile of signals: (p1, .., pn,q). However,
when there are many agents, the realized empirical distribution of (py, .., p,) is very close to
its prior distribution f,. Thus, approximately, the first-best choice of agent ¢ only depends on
the realizations of p; and q. Specifically, for every g, there is some threshold level g~ (q) < ¢,
which is strictly increasing and continuous in ¢, such that it is approximately optimal for the
principal if each agent ¢ makes an unconventional choice if and only if p; > ¢! (¢). These
thresholds construct the optimal bias function g (p). This optimal level of overconfidence
aligns the preferences of the principal and the agents. That is, the agents behave as if they
have the payoff function of the principal.

Part 3 of Theorem 1 holds due to our simplifying assumption that all agents have the same
success probability when making conventional choices. If agents were facing different values
of ¢ when making conventional choices, then our results would remain qualitatively similar
but the optimal level of overconfidence would also depend on f,.

Theorem 1 shows uniqueness in the set of homogeneous bias profiles. That is, it shows
that any other homogeneous bias profile induces a worse outcome than ¢*, given that the
number of agents is sufficiently large. Theorem 2 extends the uniqueness also to the set of
heterogeneous profiles. Bias profile (g;),.; is heterogeneous if there is a set @ C [0,1] with a
positive Lebesgue measure such that, for each ¢ € Q, min; (¢;)~" (¢) < max; (¢;)" (¢). With
some abuse of notation, we identify the bias profile (g;),., with the following bias profile in
a game with k- || agents: agents {1, ..., k} have bias function g1, agents {k + 1, ..., 2k} have
bias function gs, ..., and agents {k - (|I| — 1) + 1, ...,k |I|} have bias function g|;;. Theorem
2 shows that every heterogeneous profile can be replaced with an homogeneous profile that
induces a strictly better outcome, given that the number of agents is sufficiently large.

Theorem 2 Let (g;),.; be an heterogeneous profile. Then there is ko € N such that there
is an homogeneous profile that induces a strictly better payoff than (g;),c; in the game with
k- |I| agents for every k > ky.

The intuition for Theorem 2 is as follows. Let g be a bias function (an homogeneous profile)
that induces the same expected number of agents who follow the public signal as the profile
(9i);e; (for each g). Divide the set of agents into two disjoint subsets I; and I, where I;
includes agents with bias functions that induce higher probabilities to follow the uncon-
ventional choice (relative to g), and I, is the complementary set. If the number of agents is
sufficiently large, then the law of large numbers implies that replacing the heterogeneous bias
profile (g;),c, with the homogenous bias function g, would result in having several agents
from I; moving from unconventional choices to conventional ones, and several agents from I
doing the opposite move. Observe that the “moving-out” I; agents have lower p;-s than the
“moving-in” I, agents, as everyone uses the same threshold (¢~* (¢)) when deciding whether
or not to take the unconventional action. This implies that g induces a strictly better payoff
(by using again the law or large numbers).

Our third result shows that the principal prefers more overconfident agents if: (1) he becomes



more risk-averse, or (2) the correlation coefficient p becomes larger.

Theorem 3 Let gi (Resp., g5) be the unique bias function that asymptotically induces the

first-best payoff given the parameters (p1, fo1, fp1, L1, Hi, hi) (resp., (p2, fo.2, fp2, L2, Ha, ha)).
Then gi (p) > g5 (p) for every 0 < p < 1 in each of the following cases:

(1) hy =1 o hy where ¢ >0 and " <0 (and all other parameters are the same).
(2) p1 > p2 (and all other parameters are the same).

The intuition of Theorem 3 is as follows. If the principal becomes more risk-averse, then he
gives more weight to reducing the variance of the number of successes. This deepens the
conflict of interest with calibrated agents, and more overconfidence is required to align the
preferences of the agents and the principal. Similarly, if the correlation coefficient becomes
larger, this enlarges the aggregate risk that is induced by conventional choices, and it deepens
the conflict of interest between the principal and calibrated agents.

Finally, we assume that the principal has a constant relative risk aversion (CRRA) utility:

h<x):{ﬁig if6>0,0#1,
In(z) if ¢ =1,

Let D = % be the (normalized) potential gain: the ratio between the extra payoff that can
be gained when succeeding (H — L) and the minimal guaranteed payoff (L). Theorem 4 shows
that assuming CRRA utility yields three additional results. The first result (parts 1-2) shows
that the principal hires more overconfident agents if there is a larger potential gain. Larger
potential gains are associated with more important decisions, and given the evolutionary
interpretation presented in Section 4, this result fits the experimental findings that people
tend to be more overconfident when making important decisions (e.g., Sieber, 1974). The
second result (part 3) shows that the principal hires more overconfident agents if the success
probabilities of unconventional choices become smaller, and this fits the experimentally
observed hard-easy effect (see Section 5.2). The last result (part 4) shows that the induced
overconfidence fits the experimentally observed false certainty effect (see Section 5.2).°

Theorem 4 Let g] (Resp., g5) be the unique bias function that asymptotically induces the

first-best payoff given the parameters (py, fo1, fo1, L1, Hi, ha) (resp., (2, fo2, fo2, Lo, Ha, ha)).
Assume that both hy and ho satisfy CRRA. Then:

(1) Each g; (k € {1,2}) depends on the payoffs only through its dependency on D; =
Hy,—Ly,

Ly,
(2) If Dy > D, (and all other parameters are the same) then g (p) > g5 (p) VO < p < 1.
(3) If distribution f,» has first order stochastic dominance over f,; (and all other param-
eters are the same) then g7 (p) > g3 (p) VO <p < 1.

° Part (4) implies this effect only under the strong assumptions that D is high and p is close to
1. However, one can extend this result into a setup where D and p are random variables having a
joint distribution with a positive weight on high values, and the principal is limited to inducing a
single bias function g* (p) for all values of D and p.



(4) The ratio between the perceived and the true error probability of personal judgment

(%’iﬁm) converges to (1/ (Dy, + 1)) = (IL{—’Z)¢ when both p and p converge to 1.

The intuition of the part (1) is that evaluations based on a CRRA utility are unaffected
by scale. The intuition of part (2) is that larger potential gain, enlarges the aggregate risk
of the conventional actions. This deepens the conflict of interest between the principal and
calibrated agents, and more overconfidence is required to compensate for it. The intuition
of part (3) is that the principal wishes that agents with the highest success probabilities
would make unconventional choices. When lower success probabilities are more frequent,
each accuracy level p; is more likely to be one of the higher levels.

4 Evolutionary Interpretation

In this section we present a different interpretation of our model to show why overconfidence
is a unique evolutionary stable behavior. Consider the following example about choices of
individuals in prehistoric societies.

Example 2 Human hunting in prehistoric hunter-gatherer societies is a skill-intensive ac-
tivity. Human hunters use a wealth of information to make context-specific decisions during
both the search and encounter phases of hunting. Acquiring good hunting skills requires many
years of training and specialization (Kaplan et al., 2000). Consider an individual that has
to choose in which hunting technique to specialize. The hunter may either make the conven-
tional choice - specialize in the hunting technique that was most successful in the previous
generation, or use his personal judgment to develop and specialize in a new unconventional
hunting technique, which might better fit the changing environment or his own personal
qualifications. Fach agent may either succeed or fail, and this has large influence on his re-
productive ability. The outcomes of individuals who specialize in the same hunting technique
are positively correlated, while the outcomes of different hunting techniques are independent.

Example 2 is formulated as follows. A large population of individuals includes several genetic
types: (11, ..., Tk). Each type k induces a (possibly random) bias function g for its mem-
bers. In each generation, each agent faces an important decision that influences his fitness
(reproduction ability), like the hunting method in Example 2. When making a decision the
individual may either take a conventional action that follows accepted guidelines in his soci-
ety, or follow his own judgment and take an unconventional action. At the beginning of each
generation each individual ¢ receives two signals 0 < p; < 1 and 0 < ¢ < 1. These signals
have the same interpretation as in the principal-agent model: p; (resp., ¢) is the independent
(resp., positively correlated) success probability of an unconventional (resp., conventional)
choice.

The chosen action and the state of nature leads each agent either to success or to failure:
success (resp., failure) yields fitness H (resp., L). The size of each type (the number of its
members) in the next generation is determined by replicator dynamics with a small positive
mutation rate. That is, basically the new size of each type in the next generation is their size



in the previous generation multiplied by their average fitness. In addition, each individual
in the next generation has a small chance to be randomly assigned into a new type.

A well known argument in the evolutionary literature (see, Lewontin and Cohen, 1969;
Samuelson, 1971; Robson, 1996) shows that with high probability in the long run a unique
type prevails over the entire population: the type that maximizes the expectation of the
logarithm of the average fitness in each generation. Formally, let & = 1 (resp., & = 0) be the
event that the accepted guidelines are correct (resp., incorrect) in generation t (denoted by
&, in Section 2). Recall that P (§ = 1) = ¢, and assume that &-s in different generations are
independent. Let u;;+ be the number of offspring of agent ¢ of type k in generation ¢, and
let my, (&) = E (u; 4,4|&) be the expected number of offspring produced by an agent of type
k conditional on &. Robson (1996, Theorem 2-iii) shows that if mutation rates are small, a
long time elapsed, and the population is found to have avoided extinction, then the entire
population is dominated by the type that maximizes:

E (In (my)) = g - In(my (& = 1)) + (1 = q) - In (my (& = 0)).

Observe that due to the law of large numbers, if the population of type k is large enough,
then conditional on the value of &, the realized average fitness of the members of type k in
generation t is very close to my (&): my (&) ~ ﬁ YieT, Wikt Thus, Robson (1996)’s result
implies that in the long run nature selects the type that maximizes the expectation of the
logarithm of the average fitness in each generation. Because of this, the long run limiting
behavior that is the result of the evolutionary dynamics can be described as the bias profile
that is directly chosen by a risk-averse principal with a logarithmic utility function. Thus,
in the long run the homogeneous bias profile g* is a unique evolutionary stable behavior,

and all of the results of Section 3 hold in this setup as well.

In what follows we sketch out the intuition behind this result. Let n; be the initial number
of members of type k, and let X, = ﬁZiGTk u; ;. be the average fitness of type k in
generation t. The size of each type T} after M generations is equal to:

n - lek . 'XM,k = ny - 6109(X1,k-~--"XM,k) = ny - 6109(X1,k)+-..+ZOQ<X1VI,I€)'

Assume that ny is large enough and that E (log (X¢x)) > 0, then each X} is approximately
identically distributed. Assuming that M is large enough then the size of type T} after
M generations is approximately (using the law of large numbers): ny, - ME(l0g(X0k)) Thig
depends only on the expectation of the logarithm of the average fitness in each generation,
and the type that maximizes this expression will expand exponentially faster than any other

type.

At first glance, it might be puzzling that our dynamics is entirely based on individual
selection, and yet natural selection does not choose agents who maximize the expected
number of children. This is because natural selection “cares” for the number of offspring
in the long run. This is not the same as maximizing the “short-run” expected number of
children. A calibrated agent has an higher expected number of children than an agent with
bias g* but he also has a higher variance. Generations in which the realized average number

10



of children of calibrated agents is small, substantially reduce their number of offspring in
the long run.

Our results imply that all evolutionary histories induce overconfidence, but that there is a
large variety in the level of induced overconfidence given different histories. In particular, it
implies that a higher level of overconfidence is induced if the outcomes of the conventional
choices have been more correlated through the history. This implication is in accordance
with the experimental findings surveyed in Yates et al. (2002).

5 Discussion

5.1 Variants and Eztensions

The online appendix presents several variants and extensions: (1) we allow agents to have
bias also with respect to conventional choices, and we show that the results are similar;
(2) we extend our results to a setup where conventional choices are safer (have a smaller
variance); (3) we reformulate the model to capture overconfidence as underestimating the
variance of a continuous noisy signal; (4) we extend our results to a setup where private
information is costly, and each agent has to invest effort in improving the accuracy of his
personal judgment; (5) we demonstrate that our results do not hold for a small number of
agents, and we show that principals would prefer having many agents; (6) we show that
our results also hold when agents are informed experts who recommend the principal which
action to choose, and when the agents are risk-averse; (7) we discuss how incorporating
unbiased random judgment errors would imply the experimentally observed underconfidence
for easy tasks; and (8) we demonstrate how overconfidence can improve social welfare.

5.2 Related Literature

We conclude by discussing a small portion of the literature on overconfidence. The interested
reader is referred to the surveys of Lichtenstein, Fischhoff and Phillips (1982), Griffin and
Brenner (2004), and Skala (2008).

The term overconfidence has three different but related definitions in the literature. The
most popular definition, also called overestimation, describes overconfidence as a systematic
calibration bias, for which the assigned probability that the answers given are correct ex-
ceeds the true accuracy (see e.g., Oskamp, 1965; Lichtenstein, Fischhoff and Phillips, 1982).
The second definition, also called overprecision, deals with excessive certainty regarding
the accuracy of one’s beliefs about an uncertain continuous quantity (see, e.g., Lichten-
stein, Fischhoff and Phillips, 1982; Russo and Schoemaker, 1992). The third definition, also
called overplacement, describes the phenomenon in which people believe themselves to be
better than average (Svenson, 1981; Taylor and Brown, 1988). Empirical data suggests that
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overconfidence is not limited to the lab - it is also presented by experienced agents in real-
life situations: geologists (Russo and Schoemaker, 1992), traders (Barber and Odean, 2001;
Ben-David, Graham and Harvey, 2010), and analysts (Friesen and Weller, 2006).

Overconfidence has been studied in several financial and economic models. A few papers in-
vestigate motivational reasons for overconfidence: deceiving future self (Bénabou and Tirole,
2002), positive emotions improve performance (Compte and Postlewaite, 2004), “ego” utility
from positive self-image (Koszegi, 2006; Weinberg, 2009), and confirmatory bias (Rabin and
Schrag, 1999). Van den Steen (2004) and Santos-Pinto and Sobel (2005) demonstrate how
it is possible to observe overconfidence among rational agents who choose actions based on
unbiased random errors. Blume and Easley (1992), Wang (2001), Gervais and Odean (2001),
and Khachatryan and Weibull (2011) study the conditions in which overconfidence can sur-
vive or even dominate in financial and economic markets. Finally, Odean (1998) investigates
the influence of overconfident agents in financial markets, and Sandroni and Squintani (2007)
study their influence in insurance markets.

In what follows we focus on overestimation, and describe some of its main experimental
stylized facts. A main experimental finding is that the degree of overconfidence depends
on the difficulty of the task - the hard-easy effect. The more difficult the task, the greater
the observed overconfidence (Lichtenstein, Fischhoff, and Phillips, 1982; Moore and Healy,
2008): people present substantial overconfidence for hard tasks, moderate overconfidence
for medium tasks, and moderate underconfidence for easy tasks. A few papers suggest that
the hard-easy effect, and apparent overconfidence in general, may be the result of choos-
ing unrepresentative hard questions in experiments and regression toward the mean (see,
e.g., Erev, Wallsten and Budescu, 1994). Recent experiments demonstrate that people still
present overconfidence, though to a less extent, when representative questions are used
(which are randomly sampled from a natural set) and when unbiased judgmental random
errors are taken into account in the analysis (see Budescu, Wallsten, and Au, 1997; Glaser,
Langer and Weber, 2012). An additional finding is the false certainty effect: people are often
wrong when they are certain in their private information. In the experiment of Fischhoff,
Slovic, and Lichtenstein (1977) participants severely underestimated the probability they
erred in seemingly easy questions. The participants had sufficient faith in their confidence
judgments to be willing to stake money on their validity.

The evolutionary interpretation of our model is based on an adaptation of Robson (1996)’s
result, which shows that Nature should design people to be risk averse with respect to
aggregate risk and risk neutral with respect to idiosyncratic risk. Our main contribution
beyond Robson’s result is threefold: (1) we relate this risk attitude with overconfidence; (2)
we demonstrate that the induced overconfidence satisfies empirically plausible comparative
statics and fits various stylized facts; and (3) we show that the same mechanism helps to
understand strategic (non-evolutionary) principal-agent interactions.

Recently and independently of our paper, Louge (2010) adapted Robson (1996)’s result to
show that Nature should design people to have overconfidence-related biases: (1) a bias
towards actions that defy “common wisdom”, and (2) more extreme public information is
required before disregarding private information. Louge applied this rule to cascade inter-
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actions and demonstrated that herds eventually arise, but the probability of herding on the
wrong action is lower than with a rational rule. Our model differs from Louge (2010) in a few
aspects: (1) we also deal with strategic principal-agent interactions; (2) our model explains
various stylized facts about overconfidence; and (3) we allow for partial correlation between
conventional choices, and for costly private signals (see online appendix).

We conclude by quickly surveying other evolutionary foundations to overconfidence. Wald-
man (1994) showed that “second-best” adaptations can be evolutionarily stable with sexual
inheritance. In particular, he demonstrated that the combination of overconfidence with ex-
cess disutility from effort is a “second-best” adaptation. Similarly, Blume and Easley (1992)
and Wang (2001) demonstrated that the combination of overconfidence and excess risk aver-
sion are “second-best” adaptations. Contrary to that, in our model overconfidence induces
the first-best outcome, and does not compensate for other errors. Finally, Bernardo and
Welch (2001) show that an heterogeneous population that include both overconfident and
calibrated agents may be stable if evolution combines both group and individual selection:
being overconfident reduces the fitness of the individual, but it substantially improves the
fitness of his group, by inducing positive information externality in a cascade interaction.
Contrary to that, our model only relies on individual selection, and it does not include
information externalities.

A Proofs
A.1  Preliminaries

The following lemma presents an equivalent formulation for DARA property.

Lemma 1 Let h(y) be a strictly concave increasing function. Then h (y) satisfies (strictly)
decreasing absolute risk aversion (DARA) if and only if f, (y) = h,}zly(i)a)
function of y for each a > 0.

is a strictly decreasing

PROOF. h(y) satisfies DARA < for every y,a > 0, 74 (y) > ra(y+ a)

) - W (y+a)

h (y) B (y + a)

_ W' (y) - Wy +a)—h"(y+a)-h(y)
(W (y +a))?

& sSh (y)-W(y+a)—h"(y+a) b (y) <0

< 0.0

A.2  Proof of Theorem 1

The proof includes two parts: (1) showing that the first-best outcome can be approximated
by a bias function, and (2) characterizing this unique bias function.
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Approzimating the first-best payoff by a bias function

We begin by dealing with the “first-best” case in which the principal receives all private
signals (p;),.; and public signal q and chooses the actions of all the agents. Without loss of
generality the first-best strategy is a function ¢ that chooses a threshold p = ¢ (¢, p1, ..., pn),
such that each agent i with higher (resp., lower) accuracy level p; > p (resp., p; < p) makes
an unconventional (resp., conventional) choice. The expected payoff (u) of this threshold is:
1, ... .
B (h(L+ (=) ( (il < p.6a = D+ {ilps = 9. 6o = 1) ) 10 (e )

Variables ({4, &ip);c; are conditionally independent given ;. Assuming that the number of
agents is large enough, the expected payoff is well approximated by

u=P<sq=1>-h(L+H;L- (ZP<5i,q:1|fq:1>+ ZP(@-@:l))) -

Pi<p piZp

P(,=0)-h <L+H;L- (ZP(gi,q:ugq:O)Jr Y P&, = 1))) +0(e).

Pi<p DPi>p

<:>u—q-h<L+H_L-((\/ﬁ+(1—\/ﬁ)-q)-#{i\pi<p}—l— Zpi))+

n Di>P

(1—q)-h(L+H_L- (((1—\/5)-q)-#{ilp¢<p}+ Zpi))+0(€)-

n Di>p

To simplify notation let f = f, and F' = F,. Assuming again that the number of agents is
large enough, one can approximate the empirical distribution of the private signals (py, ..., pn)
by their prior distribution f. This gives the following approximation:

uzq-h(L+(H—L)-((\Fpﬂl—fp)-q)-F(pH/plx-f(rv)d:v)>+ (A1)
-a)-n (L4 - 1), (((1—ﬁ>-q>-F<p>+/plm-m)daz))me).

Consider the bias function g* (p) that is defined as follows: p = (¢*)~" (¢) is the threshold
that maximizes Eq. A.1 (neglecting the error term o (¢)). By the above arguments, such a
bias function e-induces the first-best payoff.

Characterizing the unique optimal bias function g* (p)

We now calculate the value of p = (¢*)~' (¢) that maximizes Eq. A.1 (neglecting the error
term o (€)). Observe first that p must be in the interval {(1 — \/ﬁ) - q, q} because for smaller
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(resp., larger) p-s following a. (resp., a,) strictly dominates following a, (resp., a.) as it
yields a 1st-order (resp., 2nd-order) stochastic dominant payoff. To simplify notation let:

1%W=L+w>LwQa—¢@@yF@+/ﬁ+ﬂmm)
Bp,q,p = Ap,q,p + \/ﬁ F (p) : (H - L) .

Substituting these into (A.1) yields: u(p,q) = q- h(Bp,,) + (1 —¢q) - h(Ap,,). For every
0 <q<1wefindp= (g*)"" (¢) by derivation (one can verify that ¢* (0) = 0 and ¢* (1) = 1):

du OB 0A
% =q- W (Bpgp) - % +(1—=q) W (Apgp) - 8I;q,p'
Assuming an internal solution (fl—z = 0) yields:

W (Apgp) g g :q‘(\/ﬁ+(1‘ﬁ>'q_p>. (A.2)

W(Bpgp)  (1—q)- 222 (1-q)- (p—(1-p)-q)

Observe that A, , (resp., By, ,) is strictly decreasing (resp., increasing) in p in the interval
((1 — \/ﬁ) -q, q). Using the strict concavity of h, this implies that the left-hand side (1.h.s.) of
Eq. A.2 is strictly increasing in p. Note that the right-hand side (r.h.s.) is strictly decreasing
in p, and that for p close enough to (1 — \/,5) - q the r.h.s. is strictly larger than the l.h.s,
while the opposite holds for p close enough to ¢. This implies that for each 0 < ¢ < 1 there
is a unique solution p = (g*)_1 (q) to Eq. A.2 in ((1 — \/ﬁ) - q, q), which is continuous in q.

Observe that A, , , is weakly increasing in ¢. By Lemma 1, it implies that the Lh.s. of Eq. A.2
is weakly decreasing in ¢q. One can verify that the r.h.s. is strictly increasing in ¢. Using the
observations of the previous paragraph, it implies that p = (g*)_1 (q) is strictly increasing in
q. One can verify that ?TZ > 0 for every p < (¢*) " (¢), and Z—Z < 0 for every p > (¢*) " (q).
Thus, any other bias threshold p # (¢*) ™' (¢) would yield a strictly lower expected payoff.
Finally, observe (Eq. A.2), that ¢* (p) does not depend on the distribution f,.0]

A.3  Proof of Theorem 2

Let § be the following bias function (homogeneous bias profile): for each ¢ € [0,1], (§) (¢) ™"
is the unique solution to the following equation:

M@WM:ZQQ@WM)

el

That is, g is a bias function that averages the heterogeneous profile (g;),.; . Fix any 0 <
q < 1 satisfying min, (¢;)~" (¢) < max; (¢;)" (¢). To simplify notation let p; = g;* (¢) and
p = g ' (q). By the arguments given in the previous subsection, for each ¢, the expected
payoff of the heterogeneous profile (g;),., in the game with & - [I| agents (for large enough

k) is approximately given by
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(o0 (L5 (150 parors [ o))

i€l Pi

.
=g (-0 (FT(-va 0 Fo+ [ o rwa))),

and the expected payoff of the homogeneous profile g is approximately given by

on(vat-n- (o 0-vo -0 P+ [ o))+
<1—q>-h<L+<H—L>-(((1—ﬁ)-q)-F@H/;x-f(x)da:)).

As F (p) = icr ﬁ (F (p;)), the homogeneous profile yields a higher payoff if and only if

|]|Z dx</ﬁxf(x)dm

el Y Dpi

mZ(/ dm—/ﬁle(x) ><O<:>mz ) de < 0

ZGI il Jpi
< - Z (p:)) - E (p|min (p;, p) < p < max (p;, p)) < 0. (A.3)
N er
(Using the notation that fa f(z)dx = — [ f (z) dz when b < a.) Observe that
-~ Z Z)) - 07
zEI

and that E (p| min (p;, p) < p < max (p;, p)) is strictly increasing in p; and strictly decreasing
in (F(p) — F (p;)). This implies that (A.3) holds.

The above arguments show that for each ¢ such that min, (g;)~" (¢) < max; (¢;) " (¢), § has
higher expected value than (g;),.,, conditional on q = ¢. The fact that (g;),.; is a heteroge-
neous bias profile (i.e., that min; (¢;) " (¢) < max; (¢:)~" (¢) in a set with positive Lebesgue
measure), implies that § has higher expected value than (g;),., (without conditioning on the
value of q). By the law of large numbers, if the number of agents is sufficiently large then it
implies that with high probability ¢ induces a strictly larger payoff than (g;), ;. O

A.4  Proof of Theorem 3
(1) Replacing h with ¢ o h in equation (A.2) yields:

U (h (Apgp)) - 1 (Aygy) 4 (VP + (1= VP)-a—p)
L (h (Bp,qm)) N (Bp,q,p) (1 - Q) : (p - (1 - \/ﬁ) : Q) .
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Observe that the 1.h.s. has become strictly larger (due to the concavity of ¢), while the
r.h.s. is unchanged. By using the observations made earlier that the Lh.s (resp., r.h.s.)
is weakly decreasing (resp., strictly increasing) in ¢, it implies that g (p) > g5 (p).

(2) Observe that the r.h.s. of Eq. (A.2) is strictly decreasing in p, while the the Lh.s. of
Eq. (A.2) is strictly increasing in p (as %ﬁf”’ < 0 and 6%/‘)‘” > (). By using the above
argument, it implies that g{ (p) > g5 (p). O

A.5 Proof of Theorem J

(1) Let D = Z=£. Placing A’ (x) = ™% in the Lh.s. of (A.2) yields:
(Ap,q,p)_d) _ (Ap,q,p"" \/ﬁF( ) (H - L)) ( \/_ F( ) (H—-1L) /L> _¢
(Bpap)™® Ap.ap Apap/ L
¢
D-\p-F(p)
1 A4
(+1+D(((1_ﬁ>.q).mp)w;x.f(x)dx)) .

(2) Observe that this last expression strictly increases in D. By using the same argument
as in the previous proof, it implies that a larger D induces more overconfidence.

(3) Assume that is, Fp (p) < Fi (p) for every 0 < p < 1. We have to show that gf > g;.
Observe that (A.4) is larger when f;,; replaces fpo. This is because

<1+ D-\/p-F(p) )¢
1+D(((1=yp) ) - Fa(p)+ [ x- f (x)dx)

(1+<1+D(((1W)D?;2FQ(+)J (- P ) )
"))

G+(D«1\ﬁ)®fwm 14D (- B

D-\/p-Fs(p) i D-y/p-F5(p
VP D- \/_ Fl( N
- «LW@»@+1+DEO—E@ﬂm_J¢
VP D-\/p- Fi(p) '

Similar to the arguments in the proof of Theorem 3, g7 (p) > g3 (p) for every p.
(4) Let both p and p converge to 1 (which implies that ¢ also converges to 1). Substituting

it in Eq. (A.4) completes the proof: (%)¢ = (1+ D)’ ~ E}:Z;.D
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