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Abstract

We model the systemic risk associated with the so-called balance-sheet amplification

mechanism in a system of banks with interlocked balance sheets and with positions in real-

economy-related assets. Our modeling framework integrates a stochastic price dynamics with

an active balance-sheet management aimed to maintain the Value-at-Risk at a target level.

We find that a strong compliance with capital requirements, usually alleged to be procyclical,

does not increase systemic risk unless the asset market is illiquid. Conversely, when the asset

market is illiquid, even a weak compliance with capital requirements increases significantly

systemic risk. Our findings have implications in terms of possible macro-prudential policies

to mitigate systemic risk.

Keywords : Systemic risk, Procyclicality, Leverage, Market liquidity, Network models

JEL classification: G20, G28

1 Introduction

In a mark-to-market financial system, asset price movements have an instantaneous impact on

the net worth of the market participants who hold those assets. This effect is amplified when

financial institutions use borrowing to leverage their exposure to risky assets. Moreover, there

are also indirect spillover effects on market participants who hold claims on those holding the

assets. Therefore, aggregate asset-price shocks can propagate through the financial system via

both direct and indirect linkages. A recent body of research has investigated the relation between

price changes and subsequent balance sheet adjustments resulting from the fact that institutions

actively manage their Value-at-Risk (Adrian and Shin, 2010, 2011b; Shin, 2008). This practice

leads to spirals of asset devaluation (or overvaluation). Accordingly, a debate has developed

regarding the appropriate policy instruments to use to mitigate the procyclical effects arising

0We are grateful to Andrea Collevecchio, Martino Grasselli, Iman Lelyveld, Loriana Pelizzon, Paolo Pellizzari,

Frank Schweitzer, Jean-Charles Rochet, Didier Sornette, Claudio J. Tessone. The authors acknowledge financial

support from the ETH Competence Center “Coping with Crises in Complex Socio-Economic Systems” CHIRP

1 (grant no. CH1-01-08-2), the European Commission FET Open Project “FOC” (grant no. 255987), and the

Swiss National Science Foundation project “OTC Derivatives and Systemic Risk in Financial Networks” (grant

no. CR12I1-127000/1). Correspondence to Paolo Tasca, ptasca@ethz.ch.
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from the interplay between leverage and mark-to-market asset valuation (see e.g., BIS, 2010;

EC, 2011).

Our goal is to asses how systemic risk depends on the interaction between (1) the level of

bank compliance with capital requirements and (2) asset market liquidity in the presence of

an unexpected common price shock.1 Unlike previous works focusing on price volatility, we

characterize risk in terms of time-to-default in a system context by combining a balance sheet

approach with a dynamic stochastic framework.

First, we model a financial system that is composed of leveraged financial institutions (hereafter,

“banks”) that manage diversified but possibly overlapping portfolios of real-economy-related as-

sets (hereafter, “external assets”). Banks hold claims on each other (hereafter, “interbank claims”),

the value of which depend on the obligor’s leverage. Finally, banks borrow funds from market

players outside the banking network (hereafter, “external funds”). Second, we model dynamic

balance-sheet management. As noted by Adrian and Shin (2010), the practice of adjusting the

Value-at-Risk (VaR) to a given target level is equivalent to maintaining leverage close to a con-

stant value of financial reporting leverage (hereafter, “target leverage”). The paper formalizes

an accounting rule in support of Adrian and Shin (2010) findings, whereby banks sell or buy

external assets in response to price movements. An increase (decrease) in prices induces an ex-

pansion (contraction) of the balance sheets, which generates further price movements in the

same direction. Consequently, prices exhibit a stochastic dynamics whose return is influenced

by bank trades. In other words, the combination of (1) balance-sheet management and (2) the

price response generates a positive feedback loop between leverage and prices (i.e., leverage-price

cycle) that may amplify the effects of common shocks into a spiral of asset price devaluation or

over-valuation.

We thus introduce a table of market procyclicality in the exogenous parameters ε and γ. The

parameter ε represents the level of bank compliance with capital requirements, i.e., promptness

in adjusting leverage deviations from the target level. Values of ε that are close to zero denote

banks’ sluggish adjustments, whereas values of ε that are close to one mean that banks react very

promptly. In other words, ε can be understood as a scaling factor of the trading size engendered

by the accounting rule. The parameter γ captures the market impact (i.e., the average price

response to bank trades). γ is also related to the market liquidity risk. We define a liquid market

as a market where participants can execute large transactions at short notice with minimal impact

on the price. An asset will be liquid if it is traded in a liquid market. Therefore, low (high) values

of γ imply a liquid (illiquid) market. Thus, the market is said to be weakly (strongly) procyclical

when both ε and γ are small (large).

1“Systemic risk” is meant here as the risk of a systemic default and in the following it will be used interchange-

ably with the term “probability of systemic default”.
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Although the model can accommodate various market microstructures and heterogeneous players,

in the analysis we focus on a scenario that includes a homogeneous and tightly-knit financial

system. In this context, we test the resilience of the system by introducing a common market-wide

price shock (hereafter, “price shock”). The price shock is generic because we do not distinguish

between fundamental and non-fundamental shocks. In addition, the asset market is incomplete

in the sense that banks cannot insure themselves against the price shock (i.e., there are no Arrow

securities that are contingent on the shock).

Our findings are as follows. A negative shock to asset prices depletes capital and increases lever-

age. When ε is not too small and γ is sufficiently high, (i.e., when the price response to bank

trades is more rapid than the adjustment in leverage), banks continue pursuing their target

leverage without reaching it. In so doing, banks generally amplify the effect of the initial price

shock. Therefore, the probability of systemic default is higher. Conversely, when ε is high and

γ is very close to zero (i.e., when the market is so liquid that the price response to bank trades

is considerably weaker than the adjustments in leverage), banks manage to promptly track their

target leverage without triggering an amplification of the initial price shock. In this case, the

probability of systemic default remains low. In addition, the mix of funding sources is not irrel-

evant: the probability of systemic default increases with the average bank exposures to external

funds relative to interbank funds.

Overall, this paper sheds light on the mechanisms that govern the emergence of the tension

between (1) the individual incentive to target a given VaR (relative to its economic capital) and

(2) systemic risk. In terms of their policy implications, our results are significant because they

suggest that in the presence of price shocks, counter-cyclical policies should take into account the

interplay between banks’ procyclical behavior and the time-variation of asset market liquidity.

This paper is structured as follows. We begin with a review of the related literature. Then,

Section 2 introduces the model. In Section 3, we simplify the modeling framework using mean-

field approximation and conduct a numerical analysis of the probability of systemic default.

Section 4 presents the results. Section 5 concludes and considers the policy implications of the

results.

1.1 Related Literature

This paper is related to the following discussions in the literature. Several authors have inves-

tigated financial contagion in the interbank market (see e.g., Allen and Gale, 2001; Battiston

et al., 2012a,b; Elsinger et al., 2006; Freixas et al., 2000; Furfine, 2003; Tasca and Battiston, 2011).

Other studies have investigated contagion effects mediated by common asset holding (see e.g.,

Allen et al., 2012; Kiyotaki and Moore, 2002). As our paper adopts a balance-sheet approach, the

results are pertinent to the literature on the amplification of financial shocks via balance sheet

3/30



http://www.sg.ethz.ch

P. Tasca, S. Battiston:
Market Procyclicality and Systemic Risk

Submitted March 16, 2013

transmission mechanisms (Brunnermeier, 2008; Kashyap and Stein, 2000) – a literature review

on this topic is carried out in Krishnamurthy (2010). Moreover, the paper offers a first attempt

to link the balance-sheet approach to a dynamic stochastic setting in a network context. Using

this framework, we model the procyclicality of leverage, the empirical evidence of which has been

documented mainly in Adrian and Shin (2008a, 2010) and Greenlaw et al. (2008). In particular,

we study the macro-level consequences of procyclical leverage and analyze the mutual influence

between the contraction and expansion of banks’ balance sheets and asset prices. In a different

setting, Adrian and Shin (2011b) offer a two-stage principal-agent model for use in studying

the relationship between balance sheet leverage and the riskiness of bank assets. Instead, our

network approach is more related to the recent literature on the network-based “leverage accel-

erator” mechanism (see e.g., Bargigli et al., 2012). Moreover, as liquidity risk is embedded in our

model, the paper complements a growing literature on funding and market liquidity problems

that in the recent U.S. crisis (2007-2009) started the systemic liquidity spirals (see e.g., Gârleanu

and Pedersen, 2007). Our model partially resorts to the assumptions of “equity rationing”(see

e.g., Stiglitz and Weiss, 1981) and “debt overhang”, the idea that, under certain conditions, it is

difficult or inconvenient for banks to raise new equity; evidence and possible causes are discussed

in Adrian and Shin (2011a). Moreover, the idea that capital scarcity may lead to a “credit crunch”

has been investigated by Bernanke et al. (1991); Calomiris and Wilson (1998), among others.

Finally, the problem of the procyclical effects of capital adequacy regulation is a classic conflict

between the micro and macro perspectives on financial stability (see e.g., Acharya, 2009). This

issue has been widely discussed in the context of the Basel accords (see e.g., Blum and Hellwig,

1995; Estrella, 2004).

2 Model

2.1 The Interbank Network

Let time be indexed as t ∈ [0, T ], and consider an interbank market composed of a set Ωn of n

risk-averse banks bound by market risk-based capital requirements. To keep the notation simple,

whenever it is unambiguous given the context that a variable is time-dependent, we will omit

the index t. The balance-sheet identity of bank i ∈ Ωn is given by

ai = hi + bi + ei . (1)

where ai is the market value of bank i’s assets, hi is the book value of bank i’s obligations to

other banks in the network (e.g., zero-coupon bonds),2 bi is the book value of bank i’s external

2More specifically, hi is the value of the payment at maturity that each obligor i has promised to its lenders.

The equation implicitly assumes that, for all of the banks in the system, there is only one type of debt with the

same maturity date and seniority.
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funds with actors outside the banking system, and ei is the equity value. It is assumed that

each bank invests in two asset classes composed of: (i) n − 1 obligations, each issued by one of

the other banks in the system and (ii) m homogeneous investment opportunities that belong to

the set Ωm of external assets related to the real side of the economy. Hereafter, for the sake of

simplicity, we omit the lower and upper bounds of the summations. It remains understood that,

in the summation for external assets, the index ranges from 1 to m, and that, in the summation

for banks, the index ranges from 1 to n. The asset side in Eq. (1) reads

ai :=
∑

l

Qilsl +
∑

j

Wij~j . (2)

In the equation above, Qil (≥ 0) is the quantity of the external asset l held by i; sl is the price

of the external assets l; Wij (≥ 0) (with Wii = 0) is the quantity of debt issued by j and held by

i; and ~j is the present market value of bank j’s debts, defined as the discounted value of future

payoffs:

~j := hj [1 + rj ]
−t̂ ,

where rj is the rate of return on t̂-years maturity obligations, which are assumed to be continu-

ously rolled over at every time t. Correspondingly, bank i’s balance sheet can be represented as

follows.

Bank-i balance-sheet

Assets Liabilities
∑

j Qilsl hi
∑

j Wij~j bi
ei

Fig. (1) illustrates one possible architecture of the financial system described in our model. In

general, there can be overlaps among banks’ portfolios of external assets, external funds and

interbank claims. For instance, banks 1 and 2 have one external asset in common, and both hold

claims against bank 4. Bank 4 shares the same external fund with bank 3.
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Figure 1: Illustration example of a stylized architecture of the financial system.

2.2 Leverage

The bank i’s leverage is defined as its debt-asset ratio.3 From Eq. (1) and Eq. (2) we have,

φi := (hi + bi)/ai (3a)

= (hi + bi)/





∑

l

Qilsl +
∑

j

Wij~j



 (3b)

= (hi + bi)/





∑

l

Qilsl +
∑

j

Wijhj [1 + rj ]
−t̂



 ∈ (0, 1]. (3c)

We assume that the rate of return on claims on other banks depends linearly upon the obligor’s

credit worthiness as measured by its leverage. In particular, as in Tasca and Battiston (2011),

we assume that for each obligor j, the following relationship holds:

rj := rf + βφj , (4)

where rf is the risk-free rate, and where βφj denotes the credit spread associated with the j

issuer. The parameter β ∈ (0, 1) is the factor loading on j’s leverage and can be understood

as the responsiveness of the rate of return to the bank’s financial condition. After substituting

Eq. (4) into Eq. (3c), we obtain a system of coupled equations in which bank i’s leverage is a

positive function of the leverage of all of the obligors of i:

φi = (hi + bi)/





∑

l

Qilsl +
∑

j

Wijhj [1 + rf + βφj ]
−t̂



 . (5)

3Notice that the leverage is always bigger than zero since banks are by definition debt-financed.
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2.3 Target Leverage. An Accounting Rule

The VaR is widely considered by financial institutions as part of their risk management procedure.

As in Shin (2008), we assume that each bank i ∈ Ωn adjusts its balance sheet to maintain

“economic capital” (equity ei) equal to its VaR. In other words, the VaR is the equity capital

that a bank must hold to remain solvent with probability c. As explained below, this practice

is equivalent to targeting a reference leverage φ∗

i . Let us use Vi to denote the VaR per dollar

of assets held by i. If bank i maintains equity capital ei to meet total VaR, then we have

ei = Vi × ai ⇒ ai − hi + bi = Vi × ai ⇒ hi + bi = ai × (1− Vi). This implies that i has a target

leverage φ∗

i = (hi + bi)/ai = (1− Vi).

The accounting rule that allows bank i to keep its leverage close to φ∗

i over time finds its economic

ground in Adrian and Shin (2008a, 2010) and operates as follows. In a falling market (i.e., under

slumping external asset prices), the leverage increases (i.e., φi > φ∗

i ). In this scenario, the bank

shrinks its balance sheet by selling (a portion of) its external assets and paying back (a portion

of) its external debts with the proceeds. In a rising market (i.e., under booming external asset

prices), the leverage decreases (i.e., φi < φ∗

i ). In such a scenario, the bank expands its balance

sheet by taking on additional external funds to invest the “fresh” cash in external activities.

Therefore, the dynamics of banks’ balance sheets may reinforce cyclical upturns and downturns.

To derive a formal accounting rule, we make the following assumptions:

1. Bank i can neither issue new equity or replace equity with debts.4

2. The notional value of bank i’s interbank debts is constant over time, i.e., hi(t) = hi for all

t ≥ 0.5

Note that the second assumption does not prevent bank i from changing counterparties or ad-

justing their relative shares in i’s interbank debts. Moreover, it does not prevent the market value

of the interbank claims from changing over time based on the time-varying credit worthiness of

the debt issuer (see Eq. 4). The two assumptions above, together with the balance sheet identity

in Eq. (1), imply that any variation in the external assets held by bank i will correspond to an

equal amount of variation in the external funds on the liability side.

Formally, under the accounting constraints Qi =
∑

l Qil; dQi ≥ −Qi; dbi ≥ −bi, we obtain the

following accounting rule (whose derivation is provided in Appendix A).

dbi
bi

=

(

εi
κiφi

)(

φ∗

i − φi

1− φ∗

i

)

, (6)

4Some candidate explanations in support of the fact that equity remains “sticky” are explained in Adrian and

Shin (2011a).
5Because our aim is to model the leverage-price cycle, this hypothesis allows us to better capture the spillover

effect on the real economy that results from the re-adjustments of banks’ claims against real-economy-related

activities.
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dQil

Qil

=

(

εi
αil

)(

φ∗

i − φi

1− φ∗

i

)

. (7)

The parameter εi ∈ (0, 1] measures the promptness of i in pursuing the target level of leverage φ∗

i .

It can also be seen as a scaling factor of i’s trading size. The parameter κi := bi/(bi+hi) ∈ (0, 1]

is the ratio of external funds to total debts, and αil := Qilsl/(
∑

l Qilsl +
∑

j Wij~j) ∈ (0, 1] is

the ratio of the external asset l to total assets.

2.4 Leverage-Price Cycle and Market Liquidity

In this section, we formalize the leverage-price cycle and link it to the notion of market liquidity.

Inspired by the empirical research on the leverage-asset price cycle (Adrian and Shin, 2008b,

2010), we now model how the accounting rule in Eq. (7) impacts the price of (non-paying-

dividend) external assets whose dynamics are driven by a standard GBM6

dsl
sl

= µldt+ σldBl , ∀l ∈ ΩM . (8)

The (bid-ask) trading sizes serve as measures of the strength of the (demand-supply) pressures on

external assets at a given time. A large bid size indicates a strong demand for the external asset. A

large ask size shows that there is a large supply of the external asset. Banks act as “active”traders

because they demand immediacy and push prices in the direction of their trading. Instead, players

outside the banking system act as “passive” traders who act as liquidity providers. These players

are “contrarian” who take the opposite side of the banks’ transactions: they sell when the price

is high and buy when the price is low. For a given external asset l ∈ Ωm with trading volume

Ql =
∑

iQil, if banks place a bid on the order book, then the demand for the asset is larger than

the supply (i.e., dQl > 0); therefore, the price sl is likely to go up. If banks place an ask on the

order book, then the supply of the asset is larger than the demand (i.e., dQl < 0); therefore, the

price sl is likely to drop. In order to isolate the non-linear impact of the dynamic balance-sheet

management on the asset price dynamics in Eq. (8), we consider a linear relationships between

asset returns and trading volume:

E

(

dsl
sl

)

= γl

(

dQl

Ql

)

. (9)

The parameter γl ≥ 0 captures the market impact, i.e., the average price response to trade size.

This concept is closely related to the demand elasticity of price and is typically measured as

6Where Bl ∼ N(0, dt) is a standard Brownian motion defined on a complete filtered probability space

(Ω;F ; {Ft};P) where Ft = σ{B(s) : s ≤ t}, µl is the instantaneous risk-adjusted expected growth rate, σl > 0 is

the volatility of the growth rate and d(Bl, Bk) = ρlk.
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the price return following a transaction of a given volume. In other words, it is the effect that

market participants have on price when they buy or sell an external asset. It is the extent to

which buying or selling moves the price against the buyer or seller, i.e., upward during buying

and downward during selling. Market liquidity (as we will refer to it here) measures the size of

the price response to trades and is inversely proportional to the scale of the market impact: 1/γl.
7

If trading a given quantity only produces a small price change, the market is said to be liquid.

If the trade produces a substantial price change, the market is said to be illiquid. Combining

Eq. (8) and Eq. (9), we can rewrite the price dynamics as follows:

dsl
sl

= γl

(

dQl

Ql

)

dt+ σldBl , ∀l ∈ ΩM . (10)

Eq. (10), together with Eq. (6)-(7), represents the leverage-price cycle. We can describe this

positive feedback loop between leverage and prices as follows. At the beginning, the leverage φi

is set equal to the target φ∗

i at a given “reference” price s∗l (see Eq. 5). Therefore, any deviation of

sl from s∗l leads to a deviation of φi from φ∗

i , which indirectly results from the deviation of ei from

e∗i . This event triggers the previously described accounting rule. When ei > e∗i (ei < e∗i ), the bank

has a “surplus” (“deficit”) of capital to allocate to external assets. More specifically, when prices

rise (i.e., sl > s∗l ), the upward adjustment in leverage entails the purchase of external assets. The

greater (aggregate) demand for external assets tends to put upward pressure on prices, and the

reference price increases. In a downtrend, this mechanism is reversed. In a downtrend market

(i.e., sl < s∗l ), the downward adjustment of leverage to the target level entails (forced) sales of

external assets.8 The lower (aggregate) demand for external assets puts downward pressure on

prices, and the reference price decreases.

2.5 The Financial System in a Nutshell

In summary, the dynamics of the financial market can be described by the following 3× n+m

system of coupled equations with indeces range as follows l = 1, ...,m; i = 1, ..., n, and parameter

values reported in Table 1.






























dsl
sl

= γl

(

dQl

Ql

)

dt+ σdBl

dQil

Qil
=

(

εi
αil

)(

φ∗
i−φi

1−φ∗
i

)

dt

dbi
bi

=
(

εi
κiφi

)(

φ∗
i−φi

1−φ∗
i

)

dt

φi = (hi + bi)/
(

∑

l Qilsl +
∑

j Wij
hj

(1+rf+βφj)t̂

)

.

(11)

7For the sake of simplicity, in our model, γl does not change with trading volume.
8 This “flight to quality” process leads to a price decrease, which in turn forces further selling and further price

decreases.
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In this scheme, procyclicality is caused by a chain reaction triggered by an exogenous shock

(for example, a fall in house prices) and amplified by the interplay between the shock and asset

market dynamics. The propagating factor is leverage: when banks are highly leveraged, the initial

shock and the ensuing reduction in asset prices induce massive asset liquidation, accentuating

the price fall and possibly starting a vicious circle.

Parameters Description Set of Values

φ∗ Target leverage {φ∗ ∈ R : 0 < φ∗ < 1}

σ Variance of external assets {σ ∈ R : 0 < σ < 1}

ε Bank reaction to the accounting rule {ε ∈ R : 0 ≤ ε ≤ 1}

γ Price response of assets to banks’ trades {γ ∈ R : γ > 0}

h Face value of interbank obligations {h ∈ R : h > 0}

b Face value of external funds {b ∈ R : b > 0}

β Sensitivity of interbank obligations to leverage {β ∈ R : 0 < β < 1}

rf Risk-free rate {rf ∈ R : rf ≥ 0}

Table 1: Range of values for each of the parameters in the model. For the sake of simplicity, we omitted the

indices of banks and assets.

3 Analysis

The system of Eq. (11) represents a general framework based on which a number of exercises can

be conducted and several issues can be investigated. In the present paper, we focus on a specific

question that has recently risen to the top of the policy agenda:

RQ: “How does the risk of a systemic default depend on the interplay between the level of

bank compliance with capital requirements and asset-market liquidity in the presence of a

price shock? ”

Toward this end, we first simplify the above modeling framework using mean-field approximation.

Then, we provide a formal definition of systemic risk. Finally, we perform a numerical analysis

of the probability of systemic default.

3.1 Mean-field Approximation

The theoretical literature shows that the exact propagation of shocks within the interbank market

depends on the specific architecture of bank-to-bank financial linkages (see e.g., Allen and Gale,

2001; Freixas et al., 2000). However, the range of possible different architectures shrinks as

network density increases. Therefore, when the network density is relatively high, the probability
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of systemic breakdown depends only weakly on the specific network architecture. Indeed, network

density has been found to be a major driver of systemic risk (see e.g., Battiston et al., 2012a,b;

Tasca and Battiston, 2011). There is also a body of empirical evidence that suggests that financial

networks typically display a core-periphery structure with a dense core and a sparsely connected

periphery (see e.g., Battiston et al., 2012c; Cont et al., 2011; Iori et al., 2006; Vitali et al., 2011).

In the following, our aim is to describe the dynamics of the banks in the core of a core-periphery

structure.

It has been argued that the financial sector has undergone increasing levels of homogeneity

because of the spread of similar risk management models (e.g., VaR) and investment strategies

– “[...]The level playing field resulted in everyone playing the same game at the same time, often

with the same ball.”, Haldane (2009). As a result, one might reason that, banks’ balance sheet

structures and portfolios tend to look alike. In particular, in this scenario, banks’ leverage values

may differ across banks and over time, but they will remain close to the average value.

Based on these considerations, we conduct a mean-field analysis of the model, attempting to

study the behavior of the system in the neighborhood of a state in which the banks are close

to homogeneous in terms of balance sheet management and interact with each other via the

interbank network. Toward this end, we make the following three assumptions:

1. Banks set a similar reporting leverage targets, i.e., φ∗

i ≈ φ∗.

2. There exists a simplified market in which the external assets are indistinguishable and

uncorrelated and have identical initial values, i.e., s1(0) = s2(0) = ... = sl(0). In particular,

this means that (i) all of the external assets have the same expected returns and the same

volatility, (ii) the pairwise correlations are all zero (i.e., ρlk = 0, ∀ l, k ∈ Ωm), and (iii)

the external assets have the same market impact (i.e., γl = γ, ∀ l ∈ Ωm). The dynamics

of the average price9, s = 1
m

∑

l sl, is ds/s = µdt + σdB. In the absence of transaction

costs, the 1/m heuristic is the optimal diversification strategy. Therefore, at time t = 0,

each bank i composes an equally weighted portfolio of external assets, denoted as pi, with

pi =
∑

l Qilsl = Qis where Qi =
∑

l Qil with Qi1 = Qi2 = ... = Qil =
Qi

m
. Moreover, we

assume that agents have comparable market power, i.e., that their portfolios of external

assets are of a similar size, s.t. Qi ≈
1
n

∑

j Qj := Q. Therefore, pi ≈
1
n

∑

j pj := p = Qs.

In addition, the agents are assumed to have the same level of compliance with capital

requirements, i.e., εi = ε, ∀ i ∈ Ωn.

3. The agents also have similar nominal total obligations in the interbank market, i.e., hi ≈
1
n

∑

j hj := h, and similar total debt to external creditors, i.e., bi ≈
1
n

∑

j bj := b.

9Where the expected return is µ = 1

m

∑
l
µl with µ1 = µ2 = ... = µl, while σ = σ̄√

m
with σ̄ = 1

m

∑
l
σl and

B ∼ N(0, dt) is derived from the linear combination of B1,...,l,...,m uncorrelated processes.
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The first and the second assumptions imply Eq. (13), which reads the same for both individual

trades of size Q and the aggregate trade of size nQ. The second assumption also implies that the

expected return on the average price is proportional to the relative change in the average trading

size, i.e., µ = γ (dQ/Q), which therefore implies Eq. (12). The first and third assumptions imply

that the mark-to-market value of interbank claims is similar across banks, i.e., ~i :=
∑

j Wij~j ≈
1
n

∑

j ~j := ~ = h/[1 + rf + φ]−t̂. The second and third assumptions imply that the ratio of

external assets to total assets is homogeneous across banks, i.e., αi =
∑

l αil = p/(p + ~) := α.

The third assumption implies that the ratio of external funds to total liabilities is homogeneous

across banks, i.e., κi = b/(b+h) := κ. In totality, the three assumptions above imply that Eq. (5)

simplifies to φ = (h+b)/
(

Qs+ h[1 + rf + βφ]−t̂
)

, which is a quadratic expression in φ. Without

loss of generality, we set the risk-free rate equal to zero (i.e., rf = 0). We also set t̂ = 1, which

means that banks issue 1-year maturity obligations. Then, solving for φ and taking the positive

root, we obtain Eq. (15).

In conclusion, under the above approximations and assumptions, the system of Eq. (11) simplifies
to the following system of four coupled equations that will be studied in the remainder of our
analysis































































ds

s
= γ

(

dQ

Q

)

dt+ σdB

dQ

Q
=

( ε

α

)

(

φ∗ − φ

1− φ∗

)

dt

db

b
=

(

ε

κφ

)(

φ∗ − φ

1− φ∗

)

dt

φ =
h(β − 1) + βb−Qs+

(

4β(b+ h)Qs+ (h− β(b+ h) +Qs)
2
)1/2

2βQs

(12)

(13)

(14)

(15)

In this scenario, the balance sheet of each bank in the core can be represented as follows.

Balance-sheet

Assets Liabilities

~ h

p b

e

3.2 Systemic Risk

We model the default event as a first passage time problem. An individual bank is assumed

to default whenever the market value of its assets falls below the book value of its debts, even

before their maturity. Accordingly, the default occurs whenever the bank’s leverage is equal to

or greater than one.
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However, the mean-field analysis enables us to assign a systemic meaning to the single bank

default event. Indeed, banks manage overlapped portfolios composed of external assets and in-

terbank claims. Consequently, banks are subject to similar sources of risk. Moreover, the leverage

of each bank is close to the mean value across banks, i.e., φi ≈ φ, ∀i ∈ Ωn. Hence, the failure of

one bank i in the core is likely to coincide with the failure of all of the other banks. This is also

consistent with recent empirical studies (see e.g., Battiston et al., 2012c). We define systemic

default as an event in which, at any time t ≥ 0, the leverage φ is equal to or greater than one.

Formally,

A systemic default occurs whenever φ(t) ≥ 1, given that ∀ t′ < t , 0 < φ(t′) < 1.

If the set Ωn of banks is populated at a constant rate at each time interval dt, then the probability

of systemic default P[systemic default] is related to the expected default time τ̄(φ) and can

be approximated as P[systemic default] ≈ dt/τ̄(φ) with dt << τ̄(φ).10 In the following, the

probability of systemic default event is also referred to as systemic risk.

3.3 Simulation Framework

Before conducting the numerical experiments, we appropriately design the simulation framework

with respect to the following: (1) the price shock, (2) the range of γ and ε, and (3) the capital

structure.

Aggregate shock. To assess the level of balance-sheet amplification, the exogenous aggregate price

shock is assumed to have the following properties: (i) it is common, i.e., the shock is not asset-

specific and cannot be diversified away; (ii) it is a single shock, i.e., it hits the external assets

only once at the beginning of the simulation process; and (iii) it is uniform, i.e., the strength of

the shock is homogeneous across assets.

Range of γ and ε. It is convenient to generate a table P(ε×γ) that represents the level of market

procyclicality as a function of bank compliance with capital requirements ε and asset-market

impact γ. Accordingly, the market can be weakly, moderately or strongly procyclical (see Fig.2).

For the former parameter, we choose a set of values that span the entire range of variation:

ε := {0.1, 0.2, ..., 1}. Because our preliminary tests indicated that for values of γ that are approx-

imately larger than five, the results of the analysis do not change, so we choose the following set

of values γ := {0.1, 0.2, ..., 5}.

Capital structure. First, note that under the assumption (2) used to derive the accounting rule

in Eq. (6)-(7), h(t) = h for all t ≥ 0. Hereafter, for the sake of simplicity, we impose the initial

condition b+h = 1 and consider three different funding policies based on the imbalance towards

10A formal definition of τ̄(φ) is provided in Appendix B.
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Figure 2: Table of Market Procyclicality. The left-bottom region of weak procyclicality represents a context

in which the asset market is highly liquid (i.e., γ ' 0) and in which the banks loosely react to a asset-price

changes (i.e., ε ' 0). The left-upper region of medium procyclicality represents a context in which the asset

market is very liquid (i.e., γ ' 0) and in which the banks react promptly to asset-price changes (i.e., ε / 1).

The right-bottom region of medium procyclicality represents a context in which the asset market is illiquid (i.e.,

γ / 5) and in which the banks loosely react to asset-price changes (i.e., ε ' 0). The right-upper region of strong

procyclicality represents a context in which the asset market is highly illiquid (i.e., γ / 5) and in which the

banks react promptly to asset-price changes (i.e., ε / 1).

external funds versus funds from the interbank market: high imbalance (b = 0.9 > h = 0.1),

medium imbalance (b = 0.5 ≡ h = 0.5), low imbalance (b = 0.1 < h = 0.9). We also consider

three different levels of target leverage: low target (φ∗ = 0.7), medium target (φ∗ = 0.8), high

target (φ∗ = 0.9). As a result, we have nine different capital structures, as illustrated in Tab. 2.

The remaining accounting entries for the balance sheets at time t = 0 are obtained by solving

the following system of equations:

{

p+ ~ = h+ b+ e (balance-sheet identity)

~ = h/(1 + βφ∗) (market value of interbank claims)

with p = Qs. As β ∈ (0, 1), we use β = 0.5 to represent a scenario in which interest rates on

interbank claims have an intermediate level of sensitivity to the obligors’ credit worthiness.

3.4 Monte Carlo Simulations

To compute the probability of systemic default, we first estimate the mean time to default τ̄(φ)

based on the output of two thousand Monte Carlo simulations (N = 2.000) according to Eq. (12-
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15).11 Each realization lasts a number of steps T = 50.000 with a step size of ∆t = 0.01. The

mean time to default is obtained for all of the pairs (ε, γ) in the table P(ε,γ) and all nine capital

structures in Tab. 2. The leverage-price cycle, summarized by the flow-chart in Fig. 3, is the

central part of our Monte Carlo analysis. In brief, at the beginning (t = 0), the leverage φ of

the banks is set equal the target level φ∗. To this value corresponds the “reference”price value

s∗ := [b+ h+ φ∗(bβ − h+ βh)]/[φ∗Q(1 + βφ∗)] as derived from Eq.(15). The initial price shock

(−10%) moves the banks out of “equilibrium” by deviating s from s∗ and φ from φ∗. To drive the

leverage back toward φ∗, banks adjust their external asset holdings and external funds according

to the accounting rule in Eq. (13)-(14). The re-sizing of banks’ balance sheets has a market

impact on asset prices (see Eq. 12), which in turn further influence the balance sheet entries.

This effect completes the leverage-asset price cycle (see Fig. 3). Systemic risk is then computed

using the approximation in Section 3.2.

4 Results

Fig. 4-5-6 show the probability surface of the systemic default event as a function of (1) the level

of market procyclicality and (2) the banks’ capital structure. The capital structure, instead, refers

to the balance between external and interbank funding sources. Finally, each figure corresponds

to a different level of target leverage: φ∗ = 0.7, 0.8, 0.9.

(1) Market Procyclicality In connection with the areas of the table P(ε×γ) of market pro-

cyclicality in Fig. 2, the systemic risk in Fig. 4-5-6 varies as follows.

Weak procyclicality – left lower corner of P(ε×γ) Systemic risk is at its minimum level.

Banks are in the region of weak market procyclicality characterized by a liquid asset market

(i.e., γ ' 0) and a weak adjustment of any leverage deviation from the target level (i.e., ε ' 0).

An example of sample path of leverage is illustrated in Fig. 7-c. Even though the price shock

induces some asset liquidations, it is immediately absorbed by the system because of a sluggish

balance-sheet management and a liquid asset market. Eventually, systemic risk remains at low

levels.

Medium procyclicality – left upper corner of P(ε×γ) Systemic risk is at a moderate level.

On the one side, banks promptly comply with capital requirements (i.e., ε / 1) and react to

price shocks by selling orders of large size. Therefore, massive liquidation of banks’ assets may

put further downward pressure on asset prices. On the other side, the asset market is very

liquid (i.e., γ ' 0). Therefore, potentially large quantities of the assets can be sold or bought

without significant impact on their market price. Systemic risk remains at medium levels until

11The values of the parameters used in the simulations are reported in Tab. 3, and the procedure is described

in greater detail in Appendix C.
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the liquidity does not “evaporate” from the market. An example of sample path of the leverage

is illustrated in Fig. 7-a.

Medium procyclicality – right lower corner of P(ε×γ) Systemic risk is at a moderate level.

The asset-market is illiquid (i.e., γ / 5), and banks loosely comply with capital requirements (i.e.,

ε ' 0). In this situation, the selling orders executed by the banks in response to the price shock are

limited in size. Combined with a liquidity shock, these trades produce only a small price change,

which is sufficient, however, to trigger a weak spiral of asset-price devaluation. This spiral further

degenerates the banks’ balance sheets and deteriorates the leverage. As a consequence, systemic

risk slightly increases. An example of sample path of the leverage is illustrated in Fig. 7-d.

Strong procyclicality – right upper corner of P(ε×γ) Systemic risk is at its maximum level.

Banks are in the region of strong market procyclicality characterized by the extremely dangerous

combination of a highly illiquid asset market (i.e., γ / 5) and prompt responses to any deviation

of the leverage from the target level (i.e., ε / 1). An example of sample path of the leverage

is illustrated in Fig. 7-b. In this context, banks react to the price shock via selling orders of a

significant size. If at the same time a liquidity shock materializes such that buyers temporarily

retreat from the market, external assets can only be sold at “fire-sale prices”. Eventually, the

market crash degrades the balance sheets and both leverage and the default risk increase.

(2) Capital Structure Banks’ capital structures also play an important role in systemic risk

except under weak market procyclicality. Indeed, when banks’ exposure to external funds is

greater (i.e., b > h), a price shock will have a greater effect on banks’ net worth, and systemic

risk will be higher (as indicated by the light-gray surfaces in Fig. 4-5-6). In contrast, when banks’

positions are more tilted towards the interbank market, the price shock is damped down because

it mainly propagates via a drop in the market value of the interbank claims (as indicated by

the dark-gray surfaces in Fig. 4-5-6). In this case, the systemic risk is lower. Interestingly, the

gaps between the levels of systemic risk associated with the three different funding policies are

amplified at high levels of market procyclicality (see the border between the surfaces in Fig. 4-

5-6). Finally, the higher the target leverage level is, the more pronounced the effects (compare

Fig. 4-5-6). Indeed, leverage is the propagating factor of a price shock: if banks did not target

leverage, letting equity absorb the shock, the vicious circle would be mitigated or even eliminated.

Overall, the results suggest that to mitigate the systemic effects of an unexpected price shock,

two complementary policy rules can be implemented: (1) one can allow banks to weaken their

compliance in adjusting their leverage to meet the target level (i.e., ε will decrease toward zero);12

or (2) one can set up financing facilities to increase market liquidity (i.e., γ will decrease toward

12Based on our Monte Carlo trials, we find that the leverage follows a slower mean reversion process toward the

target level. Interestingly, this effect could explain the empirical puzzle recently discovered by Adrian and Shin

(2008b) concerning the slow mean reversion over time exhibited by the (reported) leverage ratios.
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zero). If one (both) of these two policy rules is put in place, the market will transition into the

region of medium (weak) procyclicality. If, moreover, one can reduce banks’ imbalance towards

the external market and set a cap to the target leverage, the systemic risk will further decrease.13

Indeed, for containing macro-prudential risks, leverage caps could be helpful if other solutions

based on capital or contingent rules turn out to be too costly or difficult to implement. However,

one drawback of this rule lies in its difficulty to be harmonized among different business models

and cross-border banks. Moreover, leverage caps should be robust to: (i) the accounting treat-

ment of off-balance operations (incl., derivatives and hedges); and (ii) the treatment of leverage

embedded in structured finance products.

5 Concluding Remarks

In this paper, we combined a balance sheet approach with a dynamic stochastic setting to

investigate the impact of market procyclicality on systemic risk. One of the novelties of our work

is that it provides a quantitative representation of the notion of market procyclicality using a

table whose dimensions correspond to (1) the level of bank compliance with capital requirements

(controlled by the parameter ε) and (2) the degree of asset market liquidity (controlled by the

parameter γ).

The general approach is to perturb the system with an aggregate price shock and analyze the

probability of systemic default in critical regions of the table of market procyclicality. In our

model, systemic defaults are a result of drops in asset prices, which are endogenously driven by

bank trades. Thus, the leverage-asset price cycle is characterized by a “self-fulfilling” dynamics.

Essentially, over-leveraged banks (which are more likely to default) tend to liquidate their assets

after negative price variations. However, their market impact further decreases asset prices. Thus,

balance-sheet management may amplify the effect of an initial shock, turning it into a spiral of

asset price devaluation. Hence, at the heart of our model are pecuniary externalities in the form

of direct asset price contagion (via overlapping portfolios) and indirect asset price contagion (via

interbank claims). In particular, we stress the policy implications of the interplay between bank

capital requirements and asset market liquidity. When the asset market is very liquid, even a

strong compliance with capital requirements, which are usually alleged to be procyclical, do not

in fact increase the probability of systemic default. Conversely, when the asset market is very

illiquid, even a weak compliance with capital requirements increase the probability of systemic

default.

13The G20 group of leading countries agreed on September 2012 to introduce a leverage ratio on banks by the

end of 2012, as part of the Basel III reform from the global Basel Committee on Banking Supervision, to make

the sector less risky.
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Overall, this paper sheds light on the tension between (1) the individual incentive to aim for

a particular ratio of VaR to economic capital and reduce idiosyncratic shocks through asset

diversification and (2) the homogenized system that results from the fact that banks adopt

the same business and risk management practices. From an individual firm perspective, the

application of the accounting rule and asset diversification is a sensible strategy. It is important to

note that every bank is acting perfectly rationally from its own individual perspective. However,

from a systemic perspective, this strategy generates an undesirable result. In fact, when banks

start moving in a “synchronized” manner, they may amplify the effects of even small external

shocks on assets dispersed across banks.

One possible illustrative application of our modeling framework is the U.S. sub-prime crisis

(2007-2009). In that crisis, the eternal asset market would be the market for mortgage-backed

securities, which was hit by a fundamental shock (i.e., the collapse of the U.S. housing bubble).

As in our model, many of the largest financial institutions exposed to those assets were highly

target-leveraged, were interconnected via the interbank market and made use of mark-to-market

accounting. At the peak of the crisis, banks stopped lending to each other, and the market froze.

To reduce the risk of systemic collapse, the Federal Reserve injected additional liquidity and

helped banks to reduce their exposure to the external asset market by buying a portion of the

mortgage-backed securities. Therefore, our analysis suggests that policy makers should employ

macro-prudential supervisory risk assessment policies in coordination with monetary policies to

compensate for the effect of market-wide liquidity in the presence of aggregate shocks.

The simplicity of our theoretical framework allows for the present research to be extended in

several ways. For instance, the core of banks could be understood as “too-big-to-fail”, and one

could try to model the moral hazard problem14, which could induce excessive risk-taking with

regard to external assets. Researchers might also consider the effect of the heterogeneity of banks’

balance-sheet structures and target leverage levels as well as heterogeneity in terms of asset price

volatility and drift. Finally, one could include dynamic link formation both in the interbank

network and in the network of banks and external assets.

14Moral hazard would arise from banks’ expectations concerning the intervention of the central bank in providing

liquidity or reducing exposure to external assets.
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φ∗ = 0.7 φ∗ = 0.8 φ∗ = 0.9

b > h

Assets Liabilities

~ = 0.074 h = 0.1

p = 1.354 b = 0.9

e = 0.428

Assets Liabilities

~ = 0.071 h = 0.1

p = 1.179 b = 0.9

e = 0.25

Assets Liabilities

~ = 0.069 h = 0.1

p = 1.041 b = 0.9

e = 0.11

b = h

Assets Liabilities

~ = 0.37 h = 0.5

p = 1.058 b = 0.5

e = 0.428

Assets Liabilities

~ = 0.357 h = 0.5

p = 0.893 b = 0.5

e = 0.25

Assets Liabilities

~ = 0.345 h = 0.5

p = 0.765 b = 0.5

e = 0.11

b < h

Assets Liabilities

~ = 0.66 h = 0.9

p = 0.768 b = 0.1

e = 0.428

Assets Liabilities

~ = 0.643 h = 0.9

p = 0.607 b = 0.1

e = 0.25

Assets Liabilities

~ = 0.620 h = 0.9

p = 0.490 b = 0.1

e = 0.11

Table 2: Banks’ capital structures at time t = 0 as used in the Monte Carlo simulations, based on three differ-

ent funding policies and three different levels of target leverage.

Model Parameters Simulation Setting Initial Conditions

σ = 0.1 shock= −10% b0 = 0.1, 0.5, 0.9

rf = 0 N = 2.000 Q0 = 1

β = 0.5 ∆t = 0.01 s0 = s∗ × (shock + 1)

ε = 0.1 : 0.1 : 1 T = 50.000

γ = 0.1 : 0.1 : 5

h = 0.1, 0.5, 0.9

Table 3: Range of values and initial conditions used in the simulation analysis.
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Figure 3: Flow-chart of the numerical simulation of the financial system in Eq. (12-15) with an emphasis on

the leverage-price cycle. Note that we use pk to denote the new portfolio value after the price shock.
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Figure 4: Surface probability of systemic default when banks’ target leverage is 0.7. In the x-axis, γ represents

the average price response to trades. In the y-axis, ε represents the intensity of bank compliance with capital

requirements. The light gray surface shows the probability of systemic default when banks have high imbalance

towards external funds (b > h). The gray surface shows the probability of systemic default when banks have

medium imbalance towards external funds (b = h). The dark gray surface shows the probability of systemic

default when banks have high imbalance towards external funds (b > h).
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Figure 5: Surface probability of systemic default when banks’ target leverage is 0.8.

For a description of the surfaces see Fig. 4.
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Figure 6: Surface probability of systemic default when banks’ target leverage is 0.9.

For a description of the surfaces see Fig. 4.
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Figure 7: Sample paths for the leverage with target leverage φ∗ = 0.6. The target leverage works as a constant

long-run mean. However, the leverage follows a process that is non-stationary. Indeed, the leverage dynamics is

derived by the non-linear system in Section 3.1 in which the price process in Eq.12 is non-stationary. Neverthe-

less, in case (c) of weak procyclicality in which both ε and γ approximate zero, the path resembles a stationary

process with mean reversion level equal to 0.6. In this case, the dynamics of: (1) the price process in Eq.12;

(2) the bank asset trading in Eq.13, and (3) the external funds in Eq.14 are damped down by the parameter

ε ≡ γ = 0.1.
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A An Accounting Rule Based on Target Leverage

In this section we derive the accounting rule in Eq. (6-7), according to which a generic bank i ∈ Ωn adjusts

its balance sheet entries in response to an asset price change. At time t=0, bank i starts its activity with a

target leverage, φi(0) ≡ φ∗
i . As pointed out in Section 2.3, the accounting rule is based on the underlying

assumption that bank i keeps its debt/credit positions fixed in the interbank market: the bank only

adjusts the quantity of external assets and external funds: hi(0) = hi and
∑

j Wij(0)~j(0) =
∑

j Wij~j

for all t ≥ 0 and all i, j ∈ Ωn. Thus, the initial leverage can be written as φi(0) =
hi+bi(0)∑

l
Qil(0)sl(0)+

∑
j
Wij~j

.

At time t=1, for the sake of simplicity, let only one external asset l ∈ Ωm be shocked. Ceteris paribus

(i.e., bi and Qil remain as they were at time t=0), the new price value sl(1) implies the following leverage:

φi(1) = hi+bi(0)∑
l
Qil(0)sl(1)+

∑
j
Wij~j

6= φ∗
i . After the price shock, at time t=2, the bank is able to adjust its

leverage to the target level by changing the quantity of external asset l held on the asset side – i.e.,
∑

l Qil(0) →
∑

l Qil(2), and of the external debts on the liability side – i.e., bi(0) → bi(2). As a result,

the new leverage at time t=2 is equal to the target level, i.e., φi(2) ≡ φ∗
i . Expanding the equivalence

φi(2) ≡ φi(0) ≡ φ∗
i yields

φi(2) =
hi + bi(2)

∑

l Qil(2)sl(1) +
∑

j Wij~j
≡

hi + bi(0)
∑

l Qil(0)sl(0) +
∑

j Wij~j
≡ φ∗

i . (16)

Now, the equation for leverage at time t=1 can be re-written as
∑

j Wij~j +
∑

l Qil(0)sl(1) =
hi+bi(0)
φi(1)

⇒
∑

j Wij~j =
hi+bi(0)
φi(1)

−
∑

l Qil(0)sl(1), which we substitute into the equation for the leverage at time t=2

as follows:

φi(2) =
hi + bi(2)

∑

l Qil(2)sl(1) +
hi+bi(0)
φi(1)

−
∑

l Qil(0)sl(1)
=

hi + bi(2)
hi+bi(0)
φi(1)

+∆Qil(2)sl(1)
, (17)

where ∆Qil indicates the variation in the quantity of external assets in bank i’s portfolio due to a change

in its holdings of external asset l. Eq. (17) can be re-written as

hi + bi(0)

φi(1)
+ ∆Qil(2)sl(1) ≡

hi + bi(2)

φ∗
i

. (18)

Based on the assumptions associated with the accounting rule as indicated in Section 2.3, the following

identity holds true:

bi(2) = bi(0) + ∆Qil(2)sl(1) . (19)

Then, substituting (19) into (18) yields hi+bi(0)
φi(1)

+∆Qil(2)sl(1) =
hi+bi(0)+∆Qil(2)sl(1)

φ∗

i

, from which, with

little arrangements we obtain

∆Qil(2)sl(1) =
hi + bi(0)

φi(1)

(

φ∗
i − φi(0)

1− φ∗
i

)

. (20)

Therefore, the rate of change in the demand for asset l from bank i is:

Qil(2)−Qil(0)

Qil(0)
=

∑

j Wij~ij +Qil(0)sl(1)

Qil(0)sl(1)

(

φ∗
i − φi(0)

1− φ∗
i

)

=
1

αil

(

φ∗
i − φi(0)

1− φ∗
i

)

, (21)
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where αil =
Qil(0)sl(1)

ai(1)
is the ratio of the value of the external asset l to the total asset value held by the

bank. The relative change in debts is easily obtained from Eq. 19:

bi(2)− bi(0)

bi(0)
=

hi + bi(0)

bi(0)φi(0)

(

φ∗
i − φi(0)

1− φ∗
i

)

=
1

κiφi(0)

(

φ∗
i − φi(0)

1− φ∗
i

)

, (22)

where κi =
bi(0)

hi+bi(0)
is the ratio of external debts to the total debts. In the presence of market frictions,15

the bank may react with a certain (in)elasticity εi ∈ (0, 1] to deviations in leverage φi from the target level.

Heuristically, in continuous time, the accounting rule implies the following (rates of) change, respectively,

for the demand for external assets and the amount of external debts:

dQil

Qil
=

(

εi
αil

)(

φ∗
i − φi

1− φ∗
i

)

dt (23)

dhi

hi
=

(

εi
κiφi

)(

φ∗
i − φi

1− φ∗
i

)

dt . (24)

The boundary conditions are: (i) dQi

Qi
=

∑

l

(

dQil

Qil

)

s.t. dQil

Qil
= 0 for some l ∈ Ωm; (ii) dQil ≥ −Qil for

all l ∈ Ωm and i ∈ Ωn, and (iii) dhi ≥ −hi for all i ∈ Ωn. The accounting rule in Eq. (23) can be easily

generalized if bank i changes the quantity of more than one external asset. For example, the rule for

changing the quantity of all of the assets in Ωm is

dQi

Qi
=

(

εi
αi

)(

φ∗
i − φi

1− φ∗
i

)

dt (25)

where Qi =
∑

l Qil and αi =
∑

l αil.

B Expected time-to-default

The first time to default τ(φ), is defined as the first time the process {φ}t≥0 touches the upper bound

of the set Ωφ := (0, 1]. Namely, τ(φ) = inf{t ≥ 0 : φ(t) ≥ 1} with inf{∅} = T if one is never reached.

The full characterization of τ(φ) is its transition probability density function fφ(1, t | φ0, 0) conditional

to the initial value φ(0) := φ0 ∈ (0, 1). Then, the mean time to default is

τ̄(φ) :=

∫ T

0

tfφ(1, t | φ0, 0)dt (26)

which is the mean first hitting time for {φ}t≥0 to reach the absorbing default barrier before the terminal

date T .

15I.e., market and (or) firm structures that prevent banks from instantly adjusting their balance sheets using

the accounting rule.
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C Numerical Analysis

In this section, we show how to obtain the mean time to default from the system (11), through simulations

of the SDEs. The first step is to simulate the standard Brownian motion. Then, we look at stochastic

differential equations, after which we compute the exit time for the process {φ}t≥0 through the upper

barrier fixed at one.

Simulation of Brownian Motion We begin by considering a discretized version of Brownian

motion. We set the step-size as ∆t and let Bℓ denote B(tℓ) with tℓ = ℓ∆t. According to the properties of

Brownian motion, we find

Bℓ = Bℓ−1 + dBj ℓ = 1, ..., L. (27)

Here, L denotes the number of steps that we take with t0, t1, ..., tL as a discretization of the interval [0, T ],

and dBℓ is a normally distributed random variable with zero mean and variance ∆t. Expression (27) can

be seen as a numerical recipe to simulate Brownian motion.

Simulation of the SDEs We use the Euler-Maruyama method. First, we discretize the dynamics of

the processes {s}t≥0, {Q}t≥0 and {b}t≥0. Then, we substitute the value of s, b and Q into the discrete

time version of Eq.(15). It is unnecessary to derive the dynamics of {φ}t≥0 via Ito’s Lemma from the

dynamics of {s}t≥0, {Q}t≥0 and {b}t≥0. We directly use the expression in Eq.(15), which is the closed-

form solution for φ in terms of s, Q and b. Therefore, the discrete version of the system of equations in

Section 3.1 reads as follows:


































sℓ = sℓ−1 + µs(φℓ−1, sℓ−1, φ
∗, γ, ε, αℓ)∆t+ σ(sℓ−1)dBℓ , s(0) = s0

Qℓ = Qℓ−1 + µQ(φℓ−1, φ
∗, ε, αℓ)∆t , Q(0) = Q0

bℓ = bℓ−1 + µb(φℓ−1, bℓ−1, φ
∗, ε, κℓ)∆t , b(0) = b0

φℓ =
h(β − 1) + βbℓ −Qℓsℓ +

√

4β(bℓ + h)Qℓsℓ + (h− β(bℓ + h) +Qℓsℓ)
2

2βQℓsℓ

where αℓ = (Qℓ−1sℓ−1)/(Qℓ−1sℓ−1 + ~ℓ), ~ℓ = h/(1 + βφℓ−1), κℓ = bℓ−1/(bℓ−1 + h). Here φℓ, sℓ , bℓ,

αℓ, ~ℓ, Qℓ and κℓ are the approximation to φ(ℓ∆t), s(ℓ∆t), b(ℓ∆t), α(ℓ∆t), ~(ℓ∆t), Q(ℓ∆t) and κ(ℓ∆t).

While, ∆t is the step size, dBℓ = Bℓ −Bℓ−1 and L is the number of steps we take.

Estimation of expected time to default The expected exit time can be estimated in the fol-

lowing manner. We simulate a single sample path for {s}t≥0, {Q}t≥0, {b}t≥0 and compute the value φℓ.

Then, we observe the time at which the process {φ}t≥0 crossed the default boundary fixed at one. Once

this point has been reached, we halt the simulation. The observed time approximates the exit time in

the current sample path. If the trajectory of {φ}t≥0 does not exit through one before T , we set the exit

time equal to T , i.e., the economy terminal date. By using the Monte Carlo method, we estimate the

expected exit time for the system by simulating a total of N sample paths within [0, T ]. We keep track

of the fraction of trajectories that did not cross the default boundary before T and make sure to set T

to keep this a fraction as small as possible (i.e., < 5%). Let the r-th realization of the path of {φ}t≥0 be

denoted as {φr}t≥0 with r = 1, ..., N . For each of these paths, the random variable that represents the
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exit time through the default boundary is defined as: τr = inf{t ≥ 0 : φrt ≥ 1}. The expected default

time τ̄(φ) is approximated by τ̂(φ) as the total sum of the exit times divided by the number N of paths:

τ̂(φ) =
1

N

N
∑

r

τr(11φrt=1) ≈ τ̄(φ) =

∫ T

0

tfφ(1, t | φ0, 0)dt . (28)
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