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Abstract

This article describes some dynamic aspects on dynastic utility incorporating two-sided

altruism with an OLG setting. We analyzed the special case where the weights of two-

sided altruism are dynamically inconsistent. The Bellman equation for two-sided altruism

proves to be reduced to one-sided dynamic problem, but the effective discount factor is

different only in the current generation. We show that a contraction mapping result of value

function cannot be achieved in general, and that there can locally exist an infinite number of

self-consistent policy functions with distinct steady states (indeterminacy of self-consistent

policy functions).
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1. Introduction

This paper analyzes some mothematical aspects of two sided altruism dynamics especially

under dynamic inconsistency, with constant fertility and no saving. The model is based

on so-called Buiter-Carmichael-Burbidge (BCB) type two-sided utility, which we modify for

the three stage OLG model, so that each generation might hold, in general, two chances of

intergenerational linkage, firstly through fertility and capital investment decision planned

by middle age parent during young adulthood, and secondly through transfer (compensa-

tion/bequest) during old stage. As explained later, this modification proves to induce some

peculiar, even puzzling behaviors in macro-dynamics, especially under dynamic inconsis-

tency.

As references, two-sided altruism dynamics are treated, for example, in Abel (1987), Kim-

ball (1987), Hori and Kanaya (1989), Altig and Davis (1993), Hori (1997), Aoki (2011). Fur-

thermore, the differentiability of value functions is discussed in Benveniste and Scheinkman

(1979), Santos (1991), Araujo (1991), Montrucchio (1987). Mathematical treatments re-

garding the principle of optimality appear, for example, Bellman (1957), Pontryagin (1962),

1We acknowledge the financial support of the Grant-in-Aid for Scientific Research, JSPS (#23000001).
2Kyoto University, Institute of Economic Research, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501,

Japan, Phone: +81-75-753-7184 E-mail: aoki@kier.kyoto-u.ac.jp
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Blackwell (1965), Stokey and Lucas (1989), and Mitra (2000). Boldrin and Montrucchio

(1986), and Geanakoplos and Brown (1985) are located at the earlier stage among the “in-

determinacy of equilibrium” literature.

The organization of this paper is as follows. We describe the model in section 2, and

theoretical results in section 3, and finally concluding remarks in section 4.

2. Model

We assume a typical OLG model consisting of three life stages, C, Y , O (childhood, young

adulthood (working age) and old adulthood (retirement stage)). Generation t, who spends

its young adulthood (stage Y ) at period t, shares the adjacent life stages with generation

t + 1 and t − 1. (For example, stage O of old parents and stage Y of young children are

shared simultaneously.) The whole life utility of generation t is defined as ut = u
(y)
t + δu

(o)
t+1,

where u
(y)
t and u

(o)
t+1 are the young and old adulthood utility of generation t, respectively,

and δ is a time preference discount factor for old (retirement) stage. At period t, generation

t decides some of its life strategies, fertility (nt) and capital investment for children (kt+1)

and saving for forthcoming retirement stage O (st), and gift for old parents (bt). Just for

simplicity, we assume that fertility is constant (nt = 1) and there is no saving (st = 0), and

that only the gift for old parents is controllable.

2.1 Representative agent problem

Now we consider the following type of two sided altruism, where Vt and ut is an (two-sided)

dynastic utility and an individual life utility of generation t, respectively.

Vt = αδu
(o)
t +

∞∑

s=0

βsut+s

= αδu
(o)
t +

∞∑

s=0

βs
(

u
(y)
t+s + δu

(o)
t+1+s

)

= αδu
(o)
t +

(

u
(y)
t + δu

(o)
t+1

)

+ β
(

u
(y)
t+1 + δu

(o)
t+2

)

+ β2
(

u
(y)
t+2 + δu

(o)
t+3

)

+ · · · .

This representation is an OLG version of Buiter-Carmichael-Burbidge (BCG) type utility

of the form, Vt = αut−1 + ut +
∑∞

s=1 βsut+s. (As for the BCG utility, see Abel (1987)). We

assume β < 1.

Now denote consumptions at stage Y (period t) and O (period t + 1) of generation t, by

c1,t and c2,t+1, respectively. Then c1,t = f(kt) − kt+1 − bt and c2,t+1 = bt+1, where f(·)

is a production function, kt is a human capital of generation t with a full depreciation in

one period, and bt+1 is a gift from young adult generation t + 1 to old adult generation t.

Assuming the intertemporally separable utility form, u(c) = c1−σ/(1 − σ) for σ ̸= 1, and

ln c for σ = 1, we have u
(y)
t = u(c1,t) and u

(o)
t+1 = u(c2,t+1).

If all the period t and subsequent strategies {bt′ , kt′+1}
∞
t′=t are independently determined

by generation t, then the generation solves the following representative agent problem.

max
{kt′+1,bt′}

∞

t′=t

Vt (RA1)
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However, in this OLG linkage, the inconsistent motive for intergenerational transfer be-

tween young children and old parents makes each generation behave differently from RA1.

To see why, we rewrite Vt as

Vt =
(

u
(y)
t + αδu

(o)
t

)

+ β
(

u
(y)
t+1 + (δ/β)u

(o)
t+1

)

+ β2
(

u
(y)
t+2 + (δ/β)u

(o)
t+2

)

+ · · ·

=
(

u
(y)
t + αδu

(o)
t

)

+
∞∑

s=1

βs
(

u
(y)
t+s + (δ/β)u

(o)
t+s

)

.

Maximizing Vt in RA1 necessarily assures that the ratio of marginal utility in consumption

between young and old adults be 1 : αδ at period t, while 1 : δ/β at period t′ (t′ =

t+1, t+2, · · · ). As a matter of fact, however, all generations t′(≥ t) are to adjust their gifts

and allocate their consumptions with old parents by 1 : αδ in the ratio of marginal utility.

Therefore, the corresponding representative agent problem should be rather the following

sequential problem.

max
{kt′+1,b̂t′}

∞

t′=t

Vt (RA2)

s.t. b̂t′ = arg max
bt′

{u
(y)
t′ + αδu

(o)
t′ } given kt′ and kt′+1, t′ = t, t + 1, t + 2, · · · .

A solution of the constraint, b̂t′ (t′ = t, t + 1, t + 2, · · · ), can be derived explicitly as b̂t′ =
1

1+(αδ)−1/σ {f(kt′) − kt′+1}, so defining ĉ1,t′ ≡ f(kt′)−kt′+1−b̂t′ = 1
1+(αδ)1/σ {f(kt′) − kt′+1}

and ĉ2,t′ ≡ b̂t′ = (αδ)1/σ

1+(αδ)1/σ {f(kt′) − kt′+1}, we have u(ĉ1,t′) + αδu(ĉ2,t′) ≡ Au(C̃t′) and

u(ĉ1,t′) + (δ/β)u(ĉ2,t′) ≡ Bu(C̃t′), where A ≡
{
1 + (αδ)1/σ

}σ
, B ≡

{1+(αδ)1/σ(αβ)−1}
{1+(αδ)1/σ}

1−σ , and

C̃t′ ≡ f(kt′) − kt′+1.

Thus defining V̆t, which internalized the old age support by each generation according to

the 1 : αδ rule, b̂t′ = arg max
bt′

{

u
(y)
t′ + αδu

(o)
t′

}

,

V̆t = Au(C̃t) + βBu(C̃t+1) + β2Bu(C̃t+2) + β3Bu(C̃t+3) + · · ·

= A{u(C̃t) + βµu(C̃t+1) + β2µu(C̃t+2) + β3µu(C̃t+3) + · · · },

where µ = B/A. Here µ = 1 if αβ = 1 (dynamically consistent). Thus the effective discount

factor is βµ at the present period t, but β from the next period t + 1.

Finally RA2 can be simply rewritten as

max
{kt′+1}

∞

t′=t

V̆t. (RA2’)

It is obvious that RA2’ or RA2 are equivalent with RA1 if and only if µ = 1 (i.e., αβ = 1).

We call this case (µ = 1) dynamic consistency, and otherwise inconsistency. From time

consistency requirement α = 1−
√

1−4ab
2b , β = 1−

√
1−4ab
2a (ab ≤ 1/4), we have αβ < 1,

therefore µ > 1, that is, the model is dynamically inconsistent. See Kimball (1987), Hori et

al. (1989) and Hori (1997).

2.2 Functional Bellman Equation
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Now we try to rewrite the representative agent problem represented in RA2’, in the form

of recursive functional Bellman equation.

At first, we define another objective function Ṽt,

Ṽt = Bu(C̃t) + βBu(C̃t+1) + β2Bu(C̃t+2) + β3Bu(C̃t+3) + · · ·

= B{u(C̃t) + βu(C̃t+1) + β2u(C̃t+2) + β3u(C̃t+3) + · · · },

where

Ṽt = V̆t + (B − A)u(C̃t).

Then two sided altruism dynamics is described as the following one sided functional equa-

tion, where two value functions W̆t(·) and W̃t(·) correspond with objective functions V̆t and

Ṽt, respectively.

W̆t(kt) = max
0≤kt+1≤f(kt)

(

Au(f(kt) − kt+1) + βW̃t+1(kt+1)
)

, (BE1)

where

W̃t(kt) = W̆t(kt) + (B − A)u(Ĉt)

and Ĉt = f(kt) − k̂t+1, where k̂t+1 = arg max
0≤kt+1≤f(kt)

(

Au(f(kt) − kt+1) + βW̃t+1(kt+1)
)

.

k̂t+1 = gt(kt) is a policy function of generation t, given next generation t+1’s value func-

tions W̆t+1(·) and W̃t+1(·). BE1 is a simpler version of two sided altruism model examined

by Hori (1997), eqs. (4.2)-(4.6).

Unfortunately, in case of dynamic inconsistency (µ ̸= 1), BE1 is not necessarily equivalent

with RA2’ (or RA2), although RA2’ also internalizes the effect of dynamic inconsistency

on intergenerational transfer between young adult and old parents during each period. The

reason is as follows. In RA2’, the indirect effect of dynamic inconsistency in subsequent

generations on the current generation’s policy function is not still taken account of, while

BE1 successfully internalizes both intra-temporal direct effect on intergenerational transfer

and inter-temporal indirect effect on preceding generations’ policy functions, both caused

by dynamic inconsistency. However, this complete internalization induces some perplexing

aspects in BE1, which does not appear in case of dynamic consistency.

To see this, we now rewrite BE1 in a backwardly recursive fashion.

W̆n+1(k) = max
y∈Y (k)

(

Au(f(k) − y) + βW̃n(y)
)

, (BE1’)

where

W̃n+1(k) = W̆n+1(k) + (B − A)u(Ĉ).

n is a time distance from the future terminal period n = 0. Here Ĉ = f(k) − ŷ, where

ŷ = arg max
y

(

Au(f(k) − y) + βW̃n(y)
)

≡ gn+1(k). Y (k) is a feasible correspondence defined

as Y (k) = { y | 0 ≤ y ≤ f(k)}.

4



In case of dynamic consistency (µ = B/A = 1), the above equation reduces to a regular

Bellman equation,

Wn+1(k) = max
y∈Y (k)

(Au(f(k) − y) + βWn(y)) ,

where Wn(·) = W̃n(·) = W̆n(·).

Then, under quite general conditions, the principle of optimality is known to assure a

uniform convergence of Wn(·) to time-independent value function W (·), which satisfies

W (k) = max
y∈Y (k)

(Au(f(k) − y) + βW (y)) .

In case of dynamic inconsistency (µ ̸= 1), such a contraction mapping result, for example,

by Blackwell (1965), cannot be automatically expected. However roughly dare to consider,

at any events, the following time-independent functional equation.

W̆ (k) = max
y∈Y (k)

(

Au(f(k) − y) + βW̃ (y)
)

, (BE2)

where

W̃ (k) = W̆ (k) + (B − A)u(Ĉ),

and Ĉ = f(k) − ŷ and ŷ = arg max
y∈Y (k)

(

Au(f(k) − y) + βW̃ (y)
)

≡ g(k).

So far we assume a priori the existence of policy function gn(k) instead of policy corre-

spondence, implicitly its differentiability, the uniform convergence of convergence of gn(k)

to g(k), and so on. See, for example, Stokey et al. (1989). Some of these conditions prove

to hold even under dynamic inconsistency, but some do not. In the next section, we will

investigate the analytical properties of BE2 and BE1’ from various viewpoints.

3. Results

Let be R+ = {x ∈ R|x ≥ 0} and define K ⊂ R+, the domain of capital k, so that k ∈ K.

Also assume that f : R+ → R+ and u : R+ → R+ are differentiable and satisfy the following

properties:

Assumptions:

F0: Production function f(k) is C∞, i.e., infinitely continuously differentiable.

F1: f(0) = 0.

F2: f is strictly concave.

F3: f ′(k) > 0.

F4: lim
k→0

f ′(k) = ∞, lim
k→∞

f ′(k) = 0.

U0: Utility function u(c) is C∞, i.e., infinitely continuously differentiable. Specifically

u(c) = c1−σ/(1 − σ) for σ ̸= 1, where σ is a relative risk aversion or an inverse of elasticity

of intertemporal substitution.

U1: u(0) = 0.

U2: u is strictly concave.

U3: u′(c) > 0 for c > 0.

5



U4: lim
c→0

u′(c) = ∞, lim
c→∞

u′(c) = 0.

Theorem 1 derives a modified Euler equation corresponding with two-sided altruism.

Theorem 1: In BE2 assume that value function W̃ (k) and policy function ŷ = g(k)

are C1, i.e., once continuously differentiable, and that ŷ = g(k) is an interior of the feasible

correspondence Y (k). Then BE2 satisfies the following Euler equation EE1, modified for

case of dynamic inconsistency.

−u′(f(k) − y) + βu′(f(y) − g(y)) [µf ′(y) − (µ − 1)g′(y)] = 0, (EE1)

where y = ĝ(k) is a solution of EE1.

Proof is trivial and left for Appendix. Then time consistency requires that it happens to

be ĝ(k) = g(k). Therefore EE1 can be rewritten as

−u′((f − g)(k)) + βu′((f − g) ◦ g(k)) [(µf ′ − (µ − 1)g′) ◦ g(k)] = 0, (EE2)

where a ◦ b(x) ≡ a(b(x)) denotes a composite function of x, and (a ± b)(x) ≡ a(x) ± b(x).

If g(k) satisfies EE2, then we say g(k) is self-consistent, in the sense that if next gen-

eration’s policy function is g(k), then the current generation necessarily takes the same

policy.

At a fixed point, k = k∗, g(k∗) = k∗ and −u′(c∗) + βu′(c∗)[µf ′(k∗) − (µ − 1)g′(k∗)] = 0,

where c∗ = f(k∗)−k∗. Thus β[µf ′(k∗)−(µ−1)g′(k∗)] = 1 (⋆) holds. Note that βf ′(k∗) = 1

implies g′(k∗) = 1/β, and that βµf ′(k∗) = 1 implies g′(k∗) = 0.

3.1 Indeterminacy of self-consistent policy functions

Next theorem relates dynamic inconsistency with indeterminacy of self-consistent policy

functions.

Theorem 2: Assume µ ̸= 1. Let k̄ be a point such that βµf ′(k̄) = 1, and take any point

such that k∗ ̸= k̄. Then, there exists uniquely a self-consistent policy function g(k) satisfying

EE2, such that it has a fixed point at k = k∗, and is C∞, i.e., infinitely continuously

differentiable, on some open ball around k∗, k ∈ B(k∗, ε), i.e., k∗ − ε < k < k∗ + ε, with

ε > 0.

Proof is given in Appendix. This theorem says that if a fixed point k∗ is determined, then

a corresponding self-consistent policy function is also uniquely determined and C∞ in an

open ball around k∗. Since there exists a trade-off and degree of freedom between the values

of g(k∗) and g′(k∗), it is possible to construct an infinite number of distinct self-consistent

policy functions for distinct k∗.

3.2 Existence of C1 self -consistent value functions with uniform convergence
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Given a self-consistent policy function g(k) satisfying EE2, self-consistent value functions

Z̃(k) and Z̆(k), which correspond with W̃ (k) and W̆ (k), respectively, are defined as the

following infinite functional series.

Z̃(k) = B{u((f − g)(k)) + βu(f − g) ◦ g(k)) + β2u((f − g) ◦ g ◦ g(k)) + · · · } (SV1)

= B
∑∞

s=0β
su((f − g)◦ g ◦ · · · ◦ g

︸ ︷︷ ︸
(k)

s

)

= B
∑∞

s=0β
su((f − g) ◦ g(s)(k))

and

Z̆(k) = Z̃(k) − (B − A)u((f − g)(k)).

Here we define g(s)(k) ≡ g ◦ · · · ◦ g
︸ ︷︷ ︸

(k)

s

. It is easy to verify Z̃(k∗) = (B/(1 − β))u(f(k∗) −

k∗). Now we claim the following theorem.

Theorem 3: Assume µ ̸= 1. Let S be a set such that

S = { k | |(µf ′(k) − 1/β)/(µ − 1)| < 1} ,

and take any point such that k∗ ∈ S and k∗ ̸= k̄. Then:

(i) Self-consistent value functions Z̃(k) and Z̆(k), which are represented as an infinite series

SV1, where g(k) satisfies EE2, uniformly converges and once continuously differentiable C1

on some open ball around k∗, k ∈ B(k∗, ε′), with ε′ > 0.

(ii) In BE2, replace W̃ (·) and W̆ (·) with Z̃(·) and Z̆(·), respectively. Then Z̃(·) and Z̆(·)

satisfy BE2 with a unique self-consistent policy function g(k).

(iii) Let S′ be a set such that S′ = { k | 0 < (µf ′(k) − 1/β)/(µ − 1) < 1}, and take any

point such that k∗ ∈ S′, instead of S. Then Z̃(k) is strictly concave at k∗.

Proof is given in Appendix. By the proof Z̃(k) and Z̆(k) are also shown to be C∞. Thus

BE2 is now formally justified as the following Bellman equation.

Z̆(k) = max
y∈Y (k)

(

Au(f(k) − y) + βZ̃(y)
)

, (BE3)

where

Z̃(k) = Z̆(k) + (B − A)u(Ĉ),

and Ĉ = f(k) − ŷ and ŷ = arg max
y∈Y (k)

(

Au(f(k) − y) + βZ̃(y)
)

.

Theorem 3 says that ŷ in BE3 must be the same as g(k), if Z̃(k) and Z̆(k) are defined as

SV1.

3.3 Instability against perturbation of self-consistent policy/value functions

In section 3.2, at first we searched out the policy functions, which satisfies Euler equation

EE2 locally around a fixed point k∗, and then calculate the corresponding value functions.
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Therefore it is not still verified if deviated policy functions would necessarily converges to

some of self-consistent ones in a global sense. So we go back to a recursive Bellman equation

BE1’. At the terminal stage n = 0,

W̆1(k) = max
y∈Y (k)

(

Au(f(k) − y) + βW̃0(y)
)

,

where

W̃1(k) = W̆1(k) + (B − A)u(Ĉ).

Assume a log utility u(c) = ln c and a Cobb-Douglus form production function f(k) =

akb, although this utility does not satisfy condition U1. Assuming W̃0(k) = 0 (therefore

g0(k) = 0), it is easy to verify, by recursive calculation, that gn(k) = γnf(k), where γn =
βµb{1−(βb)n}

(1−βb)+βµb{1−(βb)n} , and gn(k) →
k→∞

g(k) = γf(k), where γ = βµb
1−βb(1−µ) . (g(k) = γf(k)

satisfies self-consistent Euler equation EE2.) As a matter of fact, if g0(k) belongs to a family

of functions of a Cobb-Douglus form, g0(k) = γ0f(k) (0 ≤ γ0 < 1), then it is proved that

gn(k) →
k→∞

g(k) = γf(k), the same destination function. However, in general, every possible

initial policy function g0(k) might not necessarily attain a uniform convergence to g(k). This

point is totally different from case of dynamic consistency µ = 1. (See Blackwell (1965) for

a contraction result in case of µ = 1.)

Here we limit our focus on the local stability against temporal perturbation of self-

consistent policy and value functions.

Theorem 4: Let h(k) be a C∞ function, which is bounded in an open ball around k∗,

and h(k∗) ̸= 0. Also let g(k) be a self-consistent policy function, which satisfies EE2, and

let Z̃(k) be a corresponding self-consistent value function generated by SV1. Assume both

g(k) and Z̃(k) are C∞ in an open ball around k∗.

(i) Assume that the next generation’s policy function is subject to a perturbation of the

form: g(y) → g̃(y, η) = g(y) + ηh(y), and the current generation’s policy function changes

g(k) → ĝ(k, η).

Then the condition for the policy function’s contraction in an open neighborhood around

k∗, k ∈ B(k∗, ε′′) with some ε′′ > 0, is
∣
∣
∣
∣

g′(k∗)

f ′(k∗)

{

1 + β(µ − 1)
h′(k∗)

h(k∗)

u′(c∗)

u′′(c∗)

}∣
∣
∣
∣
< 1.

(ii) Assume that the next generation’s value function is subject to a perturbation of the

form: Z̃(y) → Z̃(y, η) = Z̃(y) + ηh(y), and the current generation’s value function changes

Z̃(k) → Ẑ(k, η).

Then the condition for the value functions’s contraction in an open neighborhood around

k∗, k ∈ B(k∗, ε′′) with some ε′′ > 0, is
∣
∣
∣
∣
β

{

1 + (µ − 1)
h′(k∗)

h(k∗)

g′(k∗)

f ′(k∗)

u′(c∗)

u′′(c∗)

}∣
∣
∣
∣
< 1.

Proof is given in Appendix. Both results (i) and (ii) are similar. In case of dynamic consis-

tency µ = 1, the contraction can be achieved under quite general conditions, |g′(k∗)/f ′(k∗)| <
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1 or β < 1, in which the local convergence in sup norm ∥gn−g∥K →
n→∞

0 or ∥Z̃n−Z̃∥K →
n→∞

0

are attained, whatever the first order or the higher orders of perturbation (h′(k), h′′(k),

h′′′(k) · ·) might be. However, in case of µ ̸= 1, the first order perturbation h′(k) or the

first order nondifferentiability directly affects the possibility of 0′th order contraction (in

sup norm), and so do the second or higher perturbation (h′′(k), h′′′(k), ··), or the nondiffer-

entiability in these orders, indirectly. So finally in the next theorem we state the first order

effect on ĝ(k, η) of perturbation h(k) around k∗, which is measured by ĝ12(k
∗, 0).

Theorem 5: Consider the same assumptions as in (i) of Theorem 4. Then ĝ12(k
∗, 0),

the first order effect of ĝ(k∗, η) for a small change in ηh(y) is given in the following formula.

ĝ12(k
∗, 0) = X0h(k) + X1h

′(k) + X2h
′′(k),

where

X0 = −
g′(k∗)

f ′(k∗)

(
g′(k∗)

f ′(k∗)
{f ′′(k∗)g′(k∗) − f ′(k∗)g′′(k∗)} −

u′′(c∗)

u′(c∗)
{f ′(k∗) − g′(k∗)}{1 − g′(k∗)}

)

,

X1 =
g′(k∗)

f ′(k∗)




g′(k∗) + β(µ − 1)






g′(k∗){f ′(k∗) − g′(k∗)}

− u′(c∗)
u′′(c∗)

g′(k∗)
f ′(k∗)

(

{f ′′(k∗)g′(k∗) − f ′(k∗)g′′(k∗)}

+u′′′(c∗)
u′′(c∗)

g′(k∗)
f ′(k∗){f

′(k∗) − g′(k∗)}

)









 ,

X2 = β(µ − 1)
{g′(k∗)}2

f ′(k∗)

u′(c∗)

u′′(c∗)
.

Proof is given in Appendix. Let ηhn(k) denote a functional deviation from self-consistent

policy function g(k) at stage n. In case of dynamic consistency µ = 1, then X1 = {g′(k∗)}2

f ′(k∗)

and X2 = 0. From Theorem 4, hn(k∗) → 0, as n → ∞. Since {g′(k∗)}2

f ′(k∗) < 1, h′
n(k∗)

proves to converge to zero. That is, qualitatively speaking, the order-by-order derivative

contraction operates in general. However, in case of dynamic inconsistency µ ̸= 1, the higher

order derivative coefficient affects the lower one, and the lower one, if failing in contraction,

remains an obstacle for contraction in the higher one, as n → ∞.

4. Concluding remarks

Thus this paper describes a dynamics of one-sector growth model under two sided altruism.

Here we derived a modified Euler equation for two-sided altruism dynamics.

From viewpoints of macrodynamics & game theory, one important implication of this

paper is that even under this perfect foresight setting with a perfectly rational representative

agent (in the sense that each generation takes account of and internalizes all the predictable

reaction by the subsequent generations), dynamic inconsistency still induces indeterminacy

of self-consistent policy functions, and possibly cause some dynamic fluctuation of policy

function generated in recursive fashion.
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This aspect is crucial not only in this two-sided altruism dynamics, but also in other

models incorporating irregular structures of variable effective discount factors, as in hyper-

bolic discount factor model, endogenized (so variable) discount factor model, or fertility

endogenized model.

This paper focused on self-consistency, differentiability, and fragility against recursive

perturbation of policy/value functions, in a local area around any arbitrary fixed point k∗.

Investigation on global transition in BE1 or (1’), characterized by dynamic fluctuation, will

be left for future work.
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Appendix

Proof of Theorem 1

From the assumption, ŷ is an interior of Y (k). Differentiating BE2 with k, we have

−Au′(f(k) − ŷ) + βW̃ ′(ŷ) = 0 (♠). Then, since ŷ = g(k) and g(k) is once continuously

differentiable,

W̆ ′(k) = Au′(f(k) − ŷ)f ′(k) +

(
dŷ

dk

) [

−Au′(f(k) − ŷ) + βW̃ ′(ŷ)
]

︸ ︷︷ ︸

=0

= Au′(f(k) − g(k))f ′(k).

Then, from W̃ (k) = W̆ (k) + (B − A)u(f(k) − g(k)),

W̃ ′(k) = Au′(f(k) − g(k))f ′(k) + (B − A)u′(f(k) − g(k)) {f ′(k) − g′(k)}

= u′(f(k) − g(k))[Bf ′(k) − (B − A) g′(k)]

= Au′(f(k) − g(k))[µf ′(k) − (µ − 1) g′(k)].

Plugging this into (♠), −Au′(f(k) − y) + βAu′(f(y) − g(y)) [µf ′(y) − (µ − 1)g′(y)] = 0.

Divide this by A, finally we get EE1. ¤

Proof of Theorem 2

At a fixed point g(k∗) = k∗, β[µf ′(k∗) − (µ − 1)g′(k∗)] = 1 holds. In case of µ ̸= 1,

there exist an infinite number of combination of g(k∗) and g′(k∗). Take any arbitrary

point such that k∗ ̸= k̄. Then g′(k∗) ̸= 0, and since g(k) is C1, there exists an open

neighborhood around k∗, B(k∗, ε), such that ε is enough small, and g′(k) > 0 or g′(k) < 0

for all k ∈ B(k∗, ε). u(·) and f(·) are C∞, then applying the implicit function theorem

to EE2, g′(k) is C1 on B(k∗, ε) (that is, g(k) is C2 (twice continuously differentiable)).

Differentiating EE2 with k, we get

− u′′(f(k) − g(k)){f ′(k) − g′(k)} (EE2-2)

+ β

{

u′′(f(y) − g(y)) [µf ′(y) − (µ − 1)g′(y)] {f ′(y) − g′(y)}

u′(f(y) − g(y)) [µf ′′(y) − (µ − 1)g′′(y)]

}

g′(k)

= 0.

Here y = g(k). Then at a fixed point k∗ with c∗ = f(k∗) − k∗,

− u′′(c∗){f ′(k∗) − g′(k∗)}

+ β

{

u′′(c∗) [µf ′(k∗) − (µ − 1)g′(k∗)] {f ′(k∗) − g′(k∗)}

u′(c∗) [µf ′′(k∗) − (µ − 1)g′′(k∗)]

}

g′(k∗)

= 0.
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Arranging this with β[µf ′(k∗) − (µ − 1)g′(k∗)] = 1 (⋆), we have the following equality.

{1 − g′(k∗)}u′′(c∗){f ′(k∗) − g′(k∗)} = βg′(k∗)u′(c∗) [µf ′′(k∗) − (µ − 1)g′′(k∗)] (◆)

Thus, considering µ ̸= 1, u′(c∗) ̸= 0 and g′(k∗) ̸= 0, g′′(k∗) is uniquely determined.

Again applying the implicit function theorem to EE2-2, g′′(k) is C1 on B(k∗, ε) (that

is, g(k) is C3(three times continuously differentiable). Differentiating EE2-2 with k, and

setting at a fixed point k∗,

− u′′(c∗){f ′′(k∗) − g′′(k∗)} − u′′′(c∗){f ′(k∗) − g′(k∗)}2 (H)

+ β







u′′′(c∗) [µf ′(k∗) − (µ − 1)g′(k∗)] {f ′(k∗) − g′(k∗)}2

+2u′′(c∗) [µf ′′(k∗) − (µ − 1)g′′(k∗)] {f ′(k∗) − g′(k∗)}

+u′′(c∗) [µf ′(k∗) − (µ − 1)g′(k∗)] {f ′′(k∗) − g′′(k∗)}

+u′(c∗) [µf ′′′(k∗) − (µ − 1)g′′′(k∗)]







{g′(k∗)}2

+ β

{

u′′(c∗) [µf ′(k∗) − (µ − 1)g′(k∗)] {f ′(k∗) − g′(k∗)}

+u′(c∗) [µf ′′(k∗) − (µ − 1)g′′(k∗)]

}

g′′(k∗)

= 0.

Similarly, g′′′(k∗) is uniquely determined. Thus, by induction, g(k) is C∞, and the n’th

order coefficient of derivative at k∗, g(n)(k∗) say, is uniquely determined at any positive

integer n. ¤

Proof of Theorem 3

(i) It is easy to verify that k∗ ̸= k̄ and k∗ ∈ S imply g′(k∗) ̸= 0 and |g′(k∗)| < 1. Then

there exists an open neighborhood around k∗, B(k∗, ε′), such that ε′ is enough small, and

1 > g′(k) > 0 or −1 < g′(k) < 0 for all k ∈ B(k∗, ε′). Then obviously,

g(s)(B(k∗, ε′)) ⊂ g(s−1)(B(k∗, ε′)) ⊂ · · · ⊂ g(B(k∗, ε′)) ⊂ B(k∗, ε′). (♣)

Since u((f − g)(k)) is positive and upper bounded on B(k∗, ε′), it holds that ∥u((f −

g) ◦ g(s)(k))∥B(k∗,ε′) ≤ M0 for all s ≥ 0, where ∥f∥K ≡ sup
k∈K

|f(k)|. In addition,
∑∞

s=0β
sM0

converges, therefore, from Weierstrass’s M test, an infinite functional series B
∑∞

s=0β
su((f −

g) ◦ g(s)(k)) uniformly converges to Z̃(k) on B(k∗, ε′). Each term βsu((f − g) ◦ g(s)(k)) is

continuous on B(k∗, ε′), so is Z̃(k) on B(k∗, ε′).

Next, differentiating u((f − g) ◦ g(s)(k)) with k,

(u((f−g)◦g(s)(k)))′ = u′((f−g)◦g(s)(k))[(f ′−g′)◦(g(s)(k))][g′(g(s−1)(k))]··[g′(g(k))][g′(k)].

u((f − g) ◦ g(s)(k)) is C1, so (u((f − g) ◦ g(s)(k)))′ is continuous on B(k∗, ε′). Consid-

ering (♣), ∥u′((f − g) ◦ g(s)(k))∥B(k∗,ε′) ≤ M1, ∥(f ′ − g′) ◦ (g(s)(k))∥B(k∗,ε′) ≤ M2 and

∥g′(g(u−1)(k))∥B(k∗,ε′) ≤ 1 (0 ≤ u ≤ s). Therefore, ∥(u((f − g) ◦ g(s)(k)))′∥B(k∗,ε′) ≤ M1M2.

Furthermore
∑∞

s=0β
sM1M2 converges, so B

∑∞
s=0β

s(u((f−g)◦g(s)(k)))′ uniformly converges

and is continuous on B(k∗, ε′).

Summarizing the above, (1) B
∑∞

s=0β
su((f − g) ◦ g(s)(k)) converges to Z̃(k), (2) u((f −

g) ◦ g(s)(k)) is C1, (3) B
∑∞

s=0β
s(u((f − g) ◦ g(s)(k)))′ uniformly converges. From (1), (2)
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and (3), the conditions for the term-by-term differentiability, Z̃(k) is C1, and Z̃ ′(k) =

B
∑∞

s=0β
s(u((f − g) ◦ g(s)(k)))′. The proof of the uniform convergence and C1 (once differ-

entiability) of Z̆(k) is now straightforward.

(ii) By the proof of (i), Z̃ ′(k) = B
∑∞

s=0β
s(u((f − g) ◦ g(s)(k)))′. Then at a fixed point

k = k∗,

Z̃ ′(k∗) = B
∑∞

s=0[β
su′(c∗) · (f − g)′(k∗) · {g′(k∗)}s]

= Bu′(c∗) · (f − g)′(k∗) ·
∑∞

s=0{g
′(k∗)}s

= Bu′(c∗) · (f − g)′(k∗) ·
1

1 − g′(k∗)
,

where c∗ = f(k∗) − k∗. g(k) is, by definition, a solution of EE2 with a fixed point

g(k∗) = k∗ and (⋆). Then

β[µf ′(k∗) − (µ − 1)g′(k∗)] = 1 ⇐⇒ −Au′(c∗) + βBu′(c∗) · (f − g)′(k∗) · 1
1−g′(k∗) = 0 ⇐⇒

−Au′(c∗) + βZ̃ ′(k∗) = 0 (N).

Now define g̊(k) ≡ arg maxy∈Y (k)(Au(f(k)−y)+βZ̃(y)). Then g̊(k) is the only candidate

solution of BE3. Since g̊(k∗) ≡ arg maxy∈Y (k∗)(Au(f(k∗) − y) + βZ̃(y)), and by (N), we

have g̊(k∗) = k∗. If g̊(k) is a solution of BE3, then by similar calculation as in Theorem

1, g̊(k) proves to be a solution of EE2. Since g̊(k) has a fixed point at k∗, by Theorem

2, g̊(k) is uniquely determined at the neighborhood around k∗, therefore it must be that

g̊(k) = g(k) on B(k∗, ε). It is obvious that if g̊(k) = g(k), then Z̆(k), generated as Z̃(k) =

Z̆(k)+ (B −A)u(f(k)− g̊(k)) in BE3, coincides with Z̆(k), as defined in SV1. Now we have

proved that Z̃(k) and Z̆(k) satisfy BE3 with a unique self-consistent policy function g(k).

(iii) Next we prove a strict concavity of Z̃(k) at k = k∗. From the proof of Theorem

1, Z̃ ′(k) = W̃ ′(k) = Au′(f(k) − g(k))[µf ′(k) − (µ − 1) g′(k)]. (It is easy to verify that

Z̃ ′(k∗) = (A/β)u′(c∗) > 0, where c∗ = f(k∗)−k∗.) As g(k) is C∞ on B(k∗, ε′), so Z̃(k) and

Z̆(k) are also C∞ on it. Again differentiating Z̃ ′(k) with k,

Z̃ ′′(k) = A

[

u′′(f(k) − g(k)){f ′(k) − g′(k)}{µf ′(k) − (µ − 1) g′(k)}

+u′(f(k) − g(k)){µf ′′(k) − (µ − 1) g′′(k)}

]

.

At k = k∗, using (⋆),

Z̃ ′′(k∗) = A

[

u′′(c∗){f(′k∗) − g′(k∗)}{µf ′(k∗) − (µ − 1) g′(k∗)}

+u′(c∗){µf ′′(k∗) − (µ − 1) g′′(k∗)}

]

=
A

β
[u′′(c∗){f ′(k∗) − g′(k∗)} + βu′(c∗){µf ′′(k∗) − (µ − 1) g′′(k∗)}]

=
A

β

[

u′′(c∗){f ′(k∗) − g′(k∗)} +
(1 − g′(k∗))

g′(k∗)
u′′(c∗){f ′(k∗) − g′(k∗)}

]

=
A

βg′(k∗)
u′′(c∗){f ′(k∗) − g′(k∗)}.

Here we used the equality (◆). From conditions U0 and U2, u′′(c∗) < 0. The assumption

k∗ ∈ S′ assures 0 < g′(k∗) < 1/β, which implies f ′(k∗)− g′(k∗) > 0. Therefore now we have

Z̃ ′′(k∗) < 0, a desired result. ¤
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Proof of Theorem 4

(i) In EE1 replace g(y) with g̃(y, η), and ĝ(k) with ĝ(k, η), respectively, then we have:

EE(3) −u′(f(k) − y) + βu′(f(y) − g̃(y, η)) [µf ′(y) − (µ − 1)g̃1(y, η)] = 0, where y =

ĝ(k, η) and ĝ(k, 0) = g̃(k, 0) = g(k).

Differentiating with η,

u′′(f(k) − y)ĝ2(k, η) (◎)

+ β









−u′′(f(y) − g̃(y, η)) [µf ′(y) − (µ − 1)g̃1(y, η)] g̃2(y, η)

−u′(f(y) − g̃(y, η)) [(µ − 1)g̃12(y, η)]
{

u′′(f(y) − g̃(y, η)) [µf ′(y) − (µ − 1)g̃1(y, η)] {f ′(y) − g̃1(y, η)}

u′(f(y) − g̃(y, η)) [µf ′′(y) − (µ − 1)g̃11(y, η)]

}

ĝ2(k, η)









= 0.

Arranging this equation:

ĝ2(k, η)






u′′(f(k) − y)

+β

{

u′′(f(y) − g̃(y, η)) [µf ′(y) − (µ − 1)g̃1(y, η)] {f ′(y) − g̃1(y, η)}

u′(f(y) − g̃(y, η)) [µf ′′(y) − (µ − 1)g̃11(y, η)]

}






= β

[

u′′(f(y) − g̃(y, η)) [µf ′(y) − (µ − 1)g̃1(y, η)] g̃2(y, η)

+u′(f(y) − g̃(y, η)) [(µ − 1)g̃12(y, η)]

]

Evaluating η = 0 and k = k∗ (f(k∗) − k∗ = c∗, k∗ = g(k∗)), with (⋆):

ĝ2(k
∗, 0)

[

u′′(c∗) + u′′(c∗) {f ′(k∗) − g′(k∗)}

+βu′(c∗)
[

µf
′′

(k∗) − (µ − 1)g′′(k∗)
]

]

= u′′(c∗)g̃2(k
∗, 0) + β(µ − 1)u′(c∗)g̃12(k

∗, 0)

From equality (◆),

u′′(c∗) + u′′(c∗) {f ′(k∗) − g′(k∗)} + βu′(c∗)
[

µf
′′

(k∗) − (µ − 1)g′′(k∗)
]

= u′′(c∗)
f ′(k∗)

g′(k∗)
.

So we obtain

ĝ2(k
∗, 0) =

g′(k∗)

f ′(k∗)

{

g̃2(k
∗, 0) + β(µ − 1)

u′(c∗)

u′′(c∗)
g̃12(k

∗, 0)

}

.

Evaluating at k = k∗ and η = 0, with g̃(k, η) = g(k) + ηh(k), g̃2(k
∗, 0) = h(k∗) and

g̃12(k
∗, 0) = h′(k∗),

ĝ2(k
∗, 0)

g̃2(k∗, 0)
=

g′(k∗)

f ′(k∗)

{

1 + β(µ − 1)
u′(c∗)

u′′(c∗)

h′(k∗)

h(k∗)

}

.

ĝ2(k
∗, 0) and g̃2(k

∗, 0) are the slopes of changes of the current and next generation’s policy

functions in a small change of η, evaluated at k = k∗ and η = 0, respectively. So this is a

desired result.
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(ii) The F.O.C. (Euler eq.) of BE3 is −Au′(f(k) − y) + βZ̃ ′(y) = 0. Replacing y with

ĝ(k, η), and Z̃(y) with Z̃(y, η), then −Au′(f(k) − ĝ(k, η)) + βZ̃1(ĝ(k, η), η) = 0 (♯). Differ-

entiating with η,

Au′′(f(k) − ĝ(k, η))ĝ2(k, η) + β
(

Z̃11(ĝ(k, η), η)ĝ2(k, η) + Z̃12(ĝ(k, η), η)
)

= 0.

Then we have

ĝ2(k, η) =
−βZ̃12(ĝ(k, η), η)

Au′′(f(k) − ĝ(k, η)) + βZ̃11(ĝ(k, η), η)
. (†)

The current generation’s value function Ẑ(k, η) is calculated as Ẑ(k, η) = Bu(f(k) −

ĝ(k, η)) + βZ̃(ĝ(k, η), η). Then

Ẑ2(k, η) = −Bu′(f(k) − ĝ(k, η))ĝ2(k, η) + β
(

Z̃1(ĝ(k, η), η)ĝ2(k, η) + Z̃2(ĝ(k, η), η)
)

( ‡)

= (A − B)u′(f(k) − ĝ(k, η))ĝ2(k, η) + βZ̃2(ĝ(k, η), η).

Here we used the equality (♯). Also Z̃2(ĝ(k, η), η) = h(ĝ(k, η)) and Z̃12(ĝ(k, η), η) =

h′(ĝ(k, η)). Then plugging (†) into (‡),

Ẑ2(k, η) = βh(ĝ(k, η))

{

1 −
h′(ĝ(k, η))

h(ĝ(k, η))
·

(A − B)u′(f(k) − ĝ(k, η))

Au′′(f(k) − ĝ(k, η)) + βZ̃11(ĝ(k, η), η)

}

.

Evaluating at k = k∗ and η = 0, with ĝ(k∗, 0) = g(k∗) = k∗, c∗ ≡ f(k∗) − k∗ and

Z̃11(ĝ(k∗, 0), 0) = Z̃ ′′(k∗) = A
βg′(k∗)u

′′(c∗){f ′(k∗) − g′(k∗)},

Ẑ2(k
∗, 0)

Z̃2(k∗, 0)
= β

{

1 −
h′(k∗)

h(k∗)
·

(A − B)u′(c∗)

Au′′(c∗) + A
g′(k∗)u

′′(c∗){f ′(k∗) − g′(k∗)}

}

= β

{

1 −
h′(k∗)

h(k∗)
·

(1 − µ)u′(c∗)

u′′(c∗) + 1
g′(k∗)u

′′(c∗){f ′(k∗) − g′(k∗)}

}

= β

{

1 + (µ − 1)
h′(k∗)

h(k∗)

g′(k∗)

f ′(k∗)

u′(c∗)

u′′(c∗)

}

.

Ẑ2(k
∗, 0) and Z̃2(k

∗, 0)(= h(k∗)) are the slopes of changes of the current and next gener-

ation’s value functions in a small change of η, evaluated at k = k∗ and η = 0, respectively.

This is also a desired result. ¤

Proof of Theorem 5
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Differentiating (◎) with k,

u′′(f(k) − y)ĝ12(k, η) + u′′′(f(k) − y){f ′(k) − ĝ1(k, η)}ĝ2(k, η)

+ β
































(

−u′′′(f(y) − g̃(y, η)){f ′(k) − ĝ1(k, η)} [µf ′(y) − (µ − 1)g̃1(y, η)]

−u′′(f(y) − g̃(y, η)) [µf ′′(y) − (µ − 1)g̃11(y, η)]

)

g̃2(y, η)

+

(

−u′′(f(y) − g̃(y, η)) [µf ′(y) − (µ − 1)g̃1(y, η)]

−(µ − 1)u′′(f(y) − g̃(y, η)){f ′(k) − ĝ1(k, η)}

)

g̃12(y, η)

−u′(f(y) − g̃(y, η)) [(µ − 1)g̃112(y, η)]







ĝ1(k, η)







u′′′(f(y) − g̃(y, η)) [µf ′(y) − (µ − 1)g̃1(y, η)] {f ′(y) − g̃1(y, η)}
2

2u′′(f(y) − g̃(y, η)) [µf ′′(y) − (µ − 1)g̃11(y, η)] {f ′(y) − g̃1(y, η)}

u′′(f(y) − g̃(y, η)) [µf ′(y) − (µ − 1)g̃1(y, η)] {f ′′(y) − g̃11(y, η)}

u′(f(y) − g̃(y, η)) [µf ′′′(y) − (µ − 1)g̃111(y, η)]







ĝ1(k, η)ĝ2(k, η)

{

u′′(f(y) − g̃(y, η)) [µf ′(y) − (µ − 1)g̃1(y, η)] {f ′(y) − g̃1(y, η)}

u′(f(y) − g̃(y, η)) [µf ′′(y) − (µ − 1)g̃11(y, η)]

}

ĝ12(k, η)


























= 0.

Evaluating η = 0 and k = k∗ (f(k∗) − k∗ = c∗, k∗ = g(k∗)),

u′′(c∗)ĝ12(k
∗, 0) + u′′′(c∗){f ′(k∗) − g′(k∗)}ĝ2(k

∗, 0)

+ β






















(

−u′′′(c∗){f ′(k∗) − g′(k∗)} [µf ′(k∗) − (µ − 1)g′(k∗)]

−u′′(c∗) [µf ′′(k∗) − (µ − 1)g′′(k∗)]

)

g̃2(k
∗, 0)

+

(

−u′′(c∗) [µf ′(k∗) − (µ − 1)g′(k∗)]

−(µ − 1)u′′(c∗){f ′(k∗) − g′(k∗)}

)

g̃12(k
∗, 0)

−u′(c∗) [(µ − 1)g̃112(k
∗, 0)]







g′(k∗)

+S · g′(k∗) · ĝ2(k
∗, 0)

+T · ĝ12(k
∗, 0)
















= 0,

where

S =







u′′′(c∗) [µf ′(k∗) − (µ − 1)g′(k∗)] {f ′(k∗) − g′(k∗)}2

+2u′′(c∗) [µf ′′(k∗) − (µ − 1)g′′(k∗)] {f ′(k∗) − g′(k∗)}

+u′′(c∗) [µf ′(k∗) − (µ − 1)g′(k∗)] {f ′′(k∗) − g′′(k∗)}

+u′(c∗) [µf ′′′(k∗) − (µ − 1)g′′′(k∗)]







,

and

T =

{

u′′(c∗) [µf ′(k∗) − (µ − 1)g′(k∗))] {f ′(k∗) − g′(k∗)}

u′(c∗) [µf ′′(k∗) − (µ − 1)g′′(k∗)]

}

.

From (H), (⋆) and (◆), S and T are respectively calculated as

S =
1

β{g′(k∗)}2

[

u′′(c∗)

{

f ′′(k∗) − f ′(k∗)
g′′(k∗)

g′(k∗)

}

+ u′′′(c∗) {f ′(k∗) − g′(k∗)}
2
]

,

T =
1

βg′(k∗)
u′′(c∗) {f ′(k∗) − g′(k∗)} .
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By Theorem 4, we already have

ĝ2(k
∗, 0) =

g′(k∗)

f ′(k∗)

{

h(k∗) + β(µ − 1)
u′(c∗)

u′′(c∗)
h′(k∗)

}

.

Obviously g̃2(k
∗, 0) = h(k∗), g̃12(k

∗, 0) = h′(k∗), g̃112(k
∗, 0) = h′′(k∗). Then plugging all

of these into (●), and arranging, again, with (⋆) and (◆), we derive desired results. ¤
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