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I. Introduction: A product moment correlation matrix R  of order m  is a symmetric positive 

semi-definite matrix such that 
ij ji

r r R= ∈ lies between –1 and 1 (inclusive). Moreover, 1.
ii

r =  

Each 
ij

r  is the cosine of angle θ  between two variates, say 
i

x  and ; , {1, 2,..., }.
j

x i j m∈  Such 

matrices have many applications, particularly in marketing and financial economics as 

reflected in the works of Chesney and Scott (1989), Heston (1993), Schöbel and Zhu (1999), 

Tyagi and Das (1999), Xu and Evers (2003), etc. These matrices find frequent applications in 

risk management and option pricing (Rebonato and Jäckel, 1999). The need to forecast demand 

for a group of products in order to realize savings by properly managing inventories also 

requires the use of correlation matrices (Budden et al. 2007).  

 

In many cases, due either to paucity of data/information or dynamic nature of the 

problem at hand, it is not possible to obtain a complete correlation matrix. Some elements of 

R  are unknown. Then the problem is to obtain a valid complete product moment correlation 

matrix. Several methods have been suggested to complete a correlation matrix - that is to 

obtain a valid complete correlation matrix from an incomplete correlation matrix, some of 

whose elements are unknown. Works of Stanley and Wang (1969), Glass and Collins (1970), 

Johnson (1980), Olkin (1981), Barett et al. (1989), Helton et al. (1989), Grone et al. (1984), 

Barett et al. (1998), Laurent (2001), Kahl and Günther (2005) and Budden et al. (2007) etc are 

notable. Mishra (2007) proposed an algorithm (and provided a Fortran program) that applies 

the differential evolution method of global optimization to obtain a complete correlation matrix 

from an incomplete correlation matrix of an arbitrary order.  

 

 In many cases, however, the matrix available to the analyst/decision-maker is complete, 

but it is an invalid (not a positive semi-definite) correlation matrix. There could be many 

reasons that give rise to such invalid matrices (Mishra, 2004).  In such cases, the problem is to 

obtain a positive semi-definite correlation matrix, R, which, in some sense, is closest to the 

given invalid matrix, Q. A number of methods have been developed to obtain such nearest 

correlation matrices. The works of Rebonato and Jäckel (1999), Higham (2002), Anjos et al. 

(2003), Pietersz and Groenen (2004), Grubisic and Pietersz (2004) and Mishra (2004) are some 

of them. Of these methods, Mishra (2004) minimizes the maximum (Chebyshev) norm while 

others minimize the Euclidean, Erhardt-Schmidt or Frobenius norm of the difference matrix 

∆ = Q-R, where Q is the invalid and R is the valid product moment correlation matrix. 

 

II. The Objective of the Present Paper: Till date, the various methods proposed by different 

authors are based on majorization, hypersphere decomposition, semi-definite programming, or 

geometric programming. In this paper we propose to obtain the nearest valid correlation matrix 

by the differential evaluation method of global optimization.  
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III. The Method of Differential Evolution: The differential Evolution (DE) method of Storn 

and Price (1995) is perhaps the fastest evolutionary computational procedure yielding most 

accurate solutions to continuous global optimization problems. It consists of three basic steps: 

(i) generation of (large enough) population with individuals in the m -dimensional space, 

randomly distributed over the entire domain of the function in question and evaluation of the 

individuals of the so generated population by finding f(x), where x is the decision variable; (ii) 

replacement of this current population by a better fit new population, and (iii) repetition of this 

replacement until satisfactory results are obtained or the given criteria of termination are met. 

The strength of DE lays on replacement of the current population by a new population 

that is better fit. Here the meaning of ‘better’ is in the Pareto improvement sense. A set Sa is 

better than another set Sb iff : (i) no xi ∈Sa is inferior to the corresponding member of xi∈Sb ; 

and (ii) at least one member xk ∈Sa is better than the corresponding member xk∈Sb. Thus, 

every new population is an improvement over the earlier one. To accomplish this, the DE 

method generates a candidate individual to replace each current individual in the population. A 

crossover of the current individual and three other randomly selected individuals obtains the 

candidate individual from the current population. The crossover itself is probabilistic in nature. 

Further, if the candidate individual is better fit than the current individual, it takes the place of 

the current individual else the current individual passes into the next iteration (Mishra, 2006).  

IV. The Proposed Method to find the Nearest Correlation Matrix: The ‘nearest correlation 

matrix problem’ is cast into a constrained minimization problem of differential evolution 

procedure. The given matrix (of order m ) is first checked for positive definiteness (whether 

eigenvalues, m  in number, are all non-negative). If any eigenvalue is found negative, the DE 

procedure swings into action. A population of N  individual candidate vectors of eigenvalues 

(say ; 1,2,...,
i

i Nλ = , each with m  elements) is generated by using uniformly distributed non-

negative random numbers.  With the eigenvectors (say 0V ) of the original matrix ( Q ) and the 

candidate vectors of eigenvalues ( ; 1,2,...,
i

i Nλ = ) the candidate correlation matrices 

( ; 1,2,...,
i

R i N= ) are constructed. Each of these candidate correlation matrices (
i

R ) is 

checked for unitary principal diagonals, positive semi-definiteness and the trace that must 

equal m  (i.e. the order of the matrix).  Large positive penalties are set if any of the restrictions 

are violated. A difference matrix 
i i

Q R∆ = −  is constructed. The appropriate norm of 
i

∆  is 

computed. The sum of the norm of 
i

∆  matrix and the positive penalty (if any) make the 

objective function that is considered for minimization. An optimum solution has a zero penalty 

and the minimal value of the appropriate norm. Three alternative specifications of norm may 

be used: absolute (1), Frobenius (2) or Chebyshev (coded as 99 or lager).  

V. Some Examples: Let us take some examples from the extant literature. First, the Q matrix 

from Rebonato and Jäckel (1999, p.9) and the solutions obtained by them by two methods 

(hypersphere decomposition and spherical decomposition), as presented in table-1.1. Using our 

method we have obtained three different solutions (R matrices, nearest to Q of Rebonato and 

Jäckel) as presented in table-1.2. They have been obtained by minimization of three different 

norms (absolute, Frobenius and Chebyshev). Minimization of these norms has its own 

advantages and disadvantages relative to the norm chosen. 
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Table-1.1: Invalid Correlation Matrix from Rebonato & Jäckel 

and their Estimated Nearest Correlation Matrices 

Given Invalid 

Matrix (Q) 
 Nearest Matrix (RH) obtained by 

Hypersphere decomposition 
 Nearest Matrix (RS) obtained by 

Spherical decomposition 
1.00 0.90 0.70  1.00000 0.89458 0.69662  1.00000 0.89402 0.69632 

0.90 1.00 0.30  0.89458 1.00000 0.30254  0.89402 1.00000 0.30010 

0.70 0.30 1.00  0.69662 0.30254 1.00000  0.69632 0.30010 1.00000 

 

Table-1.2: Valid Nearest Correlation Matrices  obtained from Q of Rebonato & Jäckel 

by Differential Evolution based Method Proposed in this Paper 

Obtained by Minimizing the 

Absolute Norm 
 Obtained by Minimizing the 

Frobenius Norm 
 Obtained by Minimizing the 

Chebyshev Norm 
���������� ������������ ����	����� � ���������� ����
	���� �����	���� � ���������� ����	�
����� �����
	
��

������������ ���������� ����������� � ����
	���� ���������� �����	�	�� � ����	�
����� ���������� ����
�	���

����	������ ������������ ���������� � �����	���� �����	�	�� ���������� � �����
	
����� ����
�	������ ����������

All figures rounded off at the seventh place after decimal.   

 The second example is from Higham (2002). His Q matrix and the nearest correlation 

matrix estimated by him are presented in table-2.1. 

Table-2.1: Invalid Correlation Matrix from Higham 

and his Estimated Nearest Correlation Matrix 
Given Invalid Matrix (Q) by Higham  Nearest Matrix (R) obtained by Higham 

1.00 1.00 0.00  1.00000 0.76069 0.15731 

1.00 1.00 1.00  0.76069 1.00000 0.76069 

0.00 1.00 1.00  0.15731 0.76069 1.00000 

We have estimated nearest correlation matrices by minimizing the aforesaid three 

norms by the method proposed in this paper. The estimated matrices are presented in table-2.2. 

Table-2.2: Valid Nearest Correlation Matrices  obtained from Q of Higham 

by Differential Evolution based Method Proposed in this Paper 

Obtained by Minimizing the 
Absolute Norm 

 Obtained by Minimizing the 
Frobenius Norm 

 Obtained by Minimizing the 
Chebyshev Norm 

���������� ������������ ���������� � ���������� ������������ ���	������ � ���������� ��������
��� ��������	�

������������ ���������� ���������� � ������������ ���������� ���������� � ��������
� ���������� ��������
�

����	������ ���������� ���������� � ���	�������� ������������ ���������� � ��������	��� ��������
��� ����������

All figures rounded off at the seventh place after decimal.   

 

 Table-3.1: Al-Subaihi’s Given Invalid and Estimated Valid Nearest Correlation Matrices 

by Differential Evolution based Method Proposed in this Paper 
Given Invalid Matrix (Q)  Estimated Matrix Obtained by Minimizing the Absolute Norm 

1.00 0.50 0.50 0.00 0.00  1.000000000 0.475565731   0.475565731   0.000002657 0.000002657   

0.50 1.00 0.84 0.84 0.84  0.475565731   1.000000000 0.840024064   0.798952659   0.798952659 

0.50 0.84 1.00 0.84 0.84  0.475565731   0.840024064   1.00000000 0.798952659   0.798952659 

0.00 0.84 0.84 1.00 0.84  0.000002657   0.798952659   0.798952659   1.000000000 0.840012746 

0.00 0.84 0.84 0.84 1.00  0.000002657   0.798952659   0.798952659   0.840012746   1.000000000 

   

As the third example, we use the invalid correlation matrix (Q) reported in Al-Subaihi (2004). 

He has obtained the valid matrix, which is grossly inoptimal (Mishra, 2004) and hence we do 



 4 

not feel a necessity to present it here. From his matrix we obtain three valid matrices as 

presented in tables 3.1 and 3.2.  

 
Obtained by Minimizing the Frobenius Norm Obtained by Minimizing the Chebyshev Norm 

������������ ����
������� ����
������� ���������	�� ���������	�� ����������� ���
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 As the fourth example we have a 7x7 invalid matrix (Q) presented in table 4.1. The 

matrix is strongly non-positive definite and its elements are inconsistent among themselves. 

Two of its eigenvalues are negative and substantially large. We present in tables 4.2 through 

4.4 the estimated nearest correlation matrix obtained by minimizing absolute, Frobenius and 

Chebyshev norms. The results have been obtained by the method proposed in this paper. 

 

Table-4.1: A 7x7 Invalid (highly inconsistent) Correlation Matrix (Q) 
 1.0  0.3  0.8  0.9  0.6  0.5  0.8 

 0.3  1.0  0.7 -0.9 -0.8  0.5  0.6 

 0.8  0.7  1.0  0.3  0.5  0.6  0.9 

 0.9 -0.9  0.3  1.0  0.5  0.8  0.2 

 0.6 -0.8  0.5  0.5  1.0  0.9  0.9 

 0.5  0.5  0.6  0.8  0.9  1.0 -0.8 

 0.8  0.6  0.9  0.2  0.9 -0.8  1.0 

  
Table-4.2: Estimated Correlation Matrix from Q in Table-4.1 through Minimization of 

Absolute Norm by Differential Evolution based Method Proposed in this Paper 
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Table-4.3: Estimated Correlation Matrix from Q in Table-4.1 through Minimization of 

Frobenius Norm by Differential Evolution based Method Proposed in this Paper�
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 Table-4.4: Estimated Correlation Matrix from Q in Table-4.1 through Minimization of 

Chebyshev Norm by Differential Evolution based Method Proposed in this Paper�
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VI. Application of the Proposed Method to Completing a Given Incomplete Matrix: 

Earlier we have mentioned that in many cases, due either to paucity of data/information or 

dynamic nature of the problem at hand, it is not possible to obtain a complete correlation 

matrix. Some elements of R  are unknown. Then the problem is to fill in the holes (cells 

occupied by the unknown elements of the incomplete correlation matrix). This problem has no 

unique solution and, generally, for every unknown element of the matrix there exists a 

bewildering large range ( H

L
r r− ) within which any value would make the ‘completed’ 

correlation matrix semi-definite. One may, therefore, generate a large list of valid correlation 

matrices (Mishra, 2007), which poses a difficult problem of choosing a particular matrix from 

among them.  However, if the holes may be filed in by some rough guesstimates (guessed 

estimates) made by the analyst (and the matrix obtained through such subjective completion 

procedure turns out to be an invalid matrix, Q), one might try to obtain the nearest valid matrix 

from Q. 

 

 The difference between the ‘complete the correlation matrix problem’ and the one (the 

nearest correlation matrix problem) described in the earlier sections is that in the ‘complete the 

correlation matrix problem’ the known elements are considered as parameters and the 

unknown elements might be adjusted so that finally the completed correlation matrix is valid. 

This view results into the multiplicity of solutions of the problem. On the other hand, in the 

pure ‘nearest correlation matrix’ problem all the elements (barring the unitary elements in the 

principal diagonal) are subject to adjustments. However, if one is ready to allow for some 

adjustments in known elements (barring the unitary elements in the principal diagonal) too, the 

‘complete the correlation matrix’ problem can be converted into the ‘nearest correlation 

matrix’ problem. 

 

Take for instance a (valid) 4x4 matrix given in table 5.1 (panel-1). All of its 

eigenvalues are positive (2.21709657, 0.88487947, 0.734710693, 0.163313225). Now, 

suppose, we obliterate four of its elements (two in the upper and corresponding two in the 

lower diagonals) so as to produce an incomplete matrix, given in panel-2 of table-5.1 and 

guesstimate the holes (obliterated elements) so as to obtain an invalid correlation matrix given 

in panel-3 of table-5.1. 

 

Now we obtain three estimated valid correlation matrices (given in table-5.2); the first 

by un-weighted minimization of the maximum (Chebyshev) norm (panel-1); the second by 

weighted minimization of the maximum norm; and the third by minimization of the weighted 

absolute norm. Guesstimated elements are assigned zero weights while the known elements are 

assigned unity weights. 

 

Table-5.1: Transformation of an Incomplete Correlation Matrix  into a 

 Nearest Correlation Matrix Problem 

A Valid Matrix  Incomplete Matrix  Guestimated Invalid Matrix 
 1.00  0.80  0.50  0.30  1.00     0.50  0.30   1.00  1.00  0.50  0.30 

 0.80  1.00  0.30  0.20      1.00  0.30      1.00  1.00  0.30 0.70 

 0.50  0.30  1.00  0.15  0.50  0.30  1.00  0.15   0.50  0.30  1.00  0.15 

 0.30  0.20  0.15  1.00  0.30     0.15  1.00   0.30 0.70  0.15  1.00 
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 Table-5.2: Nearest Correlation Matrix obtained from   

Incomplete Correlation Matrix Completed by Guesstimates 

By un-weighted min max norm* By weighted min max norm By weighted Absolute norm 
��������� ����
���� ��
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�
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����������������������������������������������� !"�#�$�����%��������&�������������������������'�����������

 

VII. Concluding Remarks: We may draw some conclusions from this exercise. First, the 

‘nearest correlation matrix problem may be solved satisfactorily by the evolutionary algorithm 

like the differential evolution method. Other methods such as the Particle Swarm method (the 

results not presented here) also may be used. It may be so, however, that the solution obtained 

by such methods might not be strictly optimal, correct up to many (usually greater than 5 or 6) 

places after the decimal point. In that sense, these methods give only near-optimal results that 

may be practically acceptable.  Secondly, these methods are easily amenable to choice of the 

norm to minimize. Thirdly, the ‘complete the correlation matrix problem’ can be solved (in a 

limited sense) by these methods. Fourthly, one may easily opt for weighted norm or un-

weighted norm minimization. Fifthly, minimization of absolute norm to obtain nearest 

correlation matrices appears to give better results. 

 

 Finally, as one may observe, the resulting valid (nearest) correlation matrices are often 

near-singular and thus they are on the borderline of non-semi-positive definiteness. One finds 

difficulty in rounding off their elements even at 6
th

 or 7
th
 place onwards after decimal, without 

running the risk of making the rounded off matrix non-positive semidefinite. Such matrices are 

difficult to handle. Nevertheless, it is possible to obtain more robust positive definite valid 

correlation matrices by constraining the determinant (the product of eigenvalues) of the 

resulting correlation matrix to take on a value significantly larger than zero. But this can be 

done only at the cost of a compromise on the criterion of ‘nearness.’ The method proposed by 

us does it very well.  

 

 

 

Note: The computer program (FORTRAN) for the method proposed in this paper may be 

obtained from the author on request (contact mishrasknehu@yahoo.com). There are two 

programs; the one that uses the Differential Evolution and the other that uses the Particle 

Swarm Optimization.  
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