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Abstract 

 

Since the seminal work by Engle (1982), the autoregressive conditional 

heteroscedasticity (ARCH) model has been an important tool for estimating the time-

varying volatility as a measure of risk. Numerous extensions of this model have been put 

forward in the literature. The current paper offers an alternative approach for dealing with 

asymmetry in the underlying volatility model. Unlike previous papers that have dealt 

with asymmetry, this paper suggests to explicitly separate the positive shocks from the 

negative ones in the ARCH modeling approach. A test statistic is suggested for testing 

the null hypothesis of no asymmetric ARCH effects. In case the null hypothesis is 

rejected, the model can be estimated by using the maximum likelihood method. The 

suggested asymmetric volatility approach is applied to modeling separately the potential 

time-varying volatility in markets that are rising or falling by using the changes in the 

world market stock price index.  
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1. Introduction 

 

It has been known for decades in the literature that the distribution of returns in financial 

markets has fat tails compared to the normal distribution (see Mandelbrot, 1963). The 

volatility of many financial variables seems to be characterized by a time-varying structure. 

Engle (1982) introduced the autoregressive conditional heteroscedasticity (ARCH) model, 

which is being extensively used for modeling the underlying time-varying volatility. 

Numerous generalizations of this model have been put forward by, among others, Bollerslev 

(1986), Nelson (1991), Bollerslev, Chou and Kroner (1992), Engle and Kroner (1995) and 

Francq and Zakoian (2012).
1
 Given the increasingly globalized character of financial markets 

and the recent turmoil in these markets, attempts aimed at knowing more about the intrinsic 

properties of the underlying volatility, as a measure of risk that influences significantly the 

behavior of economic agents, is a task worth undertaking. One issue that seems to be 

particularly pertinent within this context is the potential asymmetry that can characterize the 

time-varying volatility. This issue has been raised by, among others, Nelson (1991) who has 

suggested the exponential generalized ARCH model that allows for asymmetry by including 

indicator variables in the time-varying volatility process. Another approach is the asymmetric 

power ARCH model that is suggested by Ding et. al. (1993). One additional approach to deal 

with asymmetry is the threshold ARCH model based on the work by Petruccelli and 

Woolford (1984). Zakoian (1994) has shown how thresholds can be used for allowing some 

form of asymmetry in an ARCH model. 

 

This potential asymmetric property of a volatility measure is an important issue in practice 

because of the fact that the behavior of most financial time series is usually characterized by 

an asymmetric structure. There are several logical reasons in addition to the psychological 

ones behind this prevailing phenomenon. By nature, people tend to react more to the negative 

news than to the positive ones. This is especially the case in the financial markets. As an 

example, 5% profit has different consequences than 5% loss for a business activity. Reacting 

to the 5% profit is easy in terms of expending and hiring more employees. However, the 

                                                 

1
 For a collection of important papers on ARCH models see Engle (1995). A review of literature on ARCH 

modeling is provided by Engle (2002). For a review of the software for the estimation of ARCH models the 

interested reader is referred to Brooks (1997). In addition, Poon and Granger (2003) provide a review on 

forecasting volatility in different financial markets. For an application of the asymmetric volatility model based 

on the existing methods see also Apergis and Miller (2005). Furthermore, Francq and Zakoian (2010) have 

published recently an interesting book on GARCH modeling with applications in finance.  
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reaction to the 5% loss is not as simple. It is not as easy to fire employees as hiring them 

because of the legal restrictions as well as the moral considerations. In addition, the company 

might be reluctant to lay off the potential employees that might not be easily replaced when 

things get better. In fact, there are also natural limitations that can underlie the asymmetric 

behavior in finance. For example, there is no upper limit on the increase of a stock price. 

Theoretically speaking, the stock price can increase beyond any limit but there is, however, a 

lower limit on the stock price decrease. After all, the minimum value that a stock price can 

undertake is zero since negative stock prices do not exist. As a consequence, a given 

magnitude of the price increase must have different repercussions, in the absolute terms, than 

the same amount of price decrease. There are also additional theoretical reasons for possible 

asymmetric behavior. For instance, it is well-known since the late sixties that markets with 

asymmetric information prevail. If markets with asymmetric information exist then the 

asymmetric volatility can also exist. For all these reasons, this paper argues that it is 

important to allow for an asymmetric structure in the ARCH modeling. Furthermore, 

allowing for asymmetry might be extra useful information for investors for dealing with the 

underlying risk. It is especially during the periods in which the markets are under stress that 

the investors require precise calculation of the underlying risk.  

 

The main objective of the current paper is to provide an alternative approach that, unlike the 

existing methods in the literature, explicitly deals with the potential asymmetric property in a 

ARCH model by fitting separate models to the positive and negative changes of the 

underlying variable. That is, it is shown how the variable of interest can be decomposed into 

the positive and negative components. Then tests for ARCH effects in each component can 

be implemented. If ARCH effects prevail in any component, then a separate ARCH model 

can be fitted for that particular component. The procedure that is developed in this paper can 

deal with both stationary and integrated variables of the first degree. To the best knowledge, 

this approach is the first of its kind. An application to the returns of the world stock market 

index is also provided. 

 

The organization of the rest of the paper is the following. Section 2 presents the new 

asymmetric ARCH model for a stationary process. It also outlines how this asymmetric 

model can be tested and estimated. Section 3 provides an application to the modeling of the 

potential asymmetric time-varying volatility of the world stock market index. The last section 

concludes the paper. An appendix is also provided at the end of the paper to show how an 
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integrated variable with one unit root and with potential deterministic parts can be 

transformed into positive and negative cumulative components.  

 

2. The Asymmetric ARCH Model 

 

As mentioned previously, whether or not the volatility of any quantity measured across time 

is time-varying has crucial repercussions in practice. This is especially the case in the 

financial markets. The Engle’s ARCH model or some form of its modification is commonly 

utilized for this purpose. An important issue to take into account within this context is the 

issue of potential asymmetric structure that can prevail for several logical reasons as outlined 

previously. This issue has been dealt with in the existing literature to some extent. However, 

in the exiting literature, to the best knowledge, the impact of positive changes is not totally 

separated from the impact of negative changes. In the current paper we suggest achieving this 

by transforming the underlying variable into positive and negative components and fit a 

generalized ARCH (i.e. GARCH) model to each of the components separately. Consider the 

time series Pt that is assumed to be a stationary process.
2
 The positive and negative 

decompositions of this variable can be obtained by the following expressions: 

 0 ,max tt PX             (1) 

and 

 0 ,min tt PX            (2) 

for t =1, 2, …, T. The symbol ∆ represents the first difference operator. Note that, we have 

  ttt XXP , per definition. The test for ARCH effects in the positive component can be 

conducted by running the following regression model: 










   t

p

i

itit ubb

1

2
0

2 
         (3) 

Where 
tu is a white noise process and 

t  is the error term from the following regression:  

                                                 

2
 It is also possible to conduct a similar analysis for the integrated variables. However, the solution will be 

different in such cases. See the Appendix, at the end of the paper, for decomposing an integrated variable into 

its positive and negative cumulative components.   
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The error term 
t  is assumed to be distributed as   20,N~ tt  . The null hypothesis of no 

ARCH effects of order p
+
 for the positive component is defined as 

0: 210  
pbbbH  . 

This hypothesis can be tested by estimating the following test statistic, which is based on the 

Lagrange Multiplier (LM) procedure: 

  2
RTLM . Where 2

R  is the coefficient of determination in the unrestricted model 

(3). This test statistic is asymptotically chi-square distributed with p
+
 degrees of freedom. 

The null hypothesis is rejected at a given significance level if the p-value of the test statistic 

is less than the underlying significance level. 

 

Similarly, the test for ARCH effects in the negative component can be tested as the 

following. First, run the following regression model: 






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

   t
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         (4) 

Where 
tu is a white noise process and 

t  is the error term from the regression below  




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1

 

The error term 
t  is assumed to be distributed as   2 0,N~ tt  . The null hypothesis of no 

ARCH(p
-
) in the negative component is defined as 

0: 210  
pbbbH  . 

This hypothesis can be tested by estimating the following test statistic: 

  2
RTLM . Where 

2
R  is the coefficient of determination in the unrestricted model 

(4). This test statistic has also an asymptotic chi-square distribution with p
-
 degrees of 

freedom. This statistic is similar to the one that Engle (1982) introduced originally. Since 


t and 

t  both satisfy the same conditions as t , then the suggested test statistics LM
+
 and 
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LM
-
 must satisfy the same asymptotic properties as the original LM statistic, based on the 

results of the proofs provided by Engle (1982). The same is true regarding the maximum 

likelihood approach for estimating the underlying parameters for the positive and negative 

components respectively.  

 

If the null hypothesis is rejected, then the following two GARCH(p, q) models can be 

estimated.
3
 For the positive component, the following model can be estimated jointly by 

using the maximum likelihood method: 
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Where 2
t  is the conditional variance of 

t . The next model can be estimated jointly for 

the negative component case: 
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Where 2
t  is the conditional variance of 

t . The lag orders in each case can be determined 

by minimizing an information criterion.  

 

 

                                                 

3
 The initial values are assumed to exist. It is also possible to consider the GARCH in mean or the integrated 

GARCH processes for positive and negative components.  
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3. An Application  

 

The suggested method is used to test whether or not the time-varying volatility of the returns 

of the world market stock price index is asymmetric. The returns, which are based on the 

Morgan Stanley Capital International (MSCI) world stock price index in the US dollar, are 

used during the period 04-01-2005 to 09-03-2010 on weakly basis. The index covers 1600 

stocks worldwide. 

 

The estimation procedure is as follows. First, we decomposed the variable into the positive 

and negative components by using equations (1) and (2). These decompositions were 

conducted via an algorithm written in Gauss, which is available on request. Next, we fitted an 

autoregressive model to each component and tested the null hypothesis of no ARCH(1) for 

the particular component. The null hypothesis could not be rejected for the positive 

component but it could be strongly rejected for the negative component. Based on this 

finding, we fitted an GARCH(1, 1) model for the negative component. We also tested the 

null hypothesis that the sum of the estimated parameters in the volatility model is equal to 

one. This null could not be rejected. Therefore, an integrated GARCH(1, 1) was estimated for 

the negative component. The results of the estimations are presented in Table 1. As these 

results reveal, the time-varying volatility is indeed very persistent for the negative changes of 

the world market index. Each estimated parameter is also statistically significant strongly.  

 

 

Table 1: The estimation results for the integrated GARCH model for negative components. 

Parameter  Estimated value P-value 

_
1  0.165413 0.0002 


1  0.173814 <0.0001 

  0.826186 <0.0001 

Note: An integrated GARCH was estimated because the null hypothesis that the sum of beta and lambda being 

equal to one could not be rejected at the conventional significance levels. 
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4. Conclusions 

 

Conditional autoregressive heteroskedasticity models are useful tools for measuring time-

varying risk, especially in the financial markets. An important issue within this context is to 

account for the potential asymmetry that can prevail because people tend to react more to 

negative shocks than to the positive ones. The main objective of this paper is to provide an 

alternative approach that explicitly deals with the asymmetric property in the GARCH 

model. It is shown how the underlying variable can be decomposed into positive and 

negative components. These components provide the possibility to fit a specific GARCH 

model to the positive and negative changes of the underlying variable respectively. This is an 

important issue because the behavior of most time series variables can be characterized by an 

asymmetric structure for several logical reasons. The suggested method is applied to 

modeling the asymmetric time-varying volatility of the returns of the world market stock 

price index. The results show that the null hypothesis of no ARCH cannot be rejected for the 

positive component. However, the null hypothesis of no ARCH for the negative component 

is strongly rejected. A GARCH model is fitted for the negative component and the 

underlying parameters are estimated by the maximum likelihood method. The results show 

that the time-varying volatility for the negative changes in the world stock market is very 

persistent. This conclusion is based on the fact that the null hypothesis that the sum of the 

volatility parameters is equal to one could not be rejected. Thus, the time-varying volatility 

for the negative changes of the world stock price index is an integrated process. This means 

that any shock to the underlying time-varying volatility for the negative changes of the stock 

price will have a permanent impact. However, the volatility for the positive changes seems to 

be constant.  

 

Future applications of the suggested method will reveal whether or not individual stock 

markets or other financial assets possess similar asymmetric volatility. Since volatility as a 

measure of risk is an important input in many financial models, such as portfolio analysis, 

hedging, option evaluation and the value at risk calculations, it will be useful information for 

the investors to find out whether or not the underlying volatility is asymmetric. Our 

conjecture is that the precision of these underlying estimations can improve if the potential 

asymmetric structure of the time-varying volatility is dealt with in the way it is suggested in 

this paper. 
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Appendix 

In this appendix we show how an integrated variable of the first degree, i.e. an I(1) process, 

can be decomposed into positive and negative components. It should be mentioned that this 

I(1) variable can also contain deterministic trend parts. Assume that the variable of interest, 

Pt, is generated by the following process: 

,1 ttt PbtaP          (A1) 

here a and b are constants, and t is the time trend. The error term t  is assumed to be a white 

noise process. Via the recursive approach, the solution to this process is the following:  

 
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t

i

it Pb
tt

atP        (A2) 

for t =1,2,…T. The constant P0 is the initial value. Positive and negative changes are defined 

as  ,0 ,max: ii    and  0 ,min: ii   . This results in the following equation: 

 
,

2

1

1 1

01  
 


 




t

i

t

i

iittt Pb
tt

atPbtaP    (A3) 

Consequently, the positive and negative changes are defined in the following cumulative 

format: 
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and 

 
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1
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Note that these decompositions ensure that   ttt PPP holds. The definitions in equations 

(A4) and (A5) can be used to test whether or not there are ARCH effects in the cumulative 

positive and negative components of the underlying integrated variable. For a proof of these 

results see Hatemi-J and El-Khatib (2013). A code written in Gauss to implement these 

decompositions is available from the author on request.   

 


