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I

The following description and analysis of a firm in
atomistic competition is motivated by the need to spec-
ify a dynamic equation of price behavior to be tested on
U.S. manufacturing time-series data. It will be shown
that uncertainty of price information in a market com=
posed of many competing firms leads to a model which is
more or less in the Evans tradition of dynamic monopoly
theory.

The key dynamic element is the firm's reaction to
customer behavior in an uncertain price situation. Price
uncertainty forces newcomers to the market to search for
an acceptable price which is less than the marginal
utility of the good. Old customers may decide to search
after a price increase, if the expected difference in
searcn costs and price is less than the recently experi-
enced price change.

The implications of the theory are examined using a
phase diagram analysis. Of particular interest for em-
pirical study are the effects of changes in model para-
meters on the time path of the optimal price control
equation. In line with the conclusions of the theoreti-
cal model the estimation results seem to suggest that
price adjusts to a moving equilibrium path in a variable
manner determined by cyclical factors in the economy.

II. THE DYNAMICS OF MARKET DEMAND

A central fact motivating the dynamics of the
model is the existence of uncertainty and the cost of
information. In order to determine the most favorable
price a prospective buyer must canvass the market.

The probability of ending up with the lowest price
offer increases with the amount of search. Since search
costs increase with effort, the buyer must determine
how long he should search before making a decision.

The decrease in the expected minimum price is a de-
creasing function of additional search, given any
distribution function of price quotations. ILf the

cost of search is increasing or constant, there is

a unique reservation price which a buyer will ac-

cept.

Buyers who are accustomed to making their purchases
at one particular firm may have a different preference
set than new customers searching for good deals. But
sufficient increases in price can cause them to lose
their loyalty and engage in search which may now have
become profitable. If the firm is aware of this it has
an incentive to vary price less than if buyers were in-
sensitive to price.

Market search is determined as follows. Given his
preferences and a subjective price distribution, the in-
dividual engages in a process of random sampling until a
price no higher than his reservation price is offered,
unless, of course, he has already bought the product
somewhere and is satisfied with the price. The reserva-
tion price is determined as that price which minimizes
the expected cost of the good, including search costs.
It also has the property of leaving the person at least
as well off as he is not buying at all or paying the old
price.

Stiglet8 and McCall® modeled market search models
for newcomers or for durable goods. Here the analysis is
broadened to cover repeated purchases. We associate a
marginal utility y with a unit of the commodity. The
subjective probability density function on prices charg-
ed in the industry is g(n). The cost per search is S.

It is due to lost wages, leisure time, transportation
costs and the like. For the density g(n) the probability
of receiving an offer p is fpg(n)dn which we denote by
1/N(p). The expected number of searches required to find
such an offer is thus N(p). To determine his reservation
price p the individual minimizes the expected price

E(p) =°/P ng(n)dn plus search costs after N(p) searches,
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subject to one of two possible restrictions. If he is a
newcomer we require that y > p. If he is already in the
market he will not want to search, as long as he is
satisfied with the price he is or has been paying. How-
ever, assuming his subjective density to be stationary
over time, he may decide to search if his price has
risen by u = p] - Py, where p, and p] are the old and
the new price, respectively. Given that p, was previous-
ly determined in an optimal manner, he will search only
if uz p - py. We thus have

mén N(p) [E(p) + S] = K(p,g(n),S) (2.1)
0Ozp -y newcomer
.t 0=nh {
5= ¥ = hipd 0Ozp-0p old customer
1The Kuhn-Tucker conditions are
o/P(B-n)g(n)dn - S 2 0  as h(p) <0, (2.2)

equality if h(f) < 0. For the newcomer the criterion is
that the marginal benefit of additional search must be
at least as great as the extra search cost, given that
the reservation price is less than marginal utility. In
contrast, the old customer is motivated to search only
if the expected difference in cost is less than the
price change in his current store. Substituting (2.1)
into (2.2) the optimal reservation price turns out to
be

A

82>k h(P) <0, equality if h(p) < O.
A We call & the reservation price variability if
p = K. For any u < 8, there is no further search; the
customer remains loyal for one more périod. Clearly, it
is in the interest of a firm to manage its price policy
such that, ceteris paribus, u is as small as possible
in order to minimize the loss of customers.

Since individuals and their reservation prices dif-
fer, the demand facing a particular firm is based on a
distribution on p and u of old customers and potential
newcomers. Arbitrarily associating one unit of the good
with each person the potential demand for a firm's com-
modity x arises from a tri-variate density function
q(x,p,u) which is assumed to be identically and inde-
pendently distributed over time. Dealing with continu-
ous time we let u = dp/dt, The firm sets price p at a
rate u. The quantity demanded by customers whose reser-
vation price and variance are at least equal to p and
d, respectively, is the conditional density @(xlb,ﬁ).
Expected demand is D(p,u) = E(x|p,u) = [xxep(x|p,u)dx.
For a cost function C(x), with properties,

(2.3)

c(0)=20,C'">0,C"=20 (2.4)
expected profit is
*
V =E(V ) = [xlxp - C(x)]p(x|p,u)dx, (2.4)

where V* is actual profit.

It is assumed that the density ¢ is normal and that
C is at most a polynomial of second order in x. Thus,
the highest term in E[C(x)] is C"var(x'p,u). Singe in
this case the variance is independent of p and u~, the
partials Cy and C, reduce to the certainty equivalents
C'Dy and LP'DZ, respectively.

As is the convention, we assume further that ex-
pected marginal revenue MR(x) and demand D(p,u) are
downward sloping, convex to the origin, and finite

D, <0, 0D . <2D°/D, Inf D(p,u) = O (2.B)
1 11 1 P,u
’
D, €0, uz0,D,, <0 2.0)
The sign assumption on D, is a generalization. It covers

absolute price sensitivity of those who prefer price
stability per se. We finally assume that price is at
least equal to the competitive price p > C', and that
the monopoly price, equating expected marginal revenue

and cost occurs at a positive output such that p>C'(0).
I THE RM S O

The optimum feasible price path maximizes the



integral of the discounted instantaneous cash-flow
function V(p,u,t). By feasibility we mean p satisfies
the differential equation

dp/dt =p =u, p(0) =p_
where u is piece-wise continuous but otherwise unres=-
tricted. The Hamiltonian

(3.1)

20, p=z20,

=5 (t

H(p,ua,e) = e (W +aw) (3.2)
is piece-wise differentiable in (p,u), and A (t) is a
piece-wise differentiable, non-negative function of

time such that (p”,u ).maximizes

H = H(p,u,\,t) + ApQA /A - r(t)) (3.4)
at each moment of time t, where r(t) = (d/dt)s(t), and

lim e_O(t)x(t) = 0.

t4®

If V, and therefore H, is concave in p, sufficiency of
the conditions below is assured. See Arrow“, Kamien and
Schwartz™, Mangasarian5 and Mirrlees’. Differentiating
H with respect to p and u,the first-order conditions are

* * .
Hi(p u ALt) 4 = ar(t) (3.B)

=V (3.0)

2 =\

Equations (3.1)-(3.C) and the assumptions listed in
the preceding section make up the basic structure of a
price-setting firm in atomistic competition. The aim in
this section is to establish H-maximizing patterns of
behavior in (u,p) space satisfying (3.1) and (3.B).
Within that set we are interested in those trajectories
that lead to equilibrium. Thus, the stationary paths of
(3.1) and (3.B) are singled out for analysis. Optimal
stationary paths in turn are those that result by in-
voking the transversality condition (3.A). At points of
intersection the system is in equilibrium. The task is
to determine if there is a multiplicity of such points
and which ones, if any, exhibit some form of stability.
Finally, the investigation will turn on the behavior of
the system if it is subjected to exogenous shocks from
outside. The conclusions of that last analysis will be
of importance in specifying and interpreting the em-
pirical example.

From (3.C) we note that A (t) is a shadow price
equal to the cost of changing price. Condition (3.B) is
in fact a marginal condition equating the present con-
trol cost with a discounted stream of future benefits
from the new price level.
e-é(t-s)

a(e) = [y
where V; = Dj(p + D/D; - C') by the assumptions of
Section II. The first-order conditions and the trans-
versality condition thus lead us to a very familiar
economic criterion for choice: make a change if all the
benefits, present and future, are at least as large as
the costs of instituting the change. The augmented
Hamiltonian H can be interpreted as the current expected
profit plus the gains Ap from a given price level less
interest payments Arp.

Combining (3.B) and (3.C) the first-order condi-
tions produce the Euler equation relating the rate of
change of the imputed control value to the long-run
pay-off i

Vy =D,(p +D/Dy - C') = =(x(t) +V,/V,)V,

Vlds > 0, (3.5)

(3.6)

This expression reveals the non-optimality of always
charging the static monopoly price in this kind. of
model. The first term is marginal profit (with respect
to price) which is ordinarily equal to zero at the
optimum. The monopoly price p_ is given when marginal
revenue = marginal cost inside the first parenthesis.
This can clearly only be true when we have V, = Vp= 0,0r
in the exceptional case when the percentage rate of
change of the shadow price equals the interest rate.
The behavior of the system is illustrated in (u,p)

space using the phase diagram Figure l. Since the Euler
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equation must always be satisfied. it must hold along
stationary paths. The curve )\ 0 is then the locus of
points (u,p) for which

v, + v, = 0. (3.7)

It is the optimal stationary path if it satisfies (3.A),
hence leads to p_. The slope of this curve is

du/dp!i= = -(v11 + rvm)/(v12 + rvz (3.8)

0 2)
The sign of this derivative is clearly of importance to
uniqueness and stability of stationary points. The

X = 0 curve defines a set of tangencies between_the
market rate and a set of isoprofit lines V(p,u,z) -
constant, where t is a particular moment in time,

T = -(VI/VZ) = du/dp[V >0 pxzp (3.9)

=const m °
Along the stationary ) =O%the ratin slope of an isoprofit
curve must equal the market rate of interest. Clearly,
if r, V; or Vp change, the points of tangencies change,
hence tﬁe curve changes position implying different

ad justment rates and/or different equilibrium. The other
equation of relevance in this phase diagram is the
horizontal axis p = u = 0. Two questions must be an-
swered. (1) Is there an optimal stationary path which

is stable? (2) Is such a path unique?

.

u=0
A=0

Figure 1.

To answer the first question we approximate the
Euler equation to first order near the monopoly price
pp at some particular time €.

e e + . - . -
p-rp-ap + ap -V, (p ,0,t) - rV,(p ,0,t) =0

= . (3.10)
-1

where a = V,y,(Vyp + erZ). Since V;= V5= 0 in equili-
brium, the last two terms drop out. If a > 0, the roots
are real (r is real), have opposite signs and are cen-
tered on r. Hence, p, is a saddlepoint at t. Clearly,
a>0 if Vip TV < 0 holds for all values of (u,p).
If H is concave with respect to p (Hj; = V11 < 0) the
saddlepoint condition is satisfied whenever V is non-
positive or is small, if it is_positive. Note that,
first of all V,,=(p-C')D,#=C'"DZ <0 by (2.5). In addition
V11< 0 if D13 (p-D/D1-C') ¥'D (2°+ DD11/D% - ¢"Dy) < O.
The second term is negative by assumption. The first
term can be positive if p is much higher than the price
at which marginal revenue equals marginal cost. If Dy>0
whenever p > p such a situation will not prevail be-
cause it would then be in the firm's interest to reduce
price as quickly as possible. If Dy < 0 in all cases, we
must assume that demand is so elastic that p will never
profitably exceed p, by very much. This would be the
normal economic situation. The sign of Vi depends on
the signs of Dy, and D,. Differentiating Vj with respect
to p we have

Vig = Dy + (¢ - €00, -
By previous assumptions this expression is non-positive
if Dy and Dy are non-positive. If demand does not be-
come less sensitive to price increases at higher prices,
D1y < 0. Since this is a fairly reasonable assumption,
the second term is nonpositive. Thus, Viy js clearly
negative if Do < O as in the case of pure variance

]
C'D1D2 . (3.11)



aversion. We note therefore that the very assumption
which might cause positivity of V;; must unequivocally
imply a negative Vyj. This offsetting effect of the
two alternative assumptions may be sufficient to imply
positivity or the coerfficient a in all cases, as must
be assumed if we are to have a saddlepoint equilibrium.
The answer to the second question raised above 1is
partially implied by the preceding analysis. Multiple
stationary points can occur only if the » = 0 curve
changes direction somewhere in (u,p) space, ie., iLf
du/dp}iz() changes sign. As shown in Fig., 1 this curve
must have a negative slope near a stable equilibrium,
if price is to drop whenever p > p_  and to rise when-
ever p < pp. The saddlepoint assumption means that the
numerator of (3.8) is non-positive. This condition must
be strengthened to negativity. Similarly, the denomina-
tor must be negative. Since Vp, is negative we merely
require that Vi, be negative or small in absolute value.
By differentiating the Euler equation which is a
function of U,u and p a stationary Euler path U =0 is
determined. Its slope

du/dp‘ﬁ=0 = -(Vll -+ erz)/(rV22 + 2V (3.12)

12)
is smaller than that of the A = 0 curve if Vy5 < 0, as
shown in Fig. 1. The optimal stationary path thus cuts
the stationary u = 0 curve from below, and the arrows
indicate the direction of motion in (u,p) space.

The preceding discussion points to the general be-
havioral phenomenon that, if price is anywhere but in
equilibrium, there exist forces which will return it to
equilibrium. Indeed, the amount of adjustment depends
on how far away from equilibrium price happens to be.
The rate of adjustment of price is thus the distributed
lag

p=F(p -~ p), F(0) =0, ' >0, (3.13)
where the last two properties follow from the assump-
tions underlying the phase diagram.

We now turn to the matter of the dependence of
adjustment F and equilibrium py on time. Markets and
technology are undergoing continual change. This fact
is reflected in some of the parameters of the model,
for instance the market rate r(t), the cost function C
and its derivatives, and the demand parameters D; and
D;;. A change in the interest rate r will not affect
equilibrium, since V| = 0 is not a function of r. How-
ever, whenever r increases, the iso-profit lines must
become steeper. The change in the slope of the equili-
brium curve X = 0 depends on the sign of Vj,. If
Vip > 0, the adjustment p = u(p) to equilibrium is re-
tarded, but if Vig < 0, F' increases if ]Vlzl is large.

An increase in marginal cost or in the demand
elasticity increases equilibrium price. The rate of
ad justment is thereby also increased. Finally, the cost
of adjustment V, plays an important role in how quickly
the firm can adapt to changing conditions. If we con-
sider an increase in |Dj,|, hence of |Vp2|, due to a
rise in the aversion to price changes, we find that
the slope of the A = 0 curve is raised. Thus, even as
equilibrium price remains the same, adjustment to that
point is accelerated if price-change sensitivity in-
creases.

IV. APPROXIMATION OF THE OPTIMAL PATH

We take as starting point the linear expansion
(3.11) with apm(t) serving as a forcing function of
the approximate optimal control law. Thus, although
the Euler equation in (3.11) applies strictly speaking
to a particular time f, we now assume that the expan-
sion path is a function of time, but, to be truthful,
only in a limited manner. Any changes in r and a will,
for the moment, be conveniently ignored, only to be re-
surrected later on, where such changes will be taken
care of in a somewhat more ad hoc manner.

The roots of (3.10) have the symmetry property

- 4 -
A tAr =T A <0 <r < x+ (4.1)
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As shown by Tinsley]-O a solution satisfying initial and
transversality conditions, ie., a solution which is op-
timal for the approximate problem consists of two parts

T L
p(t) =p (t) +p(£) , (4.2)
where the transient component is
T At L
p (r) = e “(p, - P (0)), (4.3)

and the long-term trajectory is a convolution of past
and future stationary mark-ups app,(t):
t -
L + --1 A (t-s
phe) = ot - s & )

ap_(s)ds
0 m

@ +
% ot (t-s)

t

apm(S)dS] (4.4)

An optimal control law in the present sense is one in
which the firm adjusts to equilibrium by taking into
consideration the entire planning horizon, discounting
future stationary points with a positive root and
weighting past mark-up points using the negative root.
If time t is large, ie., the firm is on a so-called
turnpike, the transitory part in (4.2) becomes unim-
portant (after a sufficient time initial conditions
cease to matter) and the solution simplifies to

t
p(t) = pL(t) = f w(t-s)p(s)ds (4.5)
0
where w(t) is the weight pattern
w(t) = -t (8 (4.6)

and p(t) is the target of the distributed lag function
(4.5)
o +
o =-a) /@ Pap (s)as . “.7)
£

A heuristic interpretation of the target p(t) can
be based on an argument of quasi-myopic behavior. If
the firm were completely myopic it would consider only
the present value of apm(t). In quasi-myopic optimiza-
tion the firm takes the mark-up values current at each
point of time and forms a convoluted target as the for-
ward lead shown in (4.7).

The correspondence between the analysis in this
section and the phase-diagram becomes evident if we
differentiate (4.5) with respect to time

p(t) = -\ [F(t) - p(t)] = F(F(t) - p(t)).

Clearly, as before the adjustment properties F(0) =0
and F' > 0 are preserved. We notice also that the
value to which price adjusts in phase space is no
longer the simplified stationary monopoly mark-up ap
but the convolution shown in (4.7). If we now consider
the effects of changing interest rates and changing
sensitivity to price-variance, we find that adjustment
-\ and the target must be revised. The roots of
(3.10), our approximate Euler equation, are determined
by the discount rate r(t) and by the coefficient a
which is a function of model parameters embodied in V.
A quick check with (3.10) confirms the result of the
phase diagram analysis for the general model, ie.,

3 /ar 2 0, 3-1"faa> 0. (4.9)

As in Section III, the conclusion is that an increase
in the rate of discount tends to speed up adjustment
if V12 is negative and large in absolute value, while
an increase in a, brought about by increased costs,
decreased demand elasticity, or an increased sensitiv-
ity to price variation, will accelerate adjustment.
The similarity of equation (4.8) to others that
have been proposed as empirical hypotheses for price

(4.8)



ad justment is deceptive. As noted, p(t) is not a cur-
rent term but embodies all the information, past and
future, which the firm has available concerning its
cost and demand structure. Even the adijustment rate
which ordinarily is a constant is now determined by
conditions affecting costs and opportunities of the
firm. Given a changing environment, optimal behavior by
the firm will imply continual revision of the adjust-
ment process. The task of the next section will be to
find a suitable way of expressing this phenomenon for
empirical estimation.

Finally, in real-world applications decisions and
measurements are discrete. The discrete approximation
of the continous control equation (4.8) is

t . _ _
p(t) =A (13 F(t-i) 0 < = A /(IA7) < 1. (4.10)
0

These weights are obtained by considering the time
derivative of p in (4.8) as the limit

ln p(0) = pLEh) - o7 1oh A7) [F(E)-pCER) ]
If, however, we let h =1, the result in (4.10) is ob-
tained. The normalization of h = 1 will thus be assumed
for quarterly data.
V. SPECIFICATION OF A PRICE EQUATION
If the production function is linear homogeneous,
the stationary monopoly price is given by

Py = nc'(x) = ﬂ[w/n]kn (5.1)
where 7| = e/l+e is the static monopoly mark-up, e the
demand elasticity pDj/x, w the wage rate, m the price
of materials, and k < 1 the elasticity of output with
respect to labor input. P is a convolution of forward
equilibrium prices pp(t). We assume ghe exponential
forecasting rule E[py(s)|t] = evis-t Pm(t). Let v #1 ,
integrate (4.7) and substitute the result and (5.1) in-
to (4.10)

t

p(e) =% W) w(e-i) Arce-1) 15 (e-1) (5.2)
0

shere WLty = ale) (I (ECEA (o)) S 6 T (E) =w)-

Expanding (5.2) log-linearly about the sample mean
T = W/7)KF, subtracting ln m(t) and differencing we
obtain a distributed-lag function in logarithmic dif-
ferences
S |
Aln(p/m) = btk & W~ “(Daln(w/m)
0

n i
+ow Al w (5.3)
0 teet

where

t-i *t-1i

. n -
Wo (1) = W*t'l(i)/z W (i), and W(i) = W(i),
0

i=1,2,...,n; = W(i)-1, i=0. b is a constant, if the
remainder of the expansion is a linear polynomial of
time. The unit-sum restriction assumed to apply to the
W*(i) also holds for the W(i). Following the discussion
in IV, we single out r(t) and a variable affecting Vjj
as altering the adjustment profile. The ratio of unfil-
led orders to capacity U represents demand pressures
that have no more than transitory effects on price be-
havior. According to ch% theory both variables should
accelerate adjustment.l If Z stands for either r or U,
the hypothesis will be tested that Z modifies the weight
schedule as follows

i i
Wi(1) = h(1) + T a(5,i-DZ ., T m(,i-3) =0,
]
0 0
where wt(i) is the i-th period portion of the total

effect transmitted due to a change in @ or m in period
t. Because of common time trends leading to collinear-
ity problems, we use only 2-period moving averages of
Z placed in alternating periods. Assuming a lag of
three periods, the weight schedule has the staggered
form

WE(0) = h(0) + m(0,0)AZ,
WE(1) = h(1) + m(0,1)AZ,
. (5.4)
W (2) = h(2) + m(O,Z)AZt + m(Z,O)AZt+2
t -
W (3) = h(3) + m(O,B)AZt + m(Z,l)AZt+2
where m(2,0) = -m(2,1) by the zero-sum restriction. The

effect in period 3 of a change in c(t) is thus h(3), a
constant, plus a constant proportion of the change in
Z¢, plus a further portion caused by AZ two periods
hence. Clearly, as the time path of Z varies, so does
the profile of the adjustment pattern.

The weights h(i) and m(i) were estimated using an
orthogona& power series approximation v(i) = bo + bji
+...+ bgi®. 1l The best fitting combination of n andd
was taken as the preferred outcome. The results are
shown in Tables 1 and 2. In part I of the tables the
weight schedules

WX = [h(1) + m(0,i)8Z_; + m(2,1-2)AZ_,]X_;

are denoted by the polynomial
PW(X) = Ph(X) + PO—B(X) + P2_3(X) F s

The first term indicates the fixed portion of the

schedule. P._. indicates the periods (from i to j) in

which Z(i-j$ %odifies the variable portion of W. Part

I of each table gives the t-values of the polynomial

coefficients for each of the fixed and variable weight

schedules used to construct W(i) in Part II. Bars over

m and h mean they pertain to distributed weights on m.

(See 5.3). Theoretically, the barred and unbarred

weights should be identical, after dividing by k, but

were not so restricted. The second part in each of the
tables is (5.4) transposed.
The quarterly data arel?

: BLS manufacturing wholesale price index

: An index of materials prices

Compensation per manhour in U.S. manufacturing

: Corporate bond rate (Moody Aaa)

: Ratio of unfilled orders to capacity output (real
sales less changes in finished goods inventories
divided by the Wharton rate of capacity utilization)

The variable influence on the adjustment profile
of price to changes in costs exerted by U and r is
quite evident. As hypothesized, increases in the ratio
of unfilled orders to capacity output accelerate the
distributed response. The same is true of the discount
rate, but to a somewhat lesser extent. This result does
not contradict a possible hypothesis that D;, is nega-

tive, as suggested in Sections III and IV.

s g Ao

Table 1
I. Interpolation Coefficients Z = U
Polynomial | Degree o t-ratios
bo b1 b2 b3
P, (w/m) 3 11.1]1.01 [1.65 [1.06 | RZ = ,99
Phﬁn) 3 5.34 {3.85 |3.06 | SE = .0027
Pg-3(w/m) 2 3.23 |1.73 DW = 2.11
Pg-3(m) 2 2.59 | 1.56 Intercept=
-.006

m(2,0)2 2,02 Span S4II-
_ 671V
m(2,0) 1.86

*h, = 0 for zero sum restriction.



Table 1 contd.

11. Normalized Weight Schedule (AU = S1 Mil.)

i 0 1 2 3 Ch. SIM
h(i). | .3140 [ 2209 .0549 [ .2336 | .8234=k
h(i)® { -.5587 | .2407| .0909 | .2271 | .0
m(0,1)AU | .5527 |-.0215| -.2871 |-.2442 | .0
7(0,1)AU | .5081 |-.0448]| -.2765 |-.1868 | .0
m(2,i-2)AU4; | -.2858 | .2858 | .0
m(2,i-2)AUL, -.2332 | .2332 | .0
W(i)© ) ‘ 9341 | .2467| -.5062 | .3253 |1.0
a. m(2,0) is coefficient of Aln[m/ﬁAZ+21_2.

b. See definition of W in (5.3).

2
W(i) = h(i)/k + £ m(j,1i) to give W in (5.3).

s The W
j=o .
sum applied to the distributed lag on 1 is very
similar.
Table 2
I. Interpolation Coefficients Z =r
Polynomial Degree t-ratios
k3
bo bl b2 b3- 2
Py (w/m) 2 9.59[ .729 |1.90 R = .985
Py () 3 5.49 [2.94 |8.63] SE = .0029
Po-3(w/im) 2 1,17 .388 DW = 2.13
Py_3(m) 2 1.24 .356 Intercept=
-.0057
m(2,0)® 1.14 Span S4II-
_ 671V
m(2,0) 1.10
* See note to Table 1.
II. Normalized Weight Schedule (Ar = .01)

i 0 1 2 3 Ch. SUM
h(i) .3341 . 1340 . 1022 .2386 . 8089=k
h(i)P -.5464 | .1281( .1393 | .2790 | .0
m(0,Z)Ar .2552 .0078( -.1237 |-.1393 .0
m(0,i)Ar .3062 .0233 | -.1414 |-.1881 +0
m(2,1i-2)Ar,, -.2565 .2515 .0
m(2,i-2)Ar,, -.2331 | .2331 | .0
W(i)c .6682 | .1735] -.2539 | .4072 {1.0

a, b, ¢, see notes to Table 1.

Four cumulative distributions using data from past
periods are shown in Fig. 2. The initially large res-
ponse of curve (d) illustrates the empirical conclusion
of this paper in a rather dramatic way.

VI. CONCLUSION

The following points deserve emphasis. (1) If the
results are at least qualitatively valid, the variable-
weight schedules seem to indicate that, as in the
phase-space analysis, the moving equilibrium path and
ad justment to it are regulated by the economic features
of the model. (2) A fairly strong case can be made for
the claim that price adjustment patterns are cyclical
to the extent that unfilled orders behave cyclically.
This should be of particular significance to policy
makers trying to control inflation. (3) This model has
excluded the interdependence of other decisions of the
firm. The interaction of dynamic adjustments, ie.,
additional consideration as state and control variables
of output, factor inputs, unfilled orders, and inven-
tories has not been represented in this paper.
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