
MPRA
Munich Personal RePEc Archive

Stochastic optimal hedge ratio: Theory
and evidence

Abdulnasser Hatemi-J and Youssef El-Khatib

UAE University

2010

Online at https://mpra.ub.uni-muenchen.de/45173/
MPRA Paper No. 45173, posted 17 March 2013 14:15 UTC

http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/45173/


1 

 

Stochastic Optimal Hedge Ratio: Theory and Evidence 

 

Abdulnasser Hatemi-J and Youssef El-Khatib  

UAE University 

E-mails: AHatemi@uaeu.ac.ae, Youssef-Elkhatib@uaeu.ac.ae 

 

Abstract 

The minimum variance hedge ratio is widely used by investors to immunize against the price 

risk. This hedge ratio is usually assumed to be constant across time by practitioners, which might 

be too restrictive assumption because the optimal hedge ratio might vary across time. In this 

paper we put forward a proposition that a stochastic hedge ratio performs differently than a 

hedge ratio with constant structure even in the situations in which the mean value of the 

stochastic hedge ratio is equal to the constant hedge ratio. A mathematical proof is provided for 

this proposition combined with some simulation results and an application to the US stock 

market during 1999-2009 using weekly data.  
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1. Introduction 

 

Finding an optimal hedge ratio is one of the vital issues pertinent to the investors risk 

management analysis. Optimal hedge ratio is of fundamental importance in order to neutralize 

price risk. There are a number of published papers on the calculation of the optimal hedge ratio 

(see, for example, Cechetti et al., 1988; Myers and Thompson, 1989; Baillie and Myers, 1991; 

Kroner and Sultan, 1991; Lien and Luo, 1993; Park and Switzer, 1995; and Hatemi-J and Roca, 

2006). In the existing literature it is common practice to assume that the estimated parameter of 

the underlying hedge ratio is constant during the period of study. This assumption is clearly too 

restrictive as there are many underlying causes for the hedge ratio to be time-varying. The 

potential reasons behind this phenomenon might be technological progress, economic or 

financial crises, variations in the people’s preferences and their behavior, policy alteration, and 

organizational or institutional evolutions. If the parameters are time-varying but in the 

estimations they are treated as constant then the underlying inference might not be accurate. In 

this paper we put forward a proposition that the performance of a stochastic hedge ratio is 

different than the performance of a constant hedge ratio even in the situations in which the mean 

value of the stochastic hedge ratio is equal to the hedge ratio with a constant structure.
1
 This 

proposition is mathematically proved and some simulation results are also generated. The 

stochastic hedge ratio is applied to the US equity market and it is compared to a constant hedge 

ratio. Empirical results support a stochastic structure for the optimal hedge ratio. 

 

The rest of this paper is organised as follows. Section 2 derives the optimal hedge ratio with a 

constant structure. This section also defines the optimal hedge ratio with a stochastic structure. In 

addition, some mathematical and simulation results regarding the properties of the stochastic 

hedge ratio are presented Section 2. Section 3 provides an application to the equity market of the 

US and the last section concludes the paper. An appendix at the end of the paper presents proofs 

as well as the description of the estimation methodology. 

 

                                                           
1
 This issue has financial implications for any portfolio with a hedging strategy. 



3 

 

2. Optimal Hedge Ratio 

 

A hedge ratio that minimizes the variance of the hedger’s position is the optimal hedge ratio 

according to the literature. Assume that we expect to sell NA units of an asset at time t2 and 

decide to hedge at time t1 via shorting futures contracts on NF units of a similar asset. The hedge 

ratio, h, is 

A

F

N

N
h  .    (1) 

We denote the total amount realized for the asset when the profit or loss on the hedge is taken 

into account by the variable Y, so that: 

FA NFFNSY )( 122      

Which can be reformulated as 

FAA NFFNSSNSY )()( 12121      (2) 

Where 

S1 = the asset price at time t1, 

S2 = the asset price at time t2, 

F1 = the futures price at time t1, 

F2 = the futures price at time t2. 

 

By substituting equation (1) into equation (2) we can express Y as the following: 

 

AA NFhSNSY )(1      (3) 

 

Where ∆S = S2- S1 and ∆F = F2- F1. Because S1 and NA are known at time t1, the variance of Y in 

equation (3) is minimized if the variance of FhS   is minimized. This variance is expressed 

as 

 

  FSFS hhFhSV  2222      (4) 

 

Where 
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2

S  = the variance of ∆S, ( S  = the standard deviation of ∆S), 

2

F  = the variance of ∆F, ( F  = the standard deviation of ∆F), and 

  = the correlation coefficient between ∆S and ∆F.  

 

Thus, the minimum variance hedge ratio can be obtained by minimizing equation (4) with 

respect to h. By using the first order condition for optimization we find: 

 





022 FSFh

h

V
     

F

Sh



   (5)

2
 

 

Notice that the second derivative with respect to h is positive, which is the sufficient condition 

for minimization. This optimal hedge ratio can also be obtained through the following 

regression: 

 

ttt FhcS  .      (6) 

 

It is common practice to use the variables in the level format in order to avoid losing any long 

run information in case each variable has a unit root but a linear combination between them is 

stationary. This is the standard regression approach that is usually used nowadays to calculate the 

optimal hedge ratio. However, this paper discusses the cases where the hedge ratio follows a 

stochastic dynamic. We argue that this hypothesis accords better with the reality than the 

supposition of the constant hedge ratio. To illustrate this point let    T ,0ttB  be a Brownian 

motion living on the probability space  PFT ,,  where    T ,0


ttFF  is the natural filtration 

generated by    T ,0ttB . Assume that the hedge ratio follows the subsequent stochastic dynamic 

   T ,0
:




tthh , where tt Bh   , defined as the stochastic process describing the hedge ratio. 

The parameter  is a constant that is assumed to be equal to the constant hedge ratio as defined 

by equation (5). We put forward the following propositions: 

 

                                                           
2
 The derivation of equation (5) comes mainly from Hull (2002).  
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Proposition 1:   thE  for any time  Tt ,0 . 

 

Proposition 2: 0:
00

  dtBdthe
T

t

T

t  . Thus, the integral that is representing the 

difference between a stochastic optimal hedge ratio and a hedge ratio with constant structure 

across time is higher than zero in absolute terms. This is even the case when the expected value 

of both hedge ratio measures is the same.   

 

Proposition 3: Suppose that the Brownian motion vanishes n times between  T,0  at nttt ,,, 21   

with Ttttt nn  1100  . Without loss of generality we assume that 0tB  for  10 , ttt  

and that n is even, then we have 

 

  t

t

t

n

k

k

T

T

t dBtTBdtBe
k

k









1

0

1

0
1       (7) 

 

For the proof of each proposition see the appendix.  

 

The behavior of the stochastic hedge ratio with the same mean as the constant hedge ratio is 

simulated and depicted in Figure 1. It is evident from this figure that the stochastic hedge ratio 

might deviate significantly from its mean value. Thus, investors could improve on their hedging 

strategies if this deviation is taken into account in the estimation of their optimal hedge ratio.   
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Figure 1: Simulated trajectory for the stochastic hedge ratio compared to the constant hedge 

ratio.
3
 

 

 

It should be mentioned that the simulations are conducted by a program in C
++

 produced by the 

authors, which is available on request.  

 

3. An Application  

 

In our application, the spot instrument corresponds to the equity market index while the hedging 

instrument is the futures market index. We use the MSCI price index for the US equity market 

and the Share Price Index for the US futures market. The dataset consists of weekly observations 

of spot and future rates of the shares during the period 1999-2009. The source of the data is 

Routers.  

 

The constant optimal hedge ratio is estimated by the ordinary least squares method. It should be 

mentioned that we also tested for unit roots and cointegration to avoid the spurious regression 

                                                           
3
 This simulation is conducted by programming in the C language.  
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problem. The results, not reported but available on request, revealed that the spot price index as 

well as the futures index contained one unit root. However, tests for cointegration provided 

evidence that the linear combination of the two indexes is stationary. Thus, there is a long-run 

relationship between the two variables. The stochastic hedge ratio is obtained within a state 

space model which is calculated by the Kalman filter. This state space model is described in the 

appendix. The estimation results for both hedge ratios, constant as well as stochastic, are 

depicted in Figure 2. As it is clearly evident from this figure, the optimal hedge ratio is indeed 

not constant and assuming it to be constant would result in loss of precision in the hedging 

strategy. In this particular case it also appears that the mean value of the stochastic optimal hedge 

ratio is not equal to the constant hedge ratio. This in turn implies that allowing for time-varying 

optimal hedge ratio stochastically is of fundamental importance when the optimal hedge ratio is 

calculated. 

 

 

Figure 2: Stochastic and Constant Optimal Hedge Ratios in the US. 
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4. Conclusions 

 

In this paper we put forward the proposition that an optimal hedge ratio with a stochastic 

structure will perform differently than an optimal hedge ratio with a constant structure. This is 

even the case if stochastic optimal hedge ratio has the same mean value as the constant hedge 

ratio. Some mathematical proofs and simulation results are provided for this proposition. We 

also apply the stochastic optimal hedge ratio to the US equity market data during 1999-2009 on 

weekly basis. The stochastic structure of the optimal hedge ratio is deduced via the Kalman filter 

and it is compared to the constant hedge ratio. The estimation results reveal clearly that the 

optimal hedge ratio in the US equity market is indeed stochastic and it changes significantly 

across time. This implies that the best hedging strategy by the investor should not be constant but 

rather changing across time in the form of rebalancing the underlying portfolio successively.  
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Appendix 

 

Proof of Proposition 1: 

For any time  Tt ,0  we have         ttt BEBhE , since   is a constant and tB  

follows a centred Gaussian law by definition of the Brownian motion. 

 

Proof of Proposition 2: 

We have 0:
000

  dtBdtBdthe
T

t

T

t

T

t  . 

 

Proof of Proposition 3:  

If we assume that 0
21


nttt BBB   where Ttttt nn  1100  , and also that 0tB  

for  10 ,0 ttt   then we have the following: 

 

0tB  for  21, ttt , and  

0tB  for  32 , ttt , 

0tB  for  43 , ttt , 

   

0tB  for  122 ,  kk ttt , 

   

0tB  for  Tttt nn  1, , since n is supposed to be an even integer, and therefore 

 

dtBdtBdtBdtBdtBe
Tt

t
t

t

t
t

t

t
t

t

t t

T

t

n

n









13

2

2

1

1

0 00


dtBdtBdtBdtBdtB
T

t
t

t

t
t

t

t
t

t

t
t

t

t
n
  

3

2

2

1

1

0

0

0
  dtB

k

k

t

t
t

n

k

k







1

0

1 . 

 

Equation (7) is obtained by applying the Integration by Parts Formula for stochastic integration 

states that for any continuously differentiable function f(t) we have the following:  
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 
t

st

t

s dsBsfBtfdBsf
00

)()()(  

 

So, if we take ssf )( , we have  

 

 
t

st

t

s sdBtBdsB
00

 and   






 

1

1

1

1

k

k
kk

k

k

t

t
stktk

t

t
s sdBBtBtdsB  

 

and then 

 

        













  















dtBTBdtBBtBtdtBe
k

k

k

k
kk

k

k

t

t
t

n

k

k

T

t

t
ttktk

n

k

kt

t
t

n

k

k 11

1

1

0

1

1

00

111 .  

 

 

Kalman Filter 

 

A general formulation of a model within a state space context of the underlying vector y as a 

function of the vector x may be expressed by the following system of equations: 

 

 

 

 

Where et and vt are zero means error terms that are identically and independently distributed as 

the following: 

 

 

 

 

These conditions are required in order to make maxim likelihood inference. In addition, the error 

terms are assumed to be independent across the equations in the system. That is, we assume that 

the following condition is fulfilled: 
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The goal of the state space model is to estimate the underlying parameters A, P, and Q in order to 

make inference about the time varying parameter vector, given observation on the data set (yt, xt) 

at each time period t. To achieve this goal we need to make use of the Kalman filter. This filter 

can be described by the following questions: 

 

 

 

 

 

 

 

 

Where  is the optimal estimated value of the time varying parameter vector , which has a 

variance equal to  at time the given time t. The one step forward prediction error is signified by 

 and its variance is measured by . The expression implies that the optimal estimate of 

the parameter at time t is conditional on the information that is available at period t-1. It should 

be clarified that the optimal prediction of the future observations can be made when the end of 

the series is reached. Another possibility is also to utilize backward recursion in order to re-

estimate the optimal estimator of the time varying parameter vector at all points in time using the 

full sample as is demonstrated by Harvey (1993).   

 


