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On the Theoretic and Numeric Problems of
Approximating the Bond Yield to Maturity

Gabriel A. Hawawini and Ashok Vora

Baruch College, City University of New York

I. STATEMENT OF THE PROBLEM

The computation of the exact yield to maturity on a bond with a finite maturity
of n periods requires solving a polynomial of degree 7. Given the price of the bond,

its face value and its coupon rate, the problem is to solve the equation:

¢ t
P= Y (14r)"° +F(142) ™" (1)
t=1

where
= the price of the bond,
= the face value,

the coupon value,

= the maturity,

S S N R v
I

= the coupon rate (= C/F),

B
I

the exact yield (defined in (1)),
and other symbols used are,

= the approximate yield (defined in (2)),

kK = the current yield (defined in (4)),
e = the approximate yield differential (defined in (3)),
e' = the current yield differential (defined in (5)).

There are no general algebraic solutions to equation (1) for n larger than four.
To solve this equation, a trial-and-error method must be applied until the exact

yield is found. Several finance text books suggest the use of an approximate yield
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to maturity commonly employed by financial analysts.l This approximate yield is
computed according to:2
_C+ (F-P)/n 2)
(F+P)/2

It is defined as the ratio of the average income per period to the average price
of the bond. It is an approximation because it ignores the time-value of money. 1In
the numerator the discount or the premium is not time-adjusted and is assumed to be
equally and periodically distributed over the life of the bond. In the denominator
the average price of the bond is assumed to be equal to the arithmetic mean of the
bond's current price and its face value which is only correct if one ignores the
time-value of money.

If the approximate yield must be employed, various questions are worth examining.
Are there prices for which the approximate yield is equal to the exact yield? Over
which price ranges will the approximate yield overstate or understate the exact yield?
How large an error is committed when the approximate yield is used?3 How does this
error behave when either the term to maturity or the coupon rate changes? How does
the bond's current yield, defined as the ratio of its coupon payment to its current
price, compare to the approximate yield as an approximation of the exact yield? Are
there cases for which the current yield provides a better approximation of the exact
yield than does the approximate yield itself?

In general, an error is committed when the approximate yield is used instead of

the exact yield and we can write:
e(P; n,i) = a(P; n,i) - r(P; n,1) (3)

where the variables in parentheses indicate that yields are functions of the price of
the bond for the given maturity and coupon rate. In this paper the error e(P; n,7)
will be referred to as the approximate-yield differential. The first concern of this
article is to examine the sign and the magnitude of the approximate-yield differential
as well as its response to changes in either the term to maturity or the coupon rate
of the bond.

Alternatively, one can use the bond's current yield:
k ==%=-—==Kk(P; 1) (4)

as an approximation of the exact yield to maturity. In doing so an error is committed
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such as
e'"(P; n,2) = k(P; 1) - »(P; n,7) (5)

where e'(P; n,1) is the current-yield differential. 1Its behavior is also examined

in this paper and compared to that of the approximate-~yield differential. We prove
that under a simple condition the current yield provides a better approximation of

the exact yield than does the approximate yield itself. It is worth noting that since
the exact yield is a solution to an nth order polynomial and the approximate yield

is a solution to a 2nd order polynomial, both yield differentials e(P) and e'(P) are
solutions to an nth order polynomial and hence the solutions to the problems we wish
to examine in this paper will involve nontrivial mathematical proofs.

Finally, it should be pointed out that the problems raised in this paper can be
examined in a capital budgeting context. In this case the exact yield becomes the
internal rate of return on the investment proposal, the approximate yield becomes the
accounting rate of return on average investment and the current yield becomes the re-
ciprocal of the payback period of the investment proposal.

The remaining part of the paper is organized as follows. Section II investigates
the behavior of the approximate-yield differential e(P; »,%Z) in response to changing
prices, holding the bond's coupon rate and its term to maturity fixed. Section III
examines the price behavior of the current-yield differential e'(P; n,7) and compares
it to that of the approximate-yield differential. Section IV is devoted to the in-
vestigation of the behavior of both the approximate-yield differential and the current-
yield differential in response to changes in the bond's term to maturity and its
coupon rate, holding the bond's price fixed. Section V is a summary of the major

results obtained in this paper.

II. THE PRICE BEHAVIOR OF THE APPROXIMATE-YIELD DIFFERENTTAL

In this section we examine the sign and the magnitude of the approximate-yield
differential e(P; n,7) when the price of the bond varies from zero to infinity, holding
constant both the coupon rate and the term to maturity. The problem is illustrated
in Figure 1. The horizontal axis indicates yields and the vertical axis prices. The
solid curve is the approximate-yield curve drawn as a function of the bond's price.

It cuts the yield axis at a point where the approximate yield is equal to 2(i+1/n),
the value of the approximate yield for which the bond's price is zero and cuts the

price axis at point B where the bond's price is equal to (Cn+F), the price of the bond
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for which the approximate yield is zero. For prices larger than (Cn+F) the approximate

yield is negative and has a vertical asymptote at @ = -2/n since 1im a(P) = -2/n.
Pt
The broken curve is the exact-yield curve drawn as a function of price. This

curve has the yield axis as a horizontal asymptote since 71im r(P) = +» and a vertical
P>0
asymptote at r = -1 since lim »r(P) = -1. The exact-yield curve cuts the price axis at
Prfeo
the same point B as the approximate -—-yield curve since P = (Cnt¥ for

r=0 in equation (1). Finally, the two curves intersect at point D where both the
approximate yield and the exact yield are equal to the coupon rate (a=r=t).

We will prove that for non perpetual bonds (n<e) the two yield curves have only
two non-negative intersection points, point D for which a=r=t{ and point B for which
a=r=0, and at least one negative intersection such as point 4, between ¢ = -2/n and
zero, when n>2. Furthermore, we will demonstrate that the approximate-yield curve lies
below the exact-yield curve when the bond is selling at a discount (P<F), above the
exact-yield curve when the bond is selling at a premium and yields are positive
(F<P<(n+F), and again below the exact-yield curve when the bond is selling at
P>CntF.”

We can see in Figure 1 that the horizontal distance separating the two yield
curves is the approximate-yield differential e(P; n,7). Alternatively, the approxi-
mate-yield differential can be examined with the help of Figure 2. The vertical axis
indicates the approximate yield differential ¢ and the horizontal axis the bond's
price. The function e(P) is drawn for non-negative yields only as a solid curve.

Some interesting properties can be drawn from Figure 2. When the bond sells at a
discount (P<F), the approximate yield understates the exact yield and the approximate-
yteld differential increases with the bond's price. When the bond sells at a premium
(P>F) and yields are positive, the approximate yield overstates the exact yield and
the approximate-yield differential first increases with the bond's price, reaches a
maximum and then decreases to become zero when yields are zero. Thus, contrary to the
case where the bond sells at a discount, there exists a maximum error when the bond
sells at a premium. The result of equations (6) through (20) are illustrated numer-
ically in the columns of Tables II and IV for various combinations of maturity (n)

and the coupon rate (7). Tables I and III present the results related to the current
yield. The price at which the maximum error is reached when the bond sells at a
premium is given below the tables.6 The error committed when using the approximate
yield is smallest when the bond's price is closer to its face value or closer to its

price at zero yields (P=Cn+F).
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‘ YIELD DIFFERENTIALS
e=a-r
e=k-r (for k=2/n)

FIGURE 2

Behavior of the approximate and current
vield differentials

We will now prove the conclusions discussed so far. We first demonstrate that
for 2<n<» the two curves have only two non-negative intersections and at least one
negative intersection. The price of the bond as a function of its exact yield, given

by equation (1), can be expressed as:7

iy el (6)
r r’  I1+r

|y

This price, expressed as a percentage of the bond's face value, can also be written

as a function of the approximate yield using equation (2). We get:
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2(ni+l) - na
2+na 7

2
F

Equating the price given by equation (6) to the price given by equation (7) and

letting r=a we obtain:

z 1 Z _
-z " + =0 (8)

(1+a)”  a(1+a)”

2+ 2ni - na
2+na

The roots of equation (8) are the intersection points we wish to determine. Equation

(8) can be rewritten as:

. -2 n 1
(i-a) + + =0 9)
[a(2+na) (2+na) a(1+aﬂ2]

The first root of equation (8) is a=¢ given that a # -2/7 and a # -1, the two vertical
asymptotes discussed earlier. This is point D where both the exact yield and the ap-
proximate yield are equal to the coupon rate (7). The terms in brackets can be rear-

ranged such as:

n n
(i-a)[:_2(1+a) + na(1+a)n + (2+na)] =0 (10)
a(2+na) (1+a)

Using the binomial expansion we get:

L T .

a(2+na)(1+a)n

where

n] _ n!
J) gl (n=g)!

are the binomial coefficients. The terms in braces can be rewritten as:

B P R R I P
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TABLE I

MATURTTY BEHAVIOR OF THE CURRENT-YIELD DIFFERENTTAL (e') FOR i=10%

(e'

is in percentage points)

P/F n=2 n=4 =6 n=10 n=15 n=20 n=30 n=40
0.050 | -279.583 -35,576 ~4.855 -0.064 -0,0 -0,0 -0,0 ~-0,0
0.100 | -185.410 -39.396 -11.368 -0.850 -n.027 -0,001 ~0.0 ~0.0
0.250 -90.713 -28,942 -13.336 -3.604 -0,731 -0,141 -0,005 -0,0
0.500 -38.661 ~15,063 -8.199 -3.276 -1,250 ~0.504 -0,083 ~0,014
0.750 ~14.623 ~6,247 -3,624 ~-1,624 -0.755 -N,379 ~0,104 -0,030
0.900 ~-5.138 -2.278 ~1.353 ~0.641 ~0.312 -0.168 ~0,054 ~0,018
0,950 -2.471 -1,107 -0,.662 -0,317 -0,157 -0,086 ~0,129 ~-0,010
1.000 0 0 0 0 0 0 0 0
1.050 2,298 1.049 0.635 0.310 0.158 0,089 0,032 0,012
1,200 8.333 3.900 2,393 1,199 0.628 0,366 0,142 0.069
=
=
1.300 - 5.591 3.459 1.756 0,936 0.555 0.225 0,099 ®
e
1.400 - 7.143 4.452 2,287 1.236 0.744 0,312 0,143 (E‘
8
1.500 - - 5.380 2,793 1,529 0,932 0.402 0,191 P
i
®
max e' 8.33333 7,14285 6,250 5.0 4,0 3.33333 2,50 2.0 =
P(max e') 1.200 1.400 1.600 2,000 2,500 3.000 4,000 5.000 Q
2
B
e
n
ct



THE MATURTTY BEHAVIOR OF THE APPROXTMATE-YIELD DIFFERENTTAL (e) FOR i=10%

TABLE

II

{e is in percentage points)

% Iaquny - Gz SWnTop

P/F n=2 n=4 n=6 n=10 n=15 n=20 n=30 n=40
0.050 | -370.059 -171.290 -155.648 -162,921 ~-168.889 ~171,905 ~174,920 -176.428
0.100 | -185.410 -80.305 -65.913 -66.305 -70.936 ~73.637 -76.364 ~77.727
n.250 ~54,713 -22,942 -17,336 -15,604 -16.731 -18,141 -20,005 -21.000
0,500 -11,994 ~5.063 -3,755 -3.276 ~-3.,472 -3,.837 ~4,528 ~5.014
0.750 ~2,242 -1.009 -0.767 ~-0.691 -0.755 ~0,855 ~1,057 ~1.220
0.900 ~0,460 -0.231 -0.184 -0,173 -0,195 -0.226 ~0,288 ~0.340
0.950 -0.177 ~0,095 -0,077 -0,074 -0,085 ~0.099 ~-0,128 ~0,152
1,000 0 0 0 0 0 0 0 0
1,050 0.091 0,062 N.054 0.055 0,065 0.077 0,102 0.123
1,200 0 0.112 0.120 0,138 0.174 0.214 0,294 0.363
1.300 - 0.072 0.114 n.151 0.201 0.254 0,358 0.450
1,400 - 0 0.086 0,144 0.204 0.26R 0.391 0.500
1.500 - - 0.047 0.126 0,196 0.266 0.402 0,524
max e 0,11370 0.11445 0,12160 0,15080 0.20495 0.26861 0.40273 0.53031
P(max e) 1,090 1.170 1.230 1,310 1.380 1.430 1,520 1.590

60¢



THE COUPON BEHAVIOR OF THE CURRENT-YIEID DIFFERENTIAL (e') FOR n=10

TABLE III

(e' is in percentage points)

P/F 1=2% i=4% i=6% i=8% i=10% i=15% i=20% i=25%
0.050 -13.916 -3.650 -0.833 -0.214 -0.064 -0.005 -0,001 -0.0
0.100 -15.827 -8.524 -4,102 -1.866 -0.850 -0.141 -0.030 -0.008
0.250 -11.719 -9,015 -6.774 -4,983 -3.604 -1.539 -0,655 -0,290
0,500 -6,211 -5.340 -4,563 -3.876 -3.,276 -2,113 -1,341 -0,847
0.750 -2.616 -2,337 -2,083 -1.852 -1,644 -1.210 -0,883 -0,642
0,900 -0,961 -0,870 -0,787 -0.711 -0,641 ~-0.492 -0,376 -0.287
0.950 -0.468 -0,426 -0,386 -0,350 -0,317 ~0,246 -0,191 -0,147
1,000 0 0 0 0 0 0 0 0
1.050 0.446 0,408 0.373 0.340 0,310 0.246 0,194 0.153
1.200 1.667 1.536 1,415 1,303 1.199 0,972 0,786 0.636
1.300 - 2,220 2,054 1,900 1.756 1,441 1.182 0.969
1,400 - 2,857 2,654 2,464 2.287 1,897 1,573 1.304
1.500 - - 3,218 2,998 2.793 2.338 1.958 1,640

0Te
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THE COUPON BEHAVIOR OF THE APPROXTMATE-YIEID DIFFERENTTAL (e) FOR n=10

TABLE IV

(e is in percentage points)

% I9qUNN - GZ dWNToA

P/F ] =2% i=4% 1=6% 1=8% i=10% i=15% 1=20% 1=25%
0,050 -32.01 -57.94 -21.31 -126.88 ~162.92 -253,34 -343,81 ~434,29
0,100 -15.83 -24,89 -36.83 -50,96 -66,30 ~-106.50 ~147,30 ~138,19
0.250 ~4,52 -6.62 -9.17 -12,18 -15,60 -25,54 ~36,66 ~48,29
0,500 ~-0.88 ~1.34 -1.90 ~2,54 -3.28 -5.45 -8.01 -10.85
0,750 ~-0.14 ~-0.24 -0,37 -0.52 -0.69 -1.21 -1.84 ~2,55
0.900 ~0.03 -0,05 ~-0.09 ~0.13 -0,17 -0.32 ~0.49 -0,70
0,950 ~0,01 ~0.02 -0,04 -0,05 ~0.07 ~0,14 ~0,22 ~0.31
1.000 | 0 0 0 0 0 0 0 0
1.050 0,004 0.013 0.024 0,038 0,055 0,106 0,171 0.246
1.200 0 0.021 0,052 0,091 0,138 0.290 0.483 0.712
1.300 - 0,013 0,047 0.094 0.151 n.338 0,621 0,947
1,400 - 0 0.035 0,083 0.144 0,349 0,621 0.947
1,500 = - 0.018 0,065 0,126 0.338 0,624 0,973
max e 0.00541 0,02222 0.05172 0.09451 0,15080 0.34947 0,62633 0.,97331
P (max e) 1.090 1.160 1.220 1.260 1.310 1.390 1.460 1.520

11¢
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n
n
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and equation (11) becomes

o B[ ) ()] ot}

I

” (12)
(2+na) (1+a)

It follows from equation (12) that g=0 is the second root of equation (8). This is

point B where both the exact and the approximate yield are equal to zero. We will

show that the polynomial of degree (#n-1) in braces in equation (12) has at least one

negative root for 2<n<«» and no non-negative roots. The coefficients of this poly-

nomial, excluding 7 for the last term, are equal to:

_ n| _ n| _n(g+l) | n| _ n
G U ’ [a'+1] N [a‘+1] ’ [a’H]
_ [ n) | n(g+1) .
a; = [j+1J [ i) " 21, 14 < (n1), n>2. (13)

For j>1, the coefficients aj are positive and since 7, the coefficient of the last
term an-l, is also positive it follows that the polynomial in braces has only positive
coefficients and therefore cannot have any real positive roots.8 We will prove that
the approximate-yield curve lies below the exact-yield curve between points B and 4

in figure 1, and since for 2<m<« the vertical asymptote of the approximate-yield curve
is to the right of that of the exact-yield curve it follows that the curves must cut
at least once between (-2/n) and zero. When 7 equals either two or one, there is no
negative intersection for the yield curves. This can be easily shown by noting that

equation (12) for n=2 and n=1 becomes, respectively.
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a(i-a) _ 0

_ a(i-a) _
2(1+a)

and T2ra) = 0 (14)

Having established the position of the intersection points we must now demon-
strate that the approximate-yield curve is below the exact-yield curve between points
A and B and to the right of point D and above the exact-yield curve between points
B and D. First note that both curves are concave to the origin and monotonically de-

creasing since:

P __tntmcsr) _, &P _ an(noszr) 15)
da (2+na) 2 da2 (84+na) 8

- -
dap J nF
—_— = - C z - - < 0
dr J=1 (1+r)‘7+1 (1+r)n+1

- - (16)
ar’ 3=1 (1+z»)*7"2J (142)72

In order to establish the relative position of the two curves, we evaluate their re-

spective derivative at point B where yields are zero. We have:

% amp = = g(MCHEE) < 0 an
dp 3 n
Folpep =- € Y J| -nF= -5 [(n+1)C + ZF] <0 (18)
- 2
dp dp _ nC
and &la=0 = drlr=0 = T 7Y (19)

From equation (19) it follows that

%'a=0 g %1@0 (20)
Since the slope of the approximate-yield curve is larger than the slope of the exact-
yield curve at point B, and since both curve are monotonically decreasing and intersect
again only at point D and point 4 it follows that the approximate-yield curve is above
the exact-yield curve between points B and D and below between points 4 and B and to
the right of point D. This establishes unambiguously the relative positions of the
two curves and justifies thg conclusions stated earlier. It should be pointed out

that the proof we used takesré:rouhd&about way to establish the relative position of



314 The Engineering Economist

the two curves because the exact yield is an nth degree polynomial and even though
the roots of the exact yield are parametric in the price of the bond, it is not poss-
ible to express the exact yield as an explicit function of the bond's price. Hence
the approximate-yield differential cannot be expressed as an explicit function of

price.

ITI. THE CURRENT YIELD AS AN APPROXIMATION OF THE EXACT YIELD

The current yield k=C/P can also be employed as an approximation of the exact
yield. 1In doing so an error e'=k-r is committed. In this section we examine the price
behavior of the current-yield differential e’ and compare it to that of the approximate
yield differential e=a-r. The current yield X is equal to ZF/P and thus:

P_1

FTX (21)
First, let us determine the intersection points of the current-yield curve with the
exact-yield curve. At the intersections points the prices (P/F) are equal and r=k.

From equations (6) and (21) we have:

z_2,__1 1
KOk ™ k1"
or —(7'—_—k—)—7—1- =0 (22)
k(1+k)

and it follows that the current-yield curve and the exact-yield curve have only one
intersection point at k=r=i, which is point D as shown in figures 3a, 3b, and 3c. We
now demonstrate that the current-yield curve lies above the exact-yield curve when
the bond is selling at a premium and below the exact-yield curve when the bond is
selling at a discount. Similarly to the exact-yield curve, the current-yield curve

is monotonically decreasing since

>0 (23)

. _ i%-< 0 and Eﬁi&
k dk

I

Evaluating the slope of both curves at their unique intersection point D, where

k=r=i, we get:

dp F dP‘ F[ 1 ]
g, == = and T == F - (24)
dk | k=t 7 dr|r=t 7 (1+i)n
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FIGURE 3-a
i<2/n

YIELDS

i=2/n

FIGURE 3-b
i=2/n

FIGURE 3-c
i>2/n
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from equations (24) it is clear that

%lk:i < Floms (25)
which proves our statement. Hence the sign of the current-yield differential e'(P) is
the same as the sign of the approximate-yield differential e(P). Thus both the current
yield and the approximate yield overstate the exact yileld when the bond sells at a
premium and understates it when the bond sells at a discount. The magnitude of the
error, however, is different. To compare the magnitude of e’(P) to that of e(P) we
can determine the intersection points between the current-yield curve and the approxi-
mate-yield curve. Again, at the intersection points, the prices (P/F) are equal and
k=a. From equation (7) and (21) we get:

2 + 2ni - nk
2 + nk

Z_
- -

(i-k) (2-nk) _
Tz sk =0 (26)

or

Equation (26) indicates the existence of two positive intersection points, one at
k=a=t{, which is point D, and the second at k=a=2/n. Three cases must be considered
according as 7 % 2/n. They are illustrated in Figure 3. To interpret Figure 3 we
should first demonstrate that the intersection point M is to the right of point D
when 7<2/n (Figure 3a), coincides with point D when 7=2/n (Figure 3b), and is to the
left of point D where 2>2/n (Figure 3c). To do so, we evaluate the slope of the ap-

proximate-yield curve at point D where a=i. We have:

_ {F||2nt
a=i =~ [7,] [m:+—2] (27)

Comparing the slope of the approximate-yield curve in (27) with that of the current-

dp

da

yield curve in (24), it is clear that:

dp
da

Al
VA

a=t

Tk k=2 according as 7 %- (28)

The above results determine the relative magnitude of the two slopes. Combined with
the fact that the two curves intersect only at k=a=¢ and at k=a=2/n it follows that
the approximate-yield curve and the current-yield curve can take either one of the
three positions shown in Figure 3. An examination of the figure indicates that when
the current yield is larger than twice the reciprocal of the bond's maturity (k>2/n),
it provides a better approximation of the exact yield than does the approximate yield
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"itself. For example, consider a bond selling at P/F = .6819 with a mathrity n=40
years and a coupon rate 7 = .08. 1Its exact yield is .7200. The bond satisfies the
condition k>2/n since (k = .1173) is larger than (2/n = .0500). The approximate yield
is equal to .1046 and, hence, the current yield provides a better approximation than
the approximate yield itself. Consequently, the current yield (k) when larger than
(2/n), and the approximate yield (a) when k is smaller than (2/n) can act as "greedy"
algorithm (see Miller and Thatcher [5]) and may be used as a starting point for re-
fined algorithms of Fisher [1] and Kaplan [3] for finding the exact yield to maturity.
Finally, the behavior of the current-yield differential e'(P) = k-r as a function
of price is illustrated in Figure 2. It is drawn for the case where 7=2/n and shown
as a broken curve. When the bond's price is zero the error e’(P) is zero since both
the current yield (k) and the exact yield (») are infinitely large. The error e’ is
zero again when the bond sells at face value. Between a price of zero and face value
the current-yield differential reaches a minimum for which the absolute value of the
error term 1s maximum. When the bond sells at a premium the error increases with
price over the relevant price range. It is worth noting that the current-yield differ-
ential has an optimum when the bond sells at a discount whereas the approximate-yield
differential has an optimum when the bond sells at a premium.9 These results are
further illustrated in the columns of Table I and Table TII for various combinations

of maturity (n) and coupon rate (7).

IV. THE MATURITY AND COUPON BEHAVIOR OF YIELD DIFFERENTIALS

This section is devoted to the examination of the behavior of the yield differ-
entials e(P; n,7) and e'(P; n,7) in response to changes in either the bond's term to

maturity (n) or its coupon rate (<), holding its price fixed.

A. The Maturity Behavior of Yield Differentials. As the bond's term to maturity

changes, the response of the current-yield differential is given by:

e’ 9k  dr r

= vy ” according as P

F, (29)

!

|
VIiA

=
Allv

since the current yield (k) is not a function of maturity and the partial derivative
of the exact yield with respect to maturity is negative, zero, or positive according
as the bond sells at a premium, face-value, or a discount.lo Hence, at all prices
the absolute value of the error committed when using the current yield instead of the
exact yield varies inversely with the bond's term to maturity. This result is
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illustrated numerically in Table I. The negative error increases and its absolute
value decreases when maturity rises for bonds selling at a discount and the positive
error decreases when the bond is selling at a premium.

The response of the approximate-yield differential to changes in maturity is

given by:
_— s - = (30)

Since the derivatives (3a/don) and (3r/9n) have the same sign for P % F, the sign
of the partial derivative of the approximate-yield differential with respect to matur-
ity will depend on the magnitude of (3a/9n) relative to that of (3r/dn). Expressing
(1+42)" as:

(1+r)n = 1+m+1ﬂ2ne (31)

where g = [ (nz—‘g) + (n-l')gcn-l)r, 4 (n-1) (n4-'2)(n-3) p2 . ]

We show in the mathematical appendix that the ratio of the derivatives is equal to:

1+t ]
da/3n _ [(1+r) * 7’6] 7’, (32)
ar/an [(14—1r6) * (ry) n] gn(1+r)
. da/on de . .
Suppose that <1>r and 6>n, then 5;75;>1 and Eike 0. Alternatively suppose that i>r

. >
and 6<n then %%-% 0. Finally, for i<r and ein the sign of %%—is again indeterminate.

The conditions under which G%n are discussed in the mathematical appendix. It is

clear that the sign of the derivative %%—cannot be determined in general unless the
bond sells at a premium (Z>r) and the condition 6>n is satisfied. Thus, contrary to
the case of the current yield, the absolute value of the error committed when using
the approximate yield to calculate the exact yield is mot unambiguously related to
changes in the bond's maturity.ll As the maturity increases, the error may either
increase, remain the same, or decrease. This result is illustrated numerically in
Table II. As the bond's term to maturity increases for a given price, note that the

. - . 1
absolute value of the error first drops, reaches a minimum and then rises.

B. The Coupon Behavior of Yield Differentials. As the bond's coupon rate changes,

the response of the yield differentials is given by:
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de! ok 3r F 3r
'57:_'=—-—_T=—_'_- (33)

de doa ar 2F 3
o 94 _or ok of (34)

and ;
97 o1 91 P+F ot

The partial derivative (3r/97) is positive]'3 and the sign of the partial derivatives
of both yield differentials with respect to the coupon rate (7Z) depends on the magni-
tude of (3r/37) relative to (3k/97) and (da/37). Using the same procedure as in the
case of the maturity behavior of the approximate-yield differential, it is shown in

the mathematical appendix that:

Sign i%,f—i = Sign 3(7;-1») (l—n = )s (35)
8 “+r
and Sign ;-2—3% = Sign ;(i-r) (24n(1+r6)) (1" - "Z-_f'_-("zm)i (36)

Using a second order approximation (8 = (n-1)/2), a third order approximation

(6 = (n-1)/2 + (n-1)(n-2)r/6), and so on, we show in the mathematical appendix that:

e’ < . 2
EV AN 0 according as PZF 37)
de < . =

and % 3 0 according as P=F (38)

(37) holds for all values of n and r and (38) holds for all values of n>0 and rél

and for most values of n>0 and r<I. Hence, at all prices, the absolute value of the
error committed when using the current yield instead of the exact yield varies inversely
with the bond's coupon rate. This result is illustrated numerically in the rows of
Table III. Over the relevant range of yields (r<l), the absolute value of the error
committed when using the approximate yield instead of the exact yield varies directly
with the bond's coupon rate. This result is illustrated numerically in the rows of
Table IV. Higher coupon rates produce a larger error when the approximate yield is

employed but a smaller error when the current yield is used.

V. SUMMARY OF MAJOR RESULTS

In this paper we examined the behavior of the error committed when using either
the approximate yield or the current yield instead of the bond's exact yield to
maturity. We proved rigorously that both the approximate and the current yield over-

state (understate) the exact yield when the bond is selling at a premium (discount).
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However, when the current yield is larger than twice the reciprocal of the bond's
term to maturity, the current yield is closer to the exact yield than is the approxi-
mate yield.

Turning to the behavior of the error we have shown that when the current yield
is used, the error varies directly with the bond's maturity and inversely with the
bond's coupon rate. When the approximate yield is used, the maturity behavior of
the error is not unambiguously defined. It may either increase, remain constant or
decrease. As the coupon rate changes, the error will, however, vary in the same

direction.

MATHEMATICAL APPENDIX

1. The Coupon Behavior of Yield Differentials

We have from equation (2), equation (21), and equation (6), respectively:

- P (A.1)
da _ 2F
3T F4P (a.2)
Ir _ 1
AR A= 1 (A.3)
g I+ ((14r)"-1)
(142)" = 1 + mm + r2ne
where g = i;g + (n—lé{n—Z)I, + (n—l)(z;?)(n—3)z,2 b oeeeens (A.4)

First substituting equation (6) in (A.1l) and (A.2); and then equation (A.4) in (A.3)

we get:

3k _ ) 1 + nr(1+re) §

9. )1 + ni(1+re)
da _ 1 + nr(1+ro)
3T | 1 + n((r+i)/2)(1+r8)

r _ (1+r) (1+r8)
30T~ ) (1+7) + 16(1+r)

Note that 6>0 requires that n>2. The above set of equations is not an approximation.
It is just a substitution. Depending on how we truncate 6 will determine the approxi-

mate functional value.
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1.1 The Current-Yield Differential

de’ 3k dr [ 1 ]

a7 o7 97 | {(1+L) + 26(1+r) {1 + ni(i+r6)}

[- {(1+r) (1+r0) {1 + ni(1+re)} + {(1+2) + 10(1+r)}{1 + nr(1+r»e)}]

!
The sign of g%—-will depend only on the second bracket, denoted X'. We have:

X" = (i-r)(1 + v0 + 06 - n(1+ro)) or
X! . 1
r _ — -— -
Yy' = 770 (1-r) (1 n + =7 ) and
6 “+r

—

Sign {g%lJ = Sign ; (i-1)(1 - n + —2 );
(1) Suppose 6 = (n-1)/2, n>1. Then

R de! . . 1+nr-
Sign {5%—4 = Sign { (r—z)(n—l)(élﬁgjgd}

I <
and thus §5—-§ 0 according as P

v F.

Allv

3(n-1) + g_n-l)(n-Z)” , #>2. Then

(ii) Suppose 6 =

3+ (2n-1)p + (n-1)(n-2)r" §

sign (35} = sign ; (i-2) (n-1)( .
' 6 + 3(n-1)r + (n-1)(n-2)r

!

<
and again Ef—-g 0 according as P

v F.

Allv

Using higher functional approximations we can demonstrate the generality of the above

result.

1.2 The Approximate-Yield Differential

de _3a _ dr _ 1 ]
0T 8T~ T [{(1+4:) + 10(1+r) H2 + n(r+i) (1+r6)

[ {(1+i) + 10(1+2)} {2 + 2nr(1+r8)} - {(1+r)(1+r0)}{2 + n(r+i)(1+r6)}]

The sign of %% will depend only on the second bracket, denoted X. We have:
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_ 1 ]

X = (i-r) (1+re+6) [2 + n(1+r6)(r - 1+re+e) or

Y= =2 = (iep) | 2 4 n(1eme) (p - —L—) and
1+r6+6 1+r6+6

Sign (35} = sign % (i-1) [2 + n(1+76) (v - Fplm)] %

Suppose that 6 = (n-1)/2, n>1. Then

4(1-r) + 5nr + 3nr(l-r) + nr'3 + 2n2r2(1—r) + ngrz + nsrs] s

. 9 . .
Stgn {8—161'} = Stgn ) (i-r) [ 2(1 +nr - r +n)

Note that for all values of n>0 and r<l the bracket is positive. For most values of

n>0 and r>1 the bracket will be positive. Thus

F.

Allv

— =0 according as P

The expression in brackets can be shown to be positive for higher approximation and

the above result holds in general.

2. The Maturity Behavior of the Approximate-Yield Differential

From equation (2) and equation (6) we get, respectively:

da (i-r)

an n[(1+r )—1 +(£§’—) n]

wn( 1+r;| (1-r)

a_r;_ l-
n n r 1,,_,,;) .
_| L) 4 i
and thus:
1+i) . ]
da/m _ r [ (1+r * 7’67

ar/an [(1+r )1 (1—;7’—) n] n(1-»r)
Case 1: Let i>r and 9>n, then
1+ 1 . r+i
(ﬁ;) > 1, 76 < 1 e > (T)”

since r>n(1+r) by definition it follows that the ratio is larger than one and %§-> 0.
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Case 2: Let Z>r and 6<n, then

1+7 1 > [r+d
(TE) > 1 Trre 1o but 6 2 ( 2 >

Je >
m < 0.

and consequently

. e
Case 3 and Case 4: Let 7<r and 6>n or 6<n, then %ﬁ-is again indeterminate.

The meaning of the condition 6<u:

f<n implies that (1+r)n <1+ rn+ r2n2. This condition is satisfied for ng2.

It is satisfied for n=3, if r<6; for n=4, if r<1.75; for n=5, if r<.95, etc.
FOOTNOTES

1The formulation of the approximate yield in (2) is acceptable for the R.R. (registered

representative) examination.
2See for example Francis [2], page 191.

3Note that even if the error (e) is very small and can be neglected without any con-

sequence, we still have to prove that this is the case.

4Some of these questions have been examined by Sarnat and Levy [6]. However, their
analysis is restrictive and assume that projects have zero terminal value. The ana-
lysis developed in this paper can be applied to a capital budgeting problem when the
cash inflows are constant through time and there is a positive salvage value. If we
denote P as the net initial cost of investment and F as the net salvage value, under
most circumstances P/F will be much greater than unity. 1In addition, 7=C/F is a
number of high magnitude, without strong economic meaning in the present context, and
can be used in our analysis without any problem.

In the analysis that follows we will see that in this case the approximate return
will overestimate the true internal rate of return. From Table IV we see that for
high values of P/F and 7 the overestimation is by a wide margin. The current return
(the reciprocal of the payback period), also, overestimates the true i.r.r. The
magnitude of this overestimation, as compared to the former, is a function of the life
of project as seen in equation (28) and Table III.

If the cash inflows varied through time, it will not be possible to use the

mathematical analysis of this paper but the general conclusions will be similar.
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5Note that the cases of an infinite maturity (n=«) and a one year maturity (n=1) are
trivial. For example, for a perpetual bond we have ap = 2C/P+F and rp = C/P. In this

case the yield curves have only one intersection point at D where ap =r = 1. Both

P

curves have the two axes as asymptotes and from the expressions for ap and rp it is

clear that a z r and P z F.
p<p <

6Note that for premia and discounts of equal size, the absolute value of the yield

differential is the largest for discount bonds.

7This standard transformation of equation (1) into equation (4) can be found in

Malkiel [4].
8This is usually referred to as the Descartes Rule of Signs.

9We can define a new function to approximate the exact yield that would consist of

two parts. For O<P<F it will be the current yield and for P>F it will be the approxi-

mate yield.
10 . ' i .
Holding the bond's price P=P(i,n,r) constant, we get:
a _ _[ap/ap
on an/ 3r

with 3 0 and oz 0 according as P
or mn <

Allv
es]

llNote, however, that we show in the mathematical appendix that the condition 6>n

is usually satisfied. 1In that case the ambiguity disappears if the bond sells at a
premium, and the error increases with an increase in maturity.

12It should not be concluded from Table II that the minimum absolute error is reached

at higher maturities as the price of the bond increases toward its face value. A table
with prices rising by incremental values of .005 will show that the minimum absolute

error is reached for a maximum maturity of 10 years.

13Holding the bond's price P = P(Z,n,r) fixed we get:
or __ [ a2 sop
ai”‘[ai ai] >0

since §£-< 0 and ég > 0
or ot
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