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ABSTRACT 

 
This paper analyzes technical efficiency of domestic commercial banks in Malaysia between 1995 and 

2009 by using the Data Envelopment Analysis (DEA) window analysis. By this approach, the 

technical efficiency is analyzed sequentially with a certain window width (i.e. the number of years in 

a window) using a panel data of five domestic banks. The main idea is to capture the temporal impact 

on bank technical efficiency and see its short-run evolution from one window to another, in particular 

the pure technical efficiency (X-efficiency or managerial efficiency) and scale efficiency. By this, the 

study avoids the comparison of banks in different years as separate observations measured against 

each other, which can be unrealistic because of the significant technological diffusion in banking over 

the period under analysis. 

 

The results suggest that on average the domestic commercial banks have some degree of inefficiency, 

which is more so due to pure technical rather than scale effects. Thus, Malaysian commercial banks 

should gain more from reducing the input quantities used or increasing the output quantities produced. 

The commercial banks should not worry too much about not choosing the correct scale for production 

though the study found out that on average the banks have not fully exhausted economies of scale. 

 

 

Keywords: pure technical efficiency, scale efficiency, bank productivity, DEA. 

 

 
1.0 INTRODUCTION 

 

Dramatic changes have taken place in the Malaysian banking industry. From a number of 22 domestic 

conventional commercial banks as at the end of 1998, the number of banks reduced to ten only as at 

the beginning of the following year. As at the end of 2009 there are only nine domestic conventional 

commercial banks left. As local banking industry faces competitive incursion from beyond its shore, 

issues of bank efficiency becomes more important. Many studies were done to measure bank 

performance especially with regards to its efficiency, i.e. the degree to which the bank used its 

resources to produce outputs in comparison to the optimal used (best practice) of resources to produce 

the similar outputs. Given the changes in the Malaysian banking industry, a study on the commercial 

banks efficiency should be justifiable. We wish to see how efficiency evolves over time and whether 

there is any change in the banks efficiency levels.  

 

In this paper, we consider the relative technical efficiency of five domestic commercial banks from 

1995 to 2009. These banks existed in their enlarged merged form within that period. The study 

analyzes the bank efficiency using the Data Envelopment Analysis (DEA), which is a non-parametric, 

linear programming methodology. Charnes, Cooper and Rhodes (1978) developed the DEA model 

based on the earlier original work of Farell in 1975, in which they introduced a measure of technical 

efficiency focuses on input-reducing and assumed constant return to scale (CRS). Later Banker, 

Charnes and Cooper (1984) proposed a model that allows variable return to scale (VRS) to determine 

the technical efficiency devoid of scale effects, which decomposes the overall technical efficiency into 

pure technical efficiency and scale efficiency. The study also determines whether a bank suffers 
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decreasing return to scale or increasing return to scale if scale inefficiency exists. The study analyzes 

the commercial bank efficiency using the DEA window analysis, by which the efficiency is analyzed 

sequentially with a defining window (i.e. a certain number of year periods) using a panel data of 

sample banks. The main idea is to capture the temporal impact on bank efficiency and see the short-

run evolution of bank efficiency from one window to another. By this, the study avoids the 

comparison of banks in different years as separate observations measured against each other, which 

can be unrealistic because of the technological diffusion in banking over the period under analysis, 

would contribute to efficiency. The study approaches the analysis from two banking models, i.e. (i) a 

cost-revenue model in which a bank produces various services for its customers at certain costs, and 

(ii) an intermediation model in which a bank transfers funds from depositors to borrowers for profit.  

 

In the next section, the paper discusses the efficiency concept and Data Envelopment Analysis 

models. Section 3 reviews the current literatures on banks using DEA. Section 4 describes the data 

and methodologies used in our empirical study. Section 5 presents and discusses the results of DEA 

window analysis and Section 6 concludes the paper. 

 

2.0 DATA ENVELOPMENT ANALYSIS 
 

Data Envelopment Analysis is a non-parametric method using a mathematical technique called linear 

programming (LP), which concerns with the allocation and utilization of limited resources. It is a 

mathematical process to optimize the value of certain output objective, for example maximize profit 

or minimize cost, when the input factors, for example labor, capital or raw materials, involved are 

subject to constraints. Charnes, Cooper and Rhodes (1978) first introduced DEA that measured 

efficiency based on Farrell’s (1957) concept of efficiency measure. Charnes, Cooper and Rhodes 
(1978) developed a model which had an input orientation and assumed constant returns to scale. It is 

sometimes named as CCR model. Later, Banker, Charnes and Cooper (1984) proposed a model which 

assumes variable returns to scale. This model is also referred to as BCC model. The latter measures 

efficiency without the scale effect and the calculation of scale efficiency is possible by determining 

the difference between the two models’ efficiency scores.  
 

DEA is a performance measurement tool which evaluates the relative efficiency of production and 

service delivery entities in organizations. These entities are known as decision-making units (DMUs) 

in DEA. LP method solves a linear mathematical problem by generating a “virtual” efficient DMU 
and compares it with the observed DMU under analysis. The “virtual” efficient DMU is created from 
the DMUs which are found to efficient (best practice) and become benchmarks to the observed DMU. 

From this peer analysis, the degree of efficiency of the observed DMU is known and the slacks are 

identified and quantified. Slacks are the excess quantities of inputs (outputs) that can be reduced 

(increased) to achieve efficiency after all inputs (outputs) have been reduced (increased) in equal 

proportions to attain the best practice. DEA identifies the “best practice” DMUs and gives a perfect 
score of one (full efficiency) and any divergence from the “best practice” is considered inefficient. 
The degree of inefficiency depends on the score the DMUs received. The efficiency score based on 

multiple inputs and outputs is given by: 

 

inputs of sum weighted

outputs of sum weighted
  Efficiency     (1) 

 

A DMU that obtains a score of one is considered to be efficient and any score less than one indicates 

that it is inefficient.  

 

2.1 EFFICIENCY CONCEPTS 

 

The efficiency of an organization entails two main components: technical efficiency (TE) and 

allocative efficiency (AE). Technical efficiency reflects the ability of the organization to obtain 

maximum output from a given set of inputs. Allocative efficiency reflects the ability of an 
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organization to use the inputs in optimal proportions, given their respective input prices. These two 

measures combined give a measure of total economic efficiency (TEE) or cost efficiency (CE). 

Technical efficiency can be decomposed into scale efficiency (SE) and pure technical efficiency 

(PTE). 

 

Scale efficiency relates to the size of operation in the organization. The organization can take 

advantage by altering its operational size towards optimal scale and enjoys constant returns to scale. 

In other words, the relationship between output and inputs is constant in which the output changes 

equally in proportion to the changes in all inputs. The organization is said to be scale efficient. If 

output increases in proportion more than inputs, then the organization exhibits scale economies or 

increasing returns to scale (IRS). In practical term, the organization is under size and has ample room 

to take advantage from operational expansion and gains a higher proportional increase in output.  

 

Conversely, if the proportional increase in output is less than the inputs, then the organization suffers 

scale diseconomies or decreasing returns to scale (DRS). In other words, the organization is overly 

large and has moved beyond the region of optimal scale. It does not benefit from the operational size 

growth as the increase in output is much less than the proportional increase in inputs. Hence in an 

organization, any divergences from the optimal scale is said to be scale inefficient. 

 

The proportion of technical efficiency which is not attributed to the divergences from optimal scale is 

sometimes called as managerial efficiency or X-efficiency (pure technical efficiency). This relates to 

decision by a manager in formulating an input mix in order to generate output. There are many 

possible input mixes that attain various potential levels of output at the manager’s disposal. Among 
the many, one input mix will be optimal and allows the organization exhibits pure technical 

efficiency. An organization can be both scale as well as pure technical inefficient. But only one is the 

major source of overall technical inefficiency.  

 

DEA evaluates relative efficiency based on the premise that all efficient DMUs lay on a production 

frontier. The models consider N banks (DMUs), each using k different inputs and producing s 

different outputs. For ith DMU (i = 1,2,…,N) with an jth input (j = 1,2,…,K), x
ij
, and an rth output (r 

= 1,2,…,S), y
ir
 represent the data of a DMU. The variables u

r
 and v

j
 are the output and input weights, 

respectively. Based on Charnes et al. (1978) the efficiency ratio (h) for DMU
0
 is given by: 
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where the first inequality ensures that the efficiency ratios for the other DMUs are less than one and 

the second inequality requires that the output and input weights are positive. The above ratio measure 

has infinite solutions and following Charnes et al. (1978) transformation of the denominator in the 

above efficiency ratio is set to equal to one which provides the transformed linear problem as: 
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The dual linear programming of the problem is written as follows:  

 

min (λ) θ
0
 

subject to 

k1,2,...,j0,xλxθ
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λ
i
 ≥ 0.       (4) 

 

The value of θ obtained is the efficiency score of the DMU
0
. By solving the linear programming 

problem repeatedly, efficiency score of each DMU, i = 1, 2,…, N will be obtained and it will satisfy θ 
≤ 1. The value of 1 indicates a point on the production frontier and hence a DMU is technically 
efficient. The above formulation assumes constant returns to scale (CRS) where the weights λ

i
 have 

no constraints other than a positive condition. Banker, Charnes and Cooper (1984) suggests an 

extension of the CRS specification to allow for variable returns to scale (VRS). It is necessary to add a 

convexity constraint where λ
i
 is equal to one and the input-oriented model can be written as follows:  

 

min (λ) θ
0
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i
 ≥ 0.       (5) 

 

BCC model provides technical efficiency scores greater than or equal to those obtained from the CCR 

model because it forms a convex hull that envelopes the data points more tightly than the latter’s 
conical hull. Figure 1 illustrates this analysis in which a DMU at point T is fully efficient which it lays 

on the CRS frontier 0C, i.e. when TE scores of CRS and VRS are all equal to one. When VRS is 

considered, any DMU lays on the frontier RSTUV is pure technical efficient. That is when VRS TE 

score is larger than CRS TE score. But any DMU at the points S, U and V is not scale efficient. 

 

As stated earlier, technical efficiency can be decomposed into scale efficiency (SE) and pure technical 

efficiency (PTE or non-scale efficiency). To determine the scale efficiency of a DMU, the difference 

between VRS TE scores and CRS TE scores is calculated. If VRS TE score is equal to CRS TE score, 

then the DMU is scale efficient and exhibits constant returns to scale. Otherwise, the DMU is scale 

inefficient and does not operating in the region of optimal scale or CRS. Thus, one problem with this 

measure is that it is not known whether the DMU is operating in the region of increasing returns to 

scale (IRS) or decreasing returns to scale (DRS). As a solution to this problem the DEA uses the non-
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increasing returns to scale (NIRS) specification. The linear programming in (5) has to be solved with 

a constraint λ
i
 ≤ 1. To determine whether a DMU is IRS or DRS, the VRS TE score with NIRS TE 

score are compared. If they are equal, then the DMU exhibits DRS and has gone beyond the region of 

optimal scale (CRS). If they are not equal, then the DMU exhibits IRS and has yet to reach the region 

of optimal scale in its operation. In summary, we have three efficiency measures each with its own 

specification, which can be expressed in ratios as follows:  

 

CRS efficiency ratio = KL/KM 

VRS efficiency ratio = KM/KN 

SE ratio   = KL/KM 

 

 
Figure 1: The Production Frontier and Returns to Scale 

 

Referring back to Figure 1 the DMU at point L is technical efficient and the one at point M is pure 

technical efficient but scale inefficient. The DMU at point N is not technical efficient at all (both scale 

and non-scale). When CRS is assumed, the technical inefficiency covers the distance LN and when 

VRS is assumed, the pure technical inefficiency covers the distance MN. Its scale inefficiency is the 

distance LM. The DMU at point S has scale inefficiency and its exhibits increasing returns to scale 

with its low output level. The DMUs at points U and V have decreasing returns to scale, with the 

DMU at point V being the furthest from optimal scale. 

 

3.0 BRIEF LITERATURE REVIEW 

 
A number of studies have applied DEA to examine the efficiency of banking institutions. A few have 

used DEA window analysis approach to evaluate banks, which uses time-series data. Yue (1992) 

evaluates 60 largest Missouri banks using the window approach for the period 1984 to 1990. He 

examines the banks from intermediation model perspective using four inputs (i.e. interest expense, 

non-interest expense, savings deposits, and demand deposits) and three outputs (i.e. interest income, 

non-interest income and total loans). He reports that the major source of inefficiency comes from pure 

technical inefficiency and larger banks are scale efficient. Miller and Noulas (1996) evaluate 201 

large US banks from 1984 to 1990. Employing four inputs (i.e. interest expense, non-interest expense, 

savings deposits, and demand deposits) and three outputs (i.e. various types of loans, interest income 

and non-interest income), they approach the analysis from the intermediation model. They find that 

larger and profitable banks are more scale efficient and those that are inefficient tend to operate under 

decreasing returns to scale. The bulk of inefficiency however traces to the pure technical inefficiency. 

 

Paradi et al (2001) analyzes five largest Canadian banks over a twenty-year period from 1981 to 2000. 

Using DEA window analysis they examine the banks from two banking models, i.e. the production 

model and intermediation model. In the production, they employ four inputs which entail interest 
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expense, non-interest expense, fixed assets and number of employees. They employ five outputs 

which entail non-interest income, total deposits, other banks’ total deposits, total loans and marketable 

securities. In the intermediation model, they employ seven inputs which entail non-interest income, 

total deposits, debenture/subordinated debts, other liabilities, shareholders funds, fixed assets and 

number of employees, and five outputs which entail non-interest income, total loans, marketable 

securities, deposits with BOC and non-interest earning assets. The study finds that both models give 

similar DEA results and report that bank technical efficiency changes over time and from one year to 

another. 

 

Jemric and Vujcic (2002) evaluate Croatian banks in the period from 1995 to 2000. They analyze 

technical efficiency using both production and intermediation models. In the former they employ four 

inputs (i.e. interest expense, non-interest expense, personnel costs and capital expenditures) and two 

outputs (i.e. interest income and non-interest income). In the latter they employ three inputs (i.e. total 

deposits, fixed assets and number of employees) and two outputs (i.e. total loans and money-market 

securities). They find that the most technical efficient banks are either the smallest or the largest 

banks. The smallest banks are often niche banks, and have no excess labor and have low costs of fixed 

assets. The major source of inefficiency comes from the pure technical efficiency.  

 

Drake and Hall (2003) examine bank efficiency in 149 different types of Japanese banks for the 

financial year ending March 1997. The data covers all sizes of banks. From intermediation approach, 

the study uses three inputs (i.e. non-interest income excluding personnel costs, total deposits and fixed 

assets) and three outputs (i.e. non-interest income, total loans and marketable securities). The study 

finds that on average big banks are technical efficient but ones that are inefficient tend to exhibit 

decreasing returns to scale. The major source of inefficiency comes from the pure technical 

inefficiency and small banks are more so exhibited such inefficiency. Webb (2003) examines UK’s 
large retail banks based on a DEA window analysis for the period from 1982 to 1995. He finds that 

the banks average efficiency deteriorates over tine and majority of the banks exhibit scale 

inefficiency. The bigger ones tend to operate under decreasing returns to scale. 

 

Sufian (2004) examines Malaysian commercial banks during the merger year, pre- and post-merger 

period. The data covers a period between 1998 and 2003 of ten commercial banks. The banks show a 

high overall efficiency of about 96%, and small and medium size banks enjoy greater scale efficiency. 

Large banks do not benefit from any scale economies from the mergers. The results indicate that these 

large banks should shrink in size to benefit from their economies of scale. On the whole the study 

finds out that scale inefficiency dominates pure technical efficiency in Malaysian commercial banks. 

 

Abdul Majid and Sufian (2005) analyze Malaysian commercial banks in the post-merger, i.e. after 

2001. Their results suggest that large banks do not benefit from any scale effects and only smaller size 

banks enjoy such benefit. On the whole the banks’ inefficiency is attributed to the pure technical 

efficiency as their second-stage analysis indicates that risk input has a greater influence on X-

efficiency. 

 

Chambers and Cifter (2006) investigate the productivity of Turkish banks which covers a period from 

2002 to 2004. The study uses five input variables: branch numbers, number of branch staff, total 

assets, total loans, and total deposits. The output variables are net profit/loss, return on equity, net 

interest income, and non-interest income. The study finds out that the banks are technically inefficient 

which does not come from scale economies. The banks do not enjoy any benefit from scale 

economies.  

 

4.0 DATA AND METHODOLOGY 

 

The sample used in the study consists of data from five commercial banks that exist until today albeit 

in their enlarged form. The sampling based on two criteria, i.e. the listing of banking institutions 

legally merged and listed as at December 31, 2001 published in BNM Monthly Statistical Bulletin, 

and the availability of bank financial statements from 1995 to 2009 in the public domain. Based on 
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these two criteria we acquired a sample of five commercial banks including one having the smallest 

asset size of RM28.5 billions and one having the largest asset size of RM238.9 billion as at the end of 

their financial year in 2009. The banks’ balance sheets and income statements provide all the required 
data for the analysis. We approach the study from two commonly used banking models, i.e. a 

production model and intermediation model. 

 

A production model views banks as entities providing products and services to customers using 

various resources. The products and services, e.g. the various types of loans and deposits, are outputs 

and the resources, e.g. labor, capital and overheads, are inputs in this model. This approach measures 

cost efficiency because it considers the operating costs of banking. We use a cost-revenue variant 

model that entails interest income and non-interest income as outputs, and interest expense, personnel 

cost and non-personnel cost (other overheads) as inputs.  

 

An intermediation model views banks as financial intermediaries who mobilize funds from the surplus 

units and lend them out to the deficit units in the economy. These mobilized funds, i.e. savings and 

deposits, and the costs incurred and the assets used in the intermediation process are inputs to the 

model. The ways in which the funds can be lent out or invested are considered outputs. This approach 

measures the organizational efficiency and the economic viability of banks because it considers all the 

costs of banking. We use total deposits, non-interest expense (overheads) and fixed assets as the 

inputs, and total loans, marketable securities and non-interest income as the outputs to the model. We 

wish to include the number of employees of each bank in the sample as inputs but they are not readily 

available in the public domain. In lieu of this, we use the bank overhead expenses as one of the inputs. 

The fixed assets represent the amount of plant, property and equipment as stated in bank balance 

sheets. The marketable securities are those securities invested and traded as stated in bank balance 

sheets. The underlying idea is to capture the measures for the banks’ labor, capital, operating costs 
and revenues. 

 

We use DEA window analysis based on an input orientation model to measure bank efficiency in this 

study. The study should be able to see the bank efficiency evolves over time and to see whether any 

size effect exists in the bank efficiency. The results will be discussed from time as well as individual 

bank perspective. The data spans for fifteen years and forms thirteen windows, and each window 

covers a period of three years. The choice for the window width agrees with the original work in 

Charnes, Clark, Cooper and Golany (1985). Each window is analyzed independently but the years in 

each window move into the next window based on the principle of moving averages. Thus, this study 

generates several short-run analysis of technical efficiency. Otherwise, it would be a single 

longitudinal analysis of a panel data of fifteen years from five banks. We believed technology has 

played a very significant role in the efficiency of banks over time. By using window analysis, the 

study should be able to minimize the technological impact on the technical efficiency of banks. Using 

the window analysis approach is useful in increasing the number of data points because we have a 

small sample size. Nunamaker (1985) suggest that the sample size should be triple the sum of outputs 

and inputs. At least the sample size should be greater than the product of outputs and inputs (Talluri 

2000). Thus, we have increased our data points since we have thirteen windows each with a window 

width of three years and consist of five commercial banks. A descriptive statistics of the variables 

used in the analysis are given in Table 1, where (O) or (I) indicates whether a variable enters as an 

input and output in each respective model. 

 

Table 1: Descriptive Statistics of the Input and Output Variables 

Production 

Model 

Interest 

Expense (I) 

Staff Cost 

(I) 

Non-Staff 

Cost (I) 

Interest 

Income (O) 

Non-

Interest 

Income (O) 

Mean 1363.6 374.1 367.9 3776.2 887.9 

S. Error 159.0 47.1 45.6 1346.7 283.5 

Median 789.0 204.4 206.4 1337.0 231.0 

S. Deviation 485.8 209.1 #N/A 936.6 4602.1 
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Minimum 1377.3 408.1 395.3 11662.8 2455.3 

Maximum 75.3 21.0 37.0 116.9 11.6 

Intermediation 

Model 
Deposits (I) 

Non- 

interest 

Expense 

(I) 

Fixed 

Assets (I) 

Total Loans 

& Leases (O) 

Marketable 

Securities 

(O) 

Non-

Interest 

Income (O) 

Mean 43544.9 742.4 492.6 32439.8 7045.8 646.8 

S. Error 5622.6 91.0 74.1 4272.1 1050.1 109.4 

Median 23979.6 408.9 287.6 13964.3 3550.7 231.0 

S. Deviation 48693.5 787.7 641.9 36997.8 9094.3 947.6 

Minimum 1748.6 58.0 25.6 1357.0 239.0 11.6 

Maximum 193574.8 3736.6 3891.2 144431.8 47020.2 4602.1 

 

 

5.0 RESULTS AND ANALYSIS 
 

We find that the analysis of both cost-revenue variant and intermediation models give similar account. 

This agrees with the evidence produced by Paradi et al. (2001) in their studies of Canadian banks 

using both types of banking models. Here we present the analysis of intermediation model. Table 2 

presents the mean efficiency scores of each window from Window 1 to Window 13. The CRS and 

VRS mean efficiency scores in windows 1 through 9 are less than one, but nonetheless the scores are 

considerably high. Since the scores are less than one, the banks have considerable technical 

inefficiency. In every window, the bulk of the inefficiency is due to the banks’ failure to minimize the 

input amounts used in the delivery of services. In other words, the banks have pure technical 

inefficiency which indicates that the banks consumed resources more than optimally required (best 

practice) to produce the given outputs.  

 

Similar results found by Yue (1992), Jemric and Vujcic (2002), and Drake and Hall (2003) Webb 

(2003), Abdul Majid and Sufian (2005) and Chambers and Cifter (2006). For example in window 9 

(the period between 2003 and 2005), the VRS mean efficiency score is 0.9745 which also implies that 

on average the banks have 2.55 % inefficiency. In order to operate at the efficiency frontier the banks 

have to reduce all input amounts by the same proportion without affecting the current output levels. 

After reducing all the inputs proportionally and to avoid further wastage and inefficiency relative to 

the best practice, the banks can reduce further input amounts (i.e. the input slacks). During the period 

defined as window 9, the major input slack is in the fixed assets (plant, property and equipment). 

Another input slack is the non-interest expense (overheads). This could be attributed to over the years 

increased in the personnel expenses as staff salary and benefits account for at least 50% of the 

overhead expenses in the banking industry. The variation in the mean scores is larger from window 5 

to window 8. This could be attributed to the post-consolidation effect as the banks trying to deal with 

newly enlarged resources and higher output levels. We can see that the variation is lower from 

window 9 onwards as the impact has leveling off. 

 

Table 2: CRS, VRS, and SE Mean Efficiency Scores of Windows 

 CRS VRS SE 

Windows Mean Std Dev Mean Std Dev Mean 

1 0.933 0.072 0.990 0.023 0.943 

2 0.964 0.050 0.987 0.026 0.977 

3 0.970 0.044 0.982 0.036 0.987 

4 0.949 0.063 0.974 0.041 0.975 

5 0.935 0.108 0.962 0.082 0.972 

6 0.948 0.109 0.963 0.087 0.984 
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7 0.952 0.099 0.963 0.089 0.989 

8 0.933 0.101 0.967 0.088 0.965 

9 0.956 0.073 0.975 0.056 0.981 

10 0.975 0.052 0.053 0.047 0.992 

11 0.959 0.063 0.065 0.050 0.980 

12 0.957 0.053 0.056 0.042 0.980 

13 0.968 0.048 0.050 0.008 0.971 

 

 

From Table 3, we also find that on the average, the banks have scale economies (IRS) and have not 

grown too big in their operation. However, the primary inefficiency is traced to the pure technical 

effects rather than an incorrect production scale. Thus, the banks will not gain much more from any 

action in finding the perceived correct production scale. From DMU (i.e. individual bank) perspective, 

on average DMU 4 is scale inefficient. It has exhausted its scale economies and gone beyond the 

region of optimal scale (DRS). We find that bigger banks tend to exhibit DRS or have gone too far in 

operational scale and grown overly large. We test for significance by which the Spearman’s 
coefficient of rank correlation of 0.392 is significant at 1% level. This evidence agrees with the 

findings of Miller and Noulas (1996), Drake and Hall (2003), Webb (2003), and Sufian (2004). DMU 

2 and 3 have technical inefficiencies that are traced to scale effects too. But they have not exhausted 

their scale economies (IRS), hence they will benefit more from size growth. DMU 1and 5 have 

technical inefficiencies that are primarily due to pure technical reasons. They will benefit more from 

reducing input amounts so as to move to the efficient frontier. However, we wish to highlight DMU 5 

which has the highest variation in its mean efficiency scores. We find that after its consolidation 

exercise in the period 2000 - 2001, the input trend for overhead expenses increased by 46.5 % from 

the previous financial year. The personnel cost, which increased by 63% from the previous financial 

year, contributed significantly to the sudden spike in the input trend. DEA measure is very sensitive to 

such data trend. We can see that DMU 5 has the lowest mean efficiency scores. 

 

Table 3: CRS, VRS, and SE Mean Efficiency Scores of DMUs 

  CRS VRS SE 

DMU Mean Std Dev Mean Std Dev Scale Eff. 

1 0.946 0.057 0.969 0.049 0.976 

2 0.967 0.043 0.989 0.027 0.979 

3 0.976 0.049 0.994 0.020 0.982 

4 0.973 0.046 0.998 0.011 0.975 

5 0.907 0.123 0.925 0.108 0.980 

 

 

We test for bank size effect on the mean efficiency scores and find that it has no correlation with the 

technical, scale or pure technical efficiency. Under the cost-revenue model, the bank asset size does 

correlate with scale efficiency. Drake and Hall (2003) found evidence in Japanese banks that big 

banks have high level of scale efficiency. Our results show significance at 5% level though the 

Spearman’s coefficient of 0.250 is considered very low. We also find that the bank efficiency 

fluctuates over time because a bank that has scale efficiency in one window may have pure technical 

efficiency in another window. Yue (1992) and Paradi et al. (2003) found similar evidence in Missouri 

banks and Canadian banks, respectively. We observe that the variation in mean efficiency scores get 

higher in the period after 1999 and later get lower in the period after 2003. The variation is greater in 

the intermediation model than the cost-revenue model. Jemric and Vujcic (2003) found similar 

evidence in the efficiency analysis of Croatian banks. The cost-revenue model uses input and output 

variables from the bank income statement alone. The intermediation model uses variables both from 

the balance sheet and income statement, which captures two facets of the bank operation. The banks 
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then were dealing with newly enlarged resources and higher given output levels. Hence, we see the 

intermediation model exhibits greater variability in its mean efficiency scores. 

 

6.0 CONCLUSIONS 

 
This study has examined five domestic commercial banks in Malaysia over the period from 1995 to 

2009. By using DEA window analysis we inflate the number of observed data points given our very 

small sample size. In each window, the number of banks is tripled because each bank at a different 

year is taken as independent DMU. Thus, we obtained information about the short-run evolutions of 

DEA efficiencies of every bank during the fifteen years. Several conclusions emerge from this study. 

Firstly, the commercial bank mean efficiency scores or rankings have no correlation with the bank 

asset size. Small commercial banks may be equally inefficient as large commercial banks. However, 

there is evidence that big banks tend to be scale efficient under the cost-revenue model but the 

correlation is very low though statistically significant. Secondly, big banks tend to exhaust their scale 

economies and experience decreasing returns to scale. Small banks have not exhausted their scale 

economies and may benefit from size growth. Thirdly, on average the commercial banks have more 

pure technical inefficiency rather than scale inefficiency. Thus, the banks should gain more from 

reducing input quantities to produce the given outputs and to operate at the efficient frontier. Lastly, 

the technical efficiency of commercial banks fluctuates over time. A bank can be scale efficient in one 

period and may not be efficient in another period.  

 

There are other factors that influence bank efficiency and some of these factors are beyond the control 

of bank managers. For instance, a bank may have a certain socio-economic objective to fulfill and this 

may influence its potential efficiency score. The extents to which a bank taking risk may translate into 

higher efficiency scores as the bank produce more loans. But the loans may not be necessarily of good 

quality and may have a higher probability of default. Second-stage econometric or regression analysis 

can be done to test for some of the factors for their explanatory powers.  
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