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1. Introduction

1.1. Definition and examples. A (European) exchange option is a contract that gives
the buyer the right to exchange two (possibly dividend-paying) assets A and B at a fixed
expiration time T , say to receive A and deliver (pay) B; so, the option payoff is

(AT − BT )+ := max(AT − BT , 0).

(American and Bermudan exchange options are complicated by early optimal exercise and
not discussed here.) An ordinary (European) call or put on an asset struck at K can be
viewed as in [9] as an option to exchange the asset with the T -maturity zero-coupon bond
of principal K. More generally, a call or put on an s-maturity forward contract (s ≥ T ) on
a (say) zero-dividend asset is equivalent to an option to exchange the asset at time T with
an s-maturity zero-coupon bond. Options to exchange two stocks or commodities provide
good hypothetical examples but are not prevalent in the market place.

Exchange options are related to spread options with time-T payoffs of the form (X−Y )+,
given two prescribed time-T observables X and Y . A common structure is a CMS spread
option, with X and Y say the 20-year and 2-year spot swap rates at time T . A spread
option can be viewed as an exchange option when there exist (or can be replicated) two
zero-dividend assets A and B such that AT = X and BT = Y . In the CMS case, A and
B can be taken as the time-T coupons of two CMS bonds or swaps. Exchange options on
dividend-paying assets are in practice reduced to the zero-dividend case in a similar way.

Interest-rate swaptions, including caplets and floorlets as one-period special cases, can
be viewed both as ordinary call or put options struck at par on coupon bonds, or more
directly as options to exchange the fixed and floating cashflow legs of a swap. The latter
is the standard as it imposes the classical assumption of a lognormal ratio AT /BT on the
forward swap rate (a swap-curve concept) rather than on the forward coupon bond price.

An exchange option is related to its reverse by parity: (Y −X)+ = (X − Y )+ + Y −X.
(So an American option to exchange two fixed zero-dividend assets is not exercised early.)

1.2. Pricing and hedging approaches. The exchange option is a special case of a path-
independent contingent claim with payoff a homogenous function of the underlying asset
prices at expiration. It is governed by the same general theory. One makes sure that
the underlying assets are arbitrage free which implies there are no free lunches in a strong
sense. If the payoff can be attained by a sufficiently regular self-financing trading strategy
(SFTS) (e.g. bounded number of shares or “deltas”) then the law of one price holds and
the option price at each time is defined as the value of the self-financing portfolio. Otherwise
arbitrage-free pricing is not unique. We will not discuss this case, but only mention that
one approach then chooses a linear pricing kernel (e.g., the minimal measure) among the
many then available, and another is nonlinear based on expected utility maximization.

Payoff replication by a SFTS is a question of predictable representation. As the payoff
in this case is a path-independent function of the underliers, it natural that the option
price and deltas too be functions of time and the underliers at that time. This has been
the traditional Markovian approach, beginning with Black and Scholes [1] and immediate
extension by Merton [9]. Their simple choice of a geometric Brownian motion for the
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underlying asset in [1] and more generally of a deterministic-volatility forward price process
in [9] meant that the underlying stochastic differential equation (SDE) and the associated
partial differential equation (PDE) had constant coefficients (in log-state). Itô’s formula
was applied to construct a riskless hedge, with the deltas (hedge ratios) simply given by
partial derivatives of the option price function, the unique solution to the PDE.

Black and Scholes constructed a SFTS for a call option struck at K by dynamically re-
balancing long positions on the underlying asset A financed by shorting the riskless money
market asset B∗ = (ert), post an initial investment equal the option price. Merton’s exten-
sion to stochastic interest rate r treated the call as an option C to exchange the asset A
with the T -maturity zero-coupon bond B of principal K. The Black-Scholes model corre-
sponded to a deterministic bond price Bt = e−r(T−t)K, but now in general B had infinite
variation. The former’s simplicity was nonetheless recaptured by exploiting the homoge-
nous symmetry of the option payoff to reduce dimensionality by one, in effect a projective
transformation that hedged the forward option contract F := C/B with trades in the for-
ward asset X := A/B. The relevant volatility was accordingly the forward price volatility.
A SFTS in the two assets and Itô’s formula led to a PDE for the homogenous option price
function C(t, A, B) and an equivalent PDE for the forward option price function F (t,X).

Margrabe [8] extended [9] to an option to exchange any two correlated assets assuming
constant volatilities. He observed akin [9] that the self-financing equation with ∂C/∂A
and ∂C/∂B as deltas is by Itô’s formula equivalent to C(t, A, B) satisfying a PDE with
no first order terms in A, B. Choosing C as the homogenized Black-Scholes function, it
followed by Euler’s formula for homogenous functions that ∂C/∂A and ∂C/∂B formed in
fact a SFTS. The result demonstrated that (in this case) the exchange option is replicated
by dynamically going long in A and short in B, with no trades in any other asset. “Taking
asset two as numeraire” (p.180), [8] also presented (acknowledging Stephen Ross) a key
financial invariance argument as a heuristic alternative to the PDE algebraic proof of [9],
reducing to a call on A/B struck at 1 in the Black-Scholes model with zero interest rate.

Martingale theory leads to a conceptual as well as computationally practical represen-
tation of solutions to the PDEs that describe option prices as a conditional expectation
of terminal payoff. Harrison and Kreps [5] and Harrison and Pliska [6] developed in re-
lated papers an equivalent martingale measure framework that not only made this fruitful
representation of the option price available, but laid a more general and probabilistic for-
mulation of the notion of a dynamic hedge, or its mirror image, a replicating SFTS. Their
arbitrage-free semimartingale approach does permit path dependency, yet accommodates
Markovian SDE/PDE models even nicer. They took the money market asset B∗ as a trad-

able entering any hedge, giving it a general stochastic form B∗
t = e

∫ t
0

rsds for discounting
payoffs before expectation. In concert with Black-Scholes but contradistinction to Merton
and Margrabe, the finite variation asset B∗ was their exclusive choice of numeraire.

With the advent of the forward measure sometime later it was evident that Merton’s
choice of an infinite variation zero-coupon bond B as the financing hedge instrument fitted
equivalent martingale measure theory perfectly well, leading no less to quicker derivations
of concrete pricing formulae than B∗, as discounting is conveniently performed outside the
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expectation (see, e.g., [7] and [4]). Another useful numeraire was one by Neuberger [10]
to price interest-rate swaptions. Viewed as an option to exchange the fixed and floating
swap cashflows, the assets’ ratio A/B represents the forward swap rate here. Assumed
in [10] to have deterministic volatility yielded a model that has since served as industry
standard to quote swaption implied volatilities. It is noteworthy that here the ratio A/B
has deterministic volatility but A and B themselves decidedly do not. In time, El-Karoui
et. al. [4] showed that one can basically change numeraire to any asset B and associate to
it an equivalent measure under which A/B is a martingale for every other asset A.

Today option pricing and hedging theory has advanced farther and in many directions.
Especially relevant to our discussion of exchange options is the principle of numeraire
invariance and arbitrage-free modelling. For in-depth study of these and related topics
we refer to Duffie [3] and Delbaen and Schachermayer [2] among other excellent books.
Our approach is to concentrate the modelling in “projective coordinate” X := A/B, and
impose for the most part conditions that are invariant under the transformation X 7→ 1/X.

2. The deterministic-volatility and exponential-Poisson models

The option to exchange two assets with a deterministic volatility σ(t) of the asset price
ratio X = A/B is celebrated as the simplest nontrivial example in option pricing theory.
Its classical Black-Scholes/Merton option price function and explicit representation of the
“deltas” (“hedge ratios”) illustrate the principles that underline options in many assets
with arbitrary homogenous payoffs and more general dynamics. There is another concrete
albeit little known example with simple jumps in X involving the Poisson rather than the
normal distribution. The pattern is similar, the main difference being that the deltas are
the partial differences rather than the partial derivatives of the option price function.

We fix throughout a stochastic basis (Ω, (Ft),F , P) with time horizon t ∈ [0, T ], T > 0.
In this section we fix two zero-dividend assets with price processes A = (At) and B = (Bt).

2.1. The exchange option price process. When A and B are semimartingales, we call
a pair (δA, δB) of (locally) bounded predictable processes a (locally) bounded self-financing
trading strategy (SFTS) (see more generally Sec. 3.1) if C = C0 +

∫
δAdA+

∫
δBdB, where

(2.1) C = δAA + δBB.

Clearly C is then a semimartingale, ∆C = δA∆A + δB∆B, hence C− = δAA− + δBB−.
The differential form of the self-financing equation is often handy:

(2.2) dC = δAdA + δBdB.

SFTSs form a linear space. If there exists a unique bounded SFTS (δA, δB) such that

(2.3) CT = (AT − BT )+,

then one is justified to call C the exchange option price process and δA and δB the deltas.
Assume now the semimartingales A and B are positive and have positive left limits.
The numeraire invariance principle (see Sec 2.3 and more comprehensively Sec 3.2) states

that if (δA, δB) is a locally bounded SFTS then C = δAA + δBB satisfies d(C
B

) = δAd(A
B

)
(Ditto by symmetry with A as numeraire.) This is useful for uniqueness. Numeraire
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invariance also states the converse: if C is a semimartingale and δA a locally bounded
predictable process such that d(C

B
) = δAd(A

B
), then (δA, δB) is a SFTS and (2.1) and (2.2)

hold, where δB = C
−

B
−

− δA A
−

B
−

. This reduces existence to finding an F0 and δA such that

(
AT

BT

− 1)+ = F0 +

∫ T

0

δA
t d(

At

Bt

).

The exchange option price process is then the semimartingale C = B(F0 +
∫

δAd(A
B

)).
Numeraire invariance in effect reduces general option pricing and hedging to a market

where one of the asset price processes equals 1 identically. The remaining task is to find the
above “projective” predictable representation of the ratio payoff against the ratio process.

2.2. Deterministic-volatility exchange option model. Let σ(t) > 0 be a continuous
positive function. Define the Black-Scholes/Merton projective option price function

(2.4) f(t, x) := xδA(t, x) + δB(t, x)

on t ≤ T , x > 0, where δA(T, x) := 1x>1, δB(T, x) := −1x>1, and for t < T ,

(2.5) δA(t, x) := N(
log x√

νt

+

√
νt

2
), δB(t, x) := −N(

log x√
νt

−
√

νt

2
),

where νt :=
∫ T

t
σ2(s)ds and N(·) is the normal distribution function. The function f(t, x)

is continuous, and on t < T is C1 in t and analytic in x. Also, −1 ≤ δB ≤ 0 ≤ δA ≤ 1, and

f(T, x) = (x − 1)+,
∂f

∂x
(t, x) = δA(t, x).

As is well known and seen in Sec. 2.9 or 3.6, the function f(t, x) is the unique C1,2 (on
t < T ) solution with bounded partial ∂f

∂x
(t, x) subject to f(T, x) = (x − 1)+ of the PDE

(2.6)
∂f

∂t
(t, x) +

1

2
σ2(t)x2∂2f

∂x2
(t, x) = 0.

Assume now A = BX for some positive continuous semimartingale X > 0 satisfying

(2.7) d[log X]t = σ2(t)dt. (A = BX)

Under this assumption, one traditionally defines the exchange option price process C by

(2.8) C := BF, F = (Ft), Ft := f(t,Xt).

Clearly, CT = (AT −BT )+. The definition is justified using the continuous semimartingales

(2.9) δA
t := δA(t,Xt) =

∂f

∂x
(t,Xt), δB

t := δB(t,Xt) = Ft − δA
t Xt.

Clearly, C = δAA+ δBB, and the deltas are bounded: 0 ≤ δA ≤ 1 and −1 ≤ δB ≤ 0. Since
f(t, x) satisfies the PDE (2.6) (as directly verified) and ∂f

∂x
(t,Xt) = δA

t , by Itô’s formula
the continuous semimartingale F := (f(t,Xt)) satisfies the predictable representation

(2.10) dF = δAdX.
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If at this stage we assume B is a semimartingale, then A and C are semimartingales too,
and by the invariance principle next, dC = δAdA+ δBdB and (δA, δB) is a bounded SFTS.

2.3. Numeraire invariance. Let X and F and be two semimartingales and δA be a
locally bounded predicable process such that dF = δAdX. Set δB = F − δAX. Clearly
δB = F− − δAX− since ∆F = δA∆X. Let B be any semimartingale. Set A = BX,
C = BF . Clearly C = δAA + δBB. We claim dC = δAdA + δBdB, so (δA, δB) is a SFTS.

Indeed, this follows by applying Itô’s product rule to BF , then substituting dF = δAdX
and F− = δB + δAX−, followed by Itô’s product rule on BX:

dC = d(BF ) = B−dF + F−dB + d[B, F ]

= B−δAdX + (δB + δAX−)dB + δAd[B, X]

= δAd(BX) + δBdB = δAdA + δBdB.

Conversely, if A and B are semimartingales with B, B− > 0 and (δA, δB) is a SFTS, then
d(C

B
) = δAd(A

B
), where C = δAA + δBB. (See Sec. 3.2 for a more lucid treatment.)

2.4. Exponential Poisson exchange option model. Assume that the two zero-dividend
asset price processes A and B satisfy A = BX, where X is a semimartingale satisfying

(2.11) Xt = X0e
βPt−(eβ−1)λt

for some constants β 6= 0, λ > 0 and semimartingale P such that [P ] = P and P0 = 0 (so,
Pt =

∑
s≤t 1∆Ps 6=0). Define the projective option price function f(t, x), x > 0 by

(2.12) f(t, x) :=
∞∑

n=0

(xeβn−(eβ−1)λ(T−t) − 1)+λn

n!
(T − t)ne−λ(T−t),

and exchange option price process by

(2.13) C := BF, F = (Ft), Ft := f(t,Xt).

Clearly f(T, x) = (x− 1)+ and CT = (AT −BT )+. One has the predictable representation

(2.14) dF = δAdX

as shown shortly, where

(2.15) δA
t := δA(t,Xt−), δA(t, x) :=

f(t, eβx) − f(t, x)

(eβ − 1)x
.

Thus by numeraire invariance (δA, δB) is a SFTS if A and B are semimartingales, where

(2.16) δB := F − δAX = F− − δAX−.

Moreover, it is bounded. Indeed, since |(eβy − 1)+ − (y − 1)+| ≤ |eβ − 1|y for any y > 0,

0 ≤ δA(t, x) ≤
∞∑

n=0

eβn−(eβ−1)λ(T−t)λ
n

n!
(T − t)ne−λ(T−t) = 1.

Hence, 0 ≤ δA ≤ 1. Similarly, −1 ≤ δB ≤ 0.
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We note that f(t, x) is not C1 in x (though convex, absolutely continuous and piecewise
analytic in x). We also caution that this model is arbitrage free only when P{Pt = n} > 0
for all t > 0 and n ∈ N, e.g., when P is a Poisson process under an equivalent measure.

2.5. Derivation of the predictable representation (2.14). To show dF = δAdX, we
first note that [P ]c = 0 since [P ] = P ; hence (∆P )2 = ∆P and Pt = [P ]t =

∑
s≤t ∆Ps. If

v(p), p ∈ R, is any function, then clearly V = (v(Pt)) is a semimartingale and we have

∆Vt = v(Pt) − v(Pt−) = (v(Pt) − v(Pt−))∆Pt = (v(Pt− + 1) − v(Pt−))∆Pt.

Hence, as V is clearly the sum of its jumps,

Vt − v(0) =
∑
s≤t

∆Vs =
∑
s≤t

(v(Ps− + 1) − v(Ps−))∆Ps =

∫ t

0

(v(Ps− + 1) − v(Ps−))dPs.

Likewise, (u(t, Pt)) is a semimartingale for any C1 in t function u(t, p), p ∈ R, and one has

(2.17) du(t, Pt) =
∂u

∂t
(t, Pt

−

)dt + (u(t, Pt
−

+ 1) − u(t, Pt
−

))dPt.

Now, define the function

(2.18) x(t, p) := X0e
βp−(eβ−1)λt. (p ∈ R)

Clearly Xt = x(t, Pt). Applying (2.17) to the function x(t, p) and using that

∂x

∂t
(t, p) = −x(t, p)(eβ − 1)λ, x(t, p + 1) − x(t, p) = x(t, p)(eβ − 1),

(or alternatively applying Itô’s formula to x(t, Pt) and simplifying) yields

(2.19) dXt = Xt−(eβ − 1)d(Pt − λt).

Next, define the function of t ≤ T and p ∈ R,

(2.20) u(t, p) := f(t, x(t, p)) =
∞∑

n=0

(X0e
β(p+n)−(eβ−1)λT − 1)+λn

n!
(T − t)ne−λ(T−t).

Clearly, u(t, Pt) = Ft. One readily verifies that u(t, p) satisfies the partial difference equation

(2.21)
∂u

∂t
(t, p) + λ(u(t, p + 1) − u(t, p)) = 0.

Hence by (2.17) we have,

(2.22) dFt = (u(t, Pt
−

+ 1) − u(t, Pt
−

))d(Pt − λt).

Combining this with (2.19) and the fact that clearly

u(t, p + 1) − u(t, p) = f(t, eβx(t, p)) − f(t, x(t, p)),

we conclude that, as desired,

(2.23) dFt =
f(t, eβXt−) − f(t,Xt−)

(eβ − 1)Xt
−

dXt.
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2.6. The homogenous option price function. There is an alternative derivation of the
self-financing equation dC = δAdA+ δBdB much along the original lines in [9] and [8] that
does not employ numeraire invariance. It is related to a curious family of two-dimensional
PDEs satisfied by the Merton/Margrabe homogeneous option price function c(t, a, b) below.

Let f(t, x), x > 0, be any C1,2 function, e.g., as in (2.4). Define the homogenized function

(2.24) c(t, a, b) := bf(t,
a

b
). (a, b > 0)

Then c(t, a, b) is homogenous of degree 1 in (a, b), and hence by Euler’s formula

(2.25) c(t, a, b) =
∂c

∂a
(t, a, b)a +

∂c

∂b
(t, a, b)b.

A laborious repeated application of the chain rule on (2.24) gives

(2.26) a2 ∂2c

∂a2
(t, a, b) = b2∂2c

∂b2
(t, a, b) = −ab

∂2c

∂a∂b
(t, a, b) = b x2∂2f

∂x2
(t, x), x :=

a

b
.

Let σ(t), σA(t, a, b), σB(t, a, b), σAB(t, a, b) be any functions (x, a, b > 0) such that

(2.27) σ2(t) = σ2
A(t, a, b) + σ2

B(t, a, b) − 2σAB(t, a, b).

Using (2.26), (2.27), and ∂c
∂t

(t, a, b) = b∂f

∂t
(t, a

b
), we see that c(t, a, b) satisfies the PDE

(2.28)
∂c

∂t
+

1

2
σ2

A(t, a, b)a2 ∂2c

∂a2
+

1

2
σ2

B(t, a, b)b2∂2c

∂b2
+ σAB(t, a, b)ab

∂2c

∂a∂b
= 0

if and only if f(t, x) satisfies the PDE (2.6): ∂f

∂t
+ 1

2
σ2(t)x2 ∂2f

∂x2 = 0.
The PDE (2.6) was utilized in [1] and [9] (but not in [8]), and [9] stated its equivalence

to the PDE (2.28) (assuming σA, etc., depend only on t). As noted in [9] and expounded
in [8], if d[log A]t = σ2

A(t)dt, d[log B]t = σ2
B(t)dt and d[log A, log B]t = σAB(t)dt, then Itô’s

formula and (2.28) imply at once dc(t, At, Bt) = δA
t dAt + δB

t dBt, with δA and δB as in
(2.29), and thus (δA, δB) is a SFTS with price process c(t, A, B) by Euler’s formula (2.25).

Let us expand on this (see also Sec. 3.1 and 3.7). Let σ(t) > 0 be a continuous function,
and f(t, x) be the Black-Scholes/Merton function (2.4). Set c(t, a, b) := bf(t, a/b). Clearly,

∂c

∂a
(t, a, b) =

∂f

∂x
(t,

a

b
) = δA(t,

a

b
).

This combined with the Euler’s formula (2.25) and the definition (2.4) f := δAx + δB give

∂c

∂b
(t, a, b) = δB(t,

a

b
).

Assume A and B are positive semimartingales with positive left limits and X := A/B has
(deterministic) volatility σ(t) as in Sec. 2.2: d[X]t = X2

t σ2(t)dt. Whence using (2.9), the
deltas are conveniently the sensitivities of the homogenous Merton/Margrabe function:

(2.29) δA
t =

∂c

∂a
(t, At, Bt), δB

t =
∂c

∂b
(t, At, Bt).
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Since X is continuous, we also have δA
t = ∂c

∂a
(t, At−, Bt−), ditto δB

t . Sec. 2.2 yields dC =
δAdA + δBdB with Ct = Btf(t,Xt) = c(t, At, Bt). Therefore, by (2.29) and Itô’s formula,

(2.30)
∂c

∂t
dt +

1

2

∂2c

∂a2
d[A]ct +

1

2

∂2c

∂b2
d[B]ct +

∂2c

∂a∂b
d[A, B]ct = 0,

where the partials are evaluated at (t, At−, Bt−) and [·]c is the bracket continuous part.
(The jump term in Itô’s formula vanishes as it equals

∑
s≤t(∆Cs − δA

s ∆As − δB
s ∆Bs) = 0.)

Returning to the approach of [9], assume now that d[log A]t = σ2
A(t, At, Bt)dt for some

function σA and similarly d[log B] = σ2
Bdt and d[log A, log B] = σABdt. Then Eq. (2.27)

holds using log X = log A − log B. Since f(t, x) satisfies the PDE (2.6), the PDE (2.28)
follows as before by the chain rule. But, (2.28) implies (2.30), which by Itô’s formula in
turn implies the self-financing equation dC = δAdA+δBdB with δA and δB given by (2.29).

2.7. Change of numeraire. The solution c(t, a, b) to the PDE (2.28) subject to c(T, a, b) =
(a − b)+ can be expressed in a form E (X − Y )+ for some random variables X and Y > 0
with means a and b. Expectations of this form often become more tractable by a change
of measure as in [4]. Define the equivalent probability measure Q by dQ

dP
:= Y

E Y
. Clearly,

(2.31) EQ(
X

Y
) =

E(X)

E(Y )
. (

dQ

dP
:=

Y

E(Y )
)

Replacing X by (X − Y )+ in (2.31) and using the homogeneity to factor out Y , we get

(2.32) E (X − Y )+ = E(Y )EQ(
X

Y
− 1)+.

If X/Y is Q-lognormally distributed then (2.32) with the aid of (2.31) readily yields,

(2.33) E (X − Y )+ = E(X)N(
log(EX/EY )√

νQ
+

√
νQ

2
) − E(Y )N(

log(EX/EY )√
νQ

−
√

νQ

2
),

where νQ := varQ[log(X/Y )]. When X and Y are bivariately lognormally distributed, it is
not difficult to show that X/Y is lognormally distributed in both P and Q with the same
log-variance νQ = ν := var[log(X/Y )]. Then νQ can be replaced with ν in (2.33). This
occurs when the functions σA, σB and σAB in (2.28) are independent of a and b, as in [8,9].

2.8. Uniqueness. Assume A and B are positive semimartingales with positive left limits
such that X := A/B is square-integrable martingale under an equivalent probability mea-
sure Q and d〈X〉Q

t = X2
t
−

σ2
t dt for some nowhere zero continuous process σ, where 〈X〉Q is

the Q-compensator of [X]. (Of course, 〈X〉Q = [X] if X is continuous.) Let (δA, δB) be a
SFTS and set C := δAA + δBB. We claim that δA = δB = 0 if CT = 0 and δA is bounded.

Indeed, set F := C/B. By numeraire invariance dF = δAdX. Hence F is a Q-square-
integrable martingale since X is and δA is bounded. Thus, F = 0 since FT = CT /BT = 0.
Hence, 0 = d〈F 〉Q = (δA)2X2

−σ2dt. But, X2
−σ2 > 0. Thus, δA = 0 and δB = F − δAX = 0.
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2.9. Deterministic-volatility model uniqueness. Assume that A and B are positive
semimartingales with positive left limits and X := A/B is an Itô process following

(2.34)
dXt

Xt

= µtdt + σtdZt, (X :=
A

B
)

where Z is a Brownian motion and µ and σ > 0 are continuous adapted processes with

σ bounded and E[e
1

2

∫ T
0

(
µt
σt

)2dt
] < ∞. Let (δA, δB) be a SFTS with δA bounded. Set C :=

δAA + δBB. We claim that δA = δB = 0 if CT = 0. Indeed, the process

M := E(−
∫

µ

σ
dZ) = e−

∫ µ
σ

dZ− 1

2

∫
( µ

σ
)2dt,

is then a positive martingale with M0 = 1. Define the equivalent probability measure Q

by dQ = MT dP. The process W := Z +
∫

µ

σ
dt is a Q-Brownian motion because [W ]t = t

and W is Q-local martingale as MW is a local martingale using Itô’s product rule:

d(MW ) − WdM = MdW + d[W, M ] = M(dZ +
µ

σ
dt) − M

µ

σ
d[Z] = MdZ.

Moreover, dX = XσdW by (2.34). Therefore X is a Q-square integrable martingale (in
fact in Hp(Q) for all p > 0) since σ is bounded. The claim thus follows by Sec. 2.8.

As a corollary of the proof, F := C/B is Q-square-integrable martingale because δA is
bounded and by numeraire invariance dF = δAdX . In particular, Ct = BtE

Q[CT /BT | Ft].
Assume now σt is deterministic. The results of Sec. 2.2 hold since d[log X] = σ2

t dt.
But we can now derive them more conceptually. Indeed, both conditioned on Ft and

unconditionally, XT /Xt is Q-lognormally distributed with mean 1 and log-variance
∫ T

t
σ2

sds

since XT = Xte
∫ T

t
σsdWs−

1

2

∫ T
t

σ2
sds. Hence

(2.35) f(t,Xt) = EQ[(XT − 1)+ | Ft], where f(t, x) := EQ(x
XT

Xt

− 1)+,

which function readily equals the Black-Scholes/Merton option price function (2.4). Thus,
F := (f(t,Xt)) is a Q-martingale. Therefore Itô’s formula implies that f(t, x) satisfies
the PDE (2.6) and dF = δAdX where δA := ∂f

∂x
(t,Xt). Numeraire invariance now yields

(δA, δB := F − δAX) is a SFTS. Clearly CT = (AT −BT )+ where C := δAA + δBB = BF .

2.10. Exponential Poisson model uniqueness. Let β 6= 0 be a constant and κ and λ

be positive continuous adapted processes such that λ is bounded and E e
∫ T
0

(
λt
κt

−1)2κtdt
< ∞.

Let P be semimartingale satisfying [P ] = P with P0 = 0 and compensator
∫

κdt. Assume
that A and B are positive semimartingales with positive left limits and X := A

B
satisfies

(2.36) dXt = Xt−(eβ − 1)(dPt − λtdt).

Using deβP = (eβ − 1)eβP
−dP or as in Sec. 2.5, this is equivalent to the integrated form

(2.37) Xt = X0e
βPt−(eβ−1)

∫ t
0

λsds.
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Let (δA, δB) be a SFTS with δA bounded. Set C := δAA + δBB. We claim δA = δB = 0 if

CT = 0. Indeed, E e〈
∫

(λ
κ
−1)(dP−κdt)〉T = E e

∫ T
0

(
λt
κt

−1)2κtdt
< ∞, so the positive local martingale

M := E(

∫
(
λ

κ
− 1)(dP − κdt) = e−

∫
(λ−κ)dt

∏
s≤·

(1 + (
λs

κs

− 1)∆Ps)

is a martingale. Define the equivalent probability measure Q by dQ = MT dP. Then
N := P −

∫
λdt is a Q-local martingale as MN is a local martingale by Itô’s product rule:

d(MN) − N−dM = M−dN + d[M, N ]

= M−(dP − λdt) + M−(
λ

κ
− 1)dP = M−

λ

κ
(dP − κdt).

Therefore by (2.36) X is a Q-square-integrable martingale (in fact in Hp(Q) all p > 0)
since λ is bounded. Thus, by Sec. (2.8), δA = δB = 0 if CT = 0, as claimed.

As a corollary to the proof, F := C/B is Q-square-integrable martingale because δA is
bounded and by numeraire invariance dF = δAdX . In particular, Ct = BtE

Q[CT /BT | Ft].
Assume now λ is a positive constant. By (2.37) we are in a special case of the exponential

Poisson model. Further, P is a Q-Poisson process with intensity λ since [P ] = P . We now
have uniqueness, but additionally, the previous results follow more conceptually as follows.

Conditioned on Ft, PT−Pt is Q-Poisson distributed with mean λ(T−t). Its unconditional
Q-distribution is identical. Thus the Ft- conditional and the unconditional Q-distribution
of XT /Xt are identical and are exponentially Poisson distributed with mean 1. Hence

(2.38) f(t,Xt) = EQ[(XT − 1)+ | Ft], where f(t, x) := EQ(x
XT

Xt

− 1)+,

which function readily equals that defined in (2.12). Thus, F := (f(t,Xt)) is a Q-
martingale. Using this and (2.17) one shows that F satisfies (2.23) and with it that the
pair (δA, δB) as defined in (2.15), (2.16) is a bounded SFTS for the exchange option.

2.11. Extension to dividends. Consider two assets with positive price processes Â and
B̂ and continuous dividend yields yA

t and yB
t . When there exist traded or replicable zero-

dividend assets A and B such that AT = ÂT and BT = B̂T (if not there is little hope

of replication), it is natural to define the price process of the option to exchange Â and

B̂ to be that of the option to exchange A and B. If yA and yB are deterministic, then
consistently with the treatment of dividends in [9], A (and similarly B) is simply given by

At := aÃt = e−
∫ T

t
yA

s dsÂt, Ãt := e
∫ t
0

yA
s dsÂt, a := e−

∫ T
0

yA
t dt.

Note A/B is a semimartingale if and only if Â/B̂ is, in which case [log A/B] = [log Â/B̂].

In general, Ãt is the price of the zero-dividend asset that initially buys one share of Â
and thereon continually reinvests all dividends in Â itself. What is required is that the
four zero-dividend assets A, Ã, B and B̃ be arbitrage-free among each other (see Sec. 3.3).

For instance, say Â and B̂ are the yen/dollar and yen/Euro exchange rates viewed as
yen-denominated dividend assets. Then A is the yen-value of the U.S. T -maturity zero-
coupon bond and Ã is the yen-value of the U.S. money market asset. This exchange option



12 FARSHID JAMSHIDIAN

is equivalent to a Euro-denominated call struck at 1 on the Euro/dollar exchange rate Â/B̂.
The ratio A/B is the forward Euro/dollar exchange rate. If it has deterministic volatility,
we are as in a setting of [7] which yields the same pricing formula as that from Sec 2.2.

3. Pricing and hedging options with homogenous payoffs

We took some shortcuts above to quickly presents the main results for two of the simplest
and among the most interesting examples. A better understanding of the principles at
work requires generalization to contingent claims C on many assets with price processes
A = (A1, · · · , Am) > 0 and a path-independent payoff CT = h(AT ) given as a homogenous
function h(a), a ∈ Rm

+ , of the asset prices AT at expiration time T . Combined with an
underlying SDE and the resulting PDE, such Markovian setting utilizes the invariance
principle and equivalent martingale measures to derive unique pricing and construct a
SFTS that replicates the given payoff h(AT ) in general. The construction is explicit in the
multivariate extensions of the deterministic-volatility and exponential Poisson models.

The homogeneity of the payoff function h(a) implies h(AT ) = Am
T g(XT ) where g(x) :=

h(x, 1), x ∈ Rn
+, n := m − 1, and X := ( A1

Am , · · · , An

Am ). Once a predictable representation
F = F0 + δ′ · X, FT = g(XT ) is found, then by numeraire invariance δ := (δ′, δm) will be
a SFTS with payoff h(AT ), where δm := F− − ∑n

i=1 δiX− = F − ∑n

i=1 δiX. Uniqueness of
pricing requires boundedness of partial derivatives (or differences) of h(a) (or g(x)) and that
A be arbitrage free, meaning X is a martingale under an equivalent measure. Arbitrage
freedom holds “generically” when the matrix (〈X i, Xj〉) is nonsingular, basically a “no
redundant asset” condition. Then the SFTS itself is unique, namely the constructed one.

Libor and swap derivatives are among contingent claims with homogenous payoffs.

3.1. Self-financing trading strategies. By a SFTS we mean a pair (δ, A) of an m-
dimensional semimartingale A = (A1, ..., Am) and an A-integrable predictable vector pro-
cess δ = (δ1, · · · , δm) such that (with δ ·A denoting the m-dimensional stochastic integral)

(3.1)
m∑

i=1

δiAi =
m∑

i=1

δi
0A

i
0 + δ · A.

We then say δ is a SFTS for A. This is equivalent to saying that the SFTS price process

(3.2) C :=
m∑

i=1

δiAi

satisfies C = C0 + δ · A. Clearly C is then a semimartingale, ∆C =
∑

i δ
i∆Ai, and hence

C− =
m∑

i=1

δiAi
−.

If δi are bounded (say by b) and Ai are martingales then the SFTS price process C is a
martingale because C is then a local martingale that is dominated by a martingale M :

|Ct| ≤ b
∑

i

|Ai
t| = b

∑
i

|E[Ai
T | Ft]| ≤ b

∑
i

E[|Ai
T | | Ft] =: Mt.
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As suggested by when δ is locally bounded, we often use the differential form

(3.3) dC =
m∑

i=1

δidAi

of the equation C = C0 + δ · A as a convenient symbolic equivalent in calculations. One
interprets the Ai as prices of m zero-dividend assets and the δi

t as the number of shares
invested in them at time t. Then Ct indicates the resultant self-financing portfolio price by
(3.2), and (3.3) is the self-financing equation, saying that the change dC in the portfolio
price is due only to the changes dAi in the asset prices with no financing from outside.

Assume for the remainder of this subsection as a way of motivation that A is continuous
and Ct = c(t, At) for some C1,2 function c(t, a).1 Then by (3.3) and Itô’s formula we have,

(3.4)
∂c

∂t
(t, At)dt +

1

2

m∑
i,j=1

∂2c

∂ai∂aj

(t, At)d[Ai, Aj]t =
m∑

i=1

(δi
t −

∂c

∂ai

(t, At))dAi
t.

In particular, if δi
t = ∂c

∂ai
(t, At) for all i then c(t, At) =

∑
i

∂c
∂ai

(t, At)A
i
t by (3.2) and

(3.5)
∂c

∂t
(t, At)dt +

1

2

m∑
i,j=1

∂2c

∂ai∂aj

(t, At)d[Ai, Aj]t = 0.

In general,
∑

i,j(δ
i− ∂c

∂ai
)(δj− ∂c

∂aj
)d[Ai, Aj] = 0 since the (left so) right hand side of (3.4) has

finite variation. Thus, if d[Ai] are absolutely continuous and the m×m matrix ( d
dt

[Ai, Aj])

is nonsingular, then δi
t = ∂c

∂ai
(t, At), so (3.5) holds and c(t, At) =

∑
i

∂c
∂ai

(t, At)A
i
t. If further

the support of At is a cone, it follows c(t, a) is homogenous of degree 1 in a on that cone.
Assume M i := e−

∫
rdtAi are local martingales under an equivalent measure for some

locally bounded predictable process r. Then dAi = rAidt+e
∫

rdtdM i; so by (3.4) and (3.2)

∂c

∂t
(t, At)dt +

1

2

m∑
i,j=1

∂2c

∂ai∂aj

(t, At)d[Ai, Aj]t = rt(Ct −
m∑

i=1

∂c

∂ai

(t, At)A
i
t)dt.

Hence, if c(t, a) is homogenous (in a) then by Euler’s formula (3.5) holds (yet δi
t may differ

from ∂c
∂ai

(t, At) if there are redundancies, for then a regular replicating SFTS is not unique).

Given a homogenous payoff function h(a), Sec. 3.7 below constructs under suitable
assumptions a homogenous solution c(t, a) to (3.5) with c(T, a) = h(a). Then by Euler
and Itô formulae, ( ∂c

∂ai
(t, At)) is a SFTS for A, as observed in [9] and highlighted in [8] (see

Sec. 2.6). To construct c(t, a), we first factor out the homogenous symmetry of h(a) next.

1Clearly then the restriction of (any such) c(t, a) to the support of A is unique, and if ĉ(t, a) is any
function that equals c(t, a) on the support of A, then Ct = ĉ(t, At) too. If the support of At is a proper
surface, e.g., if m = 2 and A2 is deterministic as in the Black-Scholes model or A2

t = a2(t, A
1
t ) as in

Markovian short-rate models, then obviously there exist infinitely many nonhomogeneous functions ĉ(t, a)
such that Ct = ĉ(t, At). (A homogenous such function also exists under some assumptions as in Sec. 3.7.)
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3.2. The invariance principle. Let (δ, A) be a SFTS and S a (scalar) semimartingale
such that δ is SA := (SA1, · · · , SAm)-integrable. Then (δ, SA) is a SFTS. Consequently,

(3.6) d(SC) =
m∑

i=1

δid(SAi),

where C :=
∑

i δ
iAi = C0 + δ · A, that is, SC = S0C0 + δ · (SA). Indeed, by Itô’s product

rule, then substituting for dC and C− and regrouping, followed by Itô’s product rule again,

d(SC) = S−dC + C−dS + d[S, C]

= S−

m∑
i=1

δidAi +
m∑

i=1

δiAi
−dS +

m∑
i=1

δid[S, Ai]

=
m∑

i=1

δi(S−dAi + Ai
−dS + d[S, Ai]) =

m∑
i=1

δid(SAi).

Interpreting S as an exchange rate, this result (c.f. [8,3,4]), called numeraire invariance,
means that the self-financing property is independent of the choice of base currency.

If S, S− > 0, then applied to the semimartingale 1/S we see that δ is a SFTS for A if
and only if it is one for SA. Thus, if (3.2) holds then (3.3) and (3.6) are equivalent.

Assume now Am, Am
− > 0 and m ≥ 2. Define the n := m−1 dimensional semimartingale

X := (
A1

Am
, · · · ,

An

Am
), n := m − 1.

Taking S = 1/Am, it follows that δ is a SFTS for A if and only if it is a SFTS for A/Am =
(X, 1), i.e., if and only if F := C/B satisfies F = F0 + δ′ · X where δ′ := (δ1, · · · , δn). In
this case clearly F =

∑n

i=1 δiX i + δm and F− =
∑n

i=1 δiX i
− + δm as ∆F = δ′ · ∆X. Thus,

δm = F −
n∑

i=1

δiX i = F− −
n∑

i=1

δiX i
−. (F :=

C

Am
)

(When m = 1 a similar argument shows that δ must be a constant, as intuitively obvious.)
Conversely, suppose δ′ is an X-integrable process and F is a process such that F =

F0 + δ′ · X. Define δm by either of the above formula - the other then holds as before.
Obviously then δ = (δ′, δm) is a SFTS for (X, 1) with price process F . Hence by numeraire
invariance δ is a SFTS for A with price process C = BF , provided δ is A-integrable.

Numeraire invariance thus shows that in order to find a SFTS with a given time-T payoff
CT it is sufficient to find processes δ′ and F such that F = F0 + δ′ · X and FT = CT /Am

T .
We often use the differential form dF =

∑n

i=1 δidX i of the equation F = F0 + δ′ · X.
Since δm = F −∑n

i=1 δiX i, δm is determined by δ′ and F0. As such, one interprets the m-th
asset as the “numeraire asset” chosen to finance an otherwise arbitrary trading strategy δ′

in the other assets, post an initial investment of C0 = Am
0 F0.
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3.3. Arbitrage-free semimartingales and uniqueness. We call a semimartingale A =
(A1, · · · , Am), m ≥ 2, arbitrage free if there exists a positive semimartingale S with S− > 0

such that SAi are martingales for all i. Such a process S is called a state price density or
deflator for A. The (δ-bounded) law of one price justifies the terminology:

If A is arbitrage free and δ is a bounded SFTS for A then SC is a martingale where
C :=

∑m

i=1 δiAi; consequently C = 0 if CT = 0.
Indeed, by numeraire invariance δ is then a SFTS for SA with price process SC. Hence

by Sec. 3.1, SC is a martingale, implying SC = 0 if CT = 0, and with it C = 0, as claimed.
A simple and well-known argument yields that if Am, Am

− > 0 then A is arbitrage free if
and only if there exists an equivalent probability measure Q such that X is a Q-martingale,
where X := ( A1

Am , · · · An

Am ), n := m− 1.2 Numeraire invariance then implies that C/Am is a
Q-martingale for the price process C :=

∑
i δ

iAi of any bounded SFTS δ, and hence

Ct = Am
t EQ[

CT

Am
T

| Ft].

Indeed, by numeraire invariance, δ is a SFTS for A/Am with price process C/Am. Hence,
C/Am is a Q-martingale by Sec 3.1 applied in measure Q since A/Am is, as claimed.

Suppose X is a Q-square-integrable martingale and δi are bounded for i ≤ n. Then F :=
C/Am is a Q-square-integrable martingale since dF =

∑n

i=1 δidX i by numeraire invariance.
Moreover, d〈F 〉Q =

∑n

ij=1 δiδjd〈X i, Xj〉Q. Thus, if d〈X i〉Q are absolutely continuous and

the n × n matrix ( d
dt
〈X i, Xj〉Q) is nonsingular, then given any random variable R, there

exists at most one SFTS δ for A such that
∑m

i=1 δi
T Ai

T = R and δi are bounded for i ≤ n.

3.4. Projective continuous Markovian SFTS. Let X = (X1, · · · , Xn) be a continuous
vector martingale. In this subsection x ∈ Rn

+ if X > 0 (the main case of interest), otherwise
x ∈ Rn. Let g(x) be a Borel function of linear growth (so E|g(XT )| < ∞), and f(t, x) be
a continuous function, C1,2 on t < T . Set m := n + 1 and define the C1 functions

(3.7) δi(t, x) :=
∂f

∂xi

(t, x), i ≤ n, δm(t, x) := f(t, x) −
n∑

i=1

δi(t, x)xi,

and the continuous vector process

(3.8) δ = (δ1, · · · , δm), δi
t := δi(t,Xt).

First suppose that

(3.9) f(t,Xt) = E[g(XT ) | Ft].

2Indeed, first assume A is arbitrage-free and let S be a state price density. The martingale M := SA
m

E[S0Am

0
]

clearly satisfies E MT = 1. Hence the equivalent measure Q defined by dQ = MT dP is a probability

measure. Since MXi = SA
i

E[S0Am

0
] is a martingale, Xi is a Q-martingale by the Bayes’ rule. Conversely,

assume Xi are Q-martingales for some Q. Define Mt := E[dQ
dP

| Ft] > 0. Then (the right continuous version

of) M = (Mt) is a martingale (so M
−

> 0). By the Bayes’ rule MXi are martingales since Xi are Q-
martingales . Set S := M/Am. Then S, S

−
> 0 and SAi = MXi. Thus S is deflator, as desired. Further,

since SC is a martingale for any bounded SFTS δ, by the Bayes’ rule SC/M = C/Am is a Q-martingale.
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Then the process F := (f(t,Xt)) is a martingale, and since X i are too, Itô’s formula yields,

(3.10) dFt =
n∑

i=1

∂f

∂xi

(t,Xt)dX i
t ,

and

(3.11)
∂f

∂t
(t,Xt)dt +

1

2

n∑
i,j=1

∂2f

∂xi∂xj

(t,Xt)d[X i, Xj]t = 0.

Clearly FT = g(XT ) and (3.10) implies δ is a SFTS for (X, 1) with price process F .
Conversely, suppose that f(t, x) satisfies (3.11) or by Itô’s formula equivalently (3.10).

By (3.10) δ is a SFTS for (X, 1) with price process F := f(t,Xt). Thus by Sec. 3.1, if
δi(t, x) are bounded then F is a martingale and if further f(T, x) = g(x) then (3.9) holds.
Moreover, as in Sec 3.3, δ given by (3.8) is then the unique bounded SFTS for (X, 1) with
payoff g(XT ), provided d[X i, Xj] = X iXjσijdt for some nonsingular matrix process (σij

t ).

3.5. Example: projective deterministic volatility. Let X = (X1, · · · , Xn) > 0 be a
continuous n-dimensional martingale such that

(3.12) d[X i, Xj]t = X i
tX

j
t σij(t)dt

for some n2 deterministic continuous functions σij(t). So, d[log X i, log Xj]t = σij(t)dt. Con-
ditioned on Ft and unconditionally, XT /Xt is then multivariately lognormally distributed,

with mean (1, · · · , 1) and log-covariance matrix (
∫ T

t
σij(s)ds). Let P (t, T, z), denote its

distribution function. Let g(x) be a Borel function of linear growth. Define the function

(3.13) f(t, x) := E[g(x1
X1

T

X1
t

, · · · , xn

Xn
T

Xn
t

)].

Obviously f(T, x) = g(x). Clearly f(t, x) can also be represented in two other ways as

f(t, x) =

∫
Rn

+

g(x1z1, · · · , xnzn)P (t, T, dz) = E[g(x1
X1

T

X1
t

, · · · , xn

Xn
T

Xn
t

) | Ft].

Eq. (3.9) holds by the second equality, and f(t, x) is C1 in t and smooth (even analytic)
in x on t < T as seen by changing variable in the integral to yi = xizi and differentiating
under the integral sign in the first equality. Therefore by (3.11), f(t, x) satisfies the PDE

(3.14)
∂f

∂t
+

1

2

n∑
i,j=1

σij(t)xixj

∂2f

∂xi∂xj

= 0

on the support of X, (3.10) holds, and δ is a SFTS for (X, 1) with price process F :=
(f(t,Xt)), a martingale by (3.9). If g(x) is dx-absolutely continuous with bounded partials
∂g

∂xi
(as L1

loc
functions) then g(x) has linear growth, E|g(XT )|p < ∞ for p > 0, and

∂f

∂xi

(t, x) = E[
X i

T

X i
t

∂g

∂xi

(x1
X1

T

X1
t

, · · · , xn

Xn
T

Xn
t

)].
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Thus δi(t, x) = ∂f

∂xi
(t, x) are bounded. If g(x) −

∑
∂g

∂xi
xi is bounded then so is δm(t, x) as

δm(t, x) = E[g(x
XT

Xt

) −
n∑

i=1

∂g

∂xi

(x
XT

Xt

)
X i

T

X i
t

)].

It further follows that if f(t, x) is any C1,2 function with bounded paritals ∂f

∂xi
(t, x)

satisfying f(T, x) = 0 for all x and the PDE (3.14), then F := (f(t,Xt)) = 0. Indeed,
(3.10) then holds by PDE (3.14) and Itô’s formula, implying F is a square-integrable
martingale since X is; thus F = 0 since FT = 0. As such, f(t, x) = 0 identically if the
support of Xt equals Rn

+ for every t. This is so if the matrix (σij(t)) is nonsingular at least
near 0, and it is “generically” so even when the matrix has rank 1 but is time dependent.

3.6. Projective continuous SDE SFTS. Continuous Markovian positive martingales
X = (X1, · · · , Xn) often arise as solutions to an SDE system of the form

(3.15) dX i
t = X i

t

k∑
j=1

ϕij(t,Xt)dW j
t ,

where W 1, · · · , W k are independent Brownian motions and ϕij(t, x), x ∈ Rn
+, are continu-

ous bounded functions. As is well known, for each s ≤ T and x ∈ Rn
+, there is a unique

continuous semimartingale Xs,x = (Xs,x
t ) on [s, T ] with Xs,x

s = x satisfying this SDE;
moreover Xs,x is a positive square-integrable martingale (in fact in all Hp) since ϕij(t, x)
are bounded. Fixing an X0 ∈ Rn

+, the solution on [0, T ] starting at X0 at time 0 is denoted
X = X0,X0 . The Markov property holds: for any Borel function g(x) of linear growth,

(3.16) E[g(XT ) | Ft] = f(t,Xt), where f(t, x) := E g(X t,x
T ).

Clearly f(T, x) = g(x). (Intuitively, f(t, x) = E[g(XT ) |Xt = x].)
Thus if we assume ϕij(t, x) are sufficiently regular so that f(t, x) is C1,2 on t < T for

every bounded (hence of linear growth) Borel function g(x), then the assumptions of Sec.
2.3 are satisfied and the conclusions hold. In particular (3.10) then holds, and since

d[X i, Xj] = X iXjσij(t,X)dt, where σij(t, x) :=
k∑

l=1

ϕil(t, x)ϕjl(t, x),

it follows from (3.11) that, at least on the support of X, f(t, x) satisfies the PDE

(3.17)
∂f

∂t
(t, x) +

1

2

n∑
i,j=1

xixjσij(t, x)
∂2f

∂xi∂xj

(t, x) = 0.

In the deterministic volatility case the functions ϕij and hence σij are independent of x and
simply X t,x

T = xXT /Xt, explaining why in this special case f(t, x) is also given by (3.13).
In general, if g(x) is absolutely continuous with bounded derivatives and the probability

transition function of X is sufficiently regular, one shows as in the deterministic volatility
case that the x-partials of f (the deltas) are bounded and thereby concludes uniqueness.
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If σij(t, x) are homogenous of degree 0 in x, then (assumed) uniqueness and symmetry
of PDE (3.17) under dilation in x imply that f(t, x) is homogenous of degree 1 in x if g(x)
is so. By Euler’s formula then δm(t, x) = 0 in (3.7), implying (δ1, · · · , δn) is a SFTS for X.

3.7. Homogenous continuous Markovian SFTS. Let A = (A1, · · · , Am) be a semi-
martingale with A, A− > 0 such that X i := Ai/Am are Itô processes following

(3.18) dX i
t = X i

t

k∑
j=1

ϕij
t (dZj

t + φjdt), (i = 1, · · · , n := m − 1)

where Zj are independent Brownian motions and φj, ϕij are locally bounded predictable

processes with ϕij bounded and E e
1

2

∑
j

∫ T
0

(φj
t )

2dt < ∞. Define the martingale

(3.19) M := E(−
k∑

j=1

∫
φjdZj) = e−

∑k
j=1

(
∫

φjdZj+ 1

2

∫
(φi)2dt),

and the measure Q by dQ = MT dP. Then W i := Zi +
∫

φidt are Q-Brownian motions
and are Q-independent since [W k, W l] = 0 for k 6= l. Hence X i are Q-square-integrable

martingales as dX i = X i
∑k

j=1 ϕijdW j and ϕij are bounded. Thus A is arbitrage-free.

Now let h(a), a ∈ Rn
+ > 0, be a homogenous function of linear growth. Define g(x) :=

h(x, 1), x ∈ Rn
+. Assume further that ϕij

t = ϕij(t,Xt) for some continuous bounded
functions ϕij(t, x). Then (3.15) holds, hence Sec. 3.6 applied under measure Q shows
that X is Q-Markovian in that EQ[g(XT ) | Ft] = f(t,Xt) where f(t, x) = EQg(X t,x

T ), as in
(3.16). Thus by Sec 3.6, equations (3.10) and (3.11) of Sec. 3.4 hold and δ as defined in
(3.8) is a SFTS for (X, 1). Therefore by numeraire invariance δ is a SFTS for A with price
process C = AmF . The homogeneity of h(a) further implies CT = Am

T g(XT ) = h(AT ).
We have thus constructed a SFTS with the given payoff h(AT ). As in Sec. 3.5 or 3.6 we

ensure its boundedness by requiring the x-partials of g(x) or equivalently a-partials of h(a)
(as L1

loc functions) be bounded, and thereby get unique pricing. For (very) low dimensions
n, the PDE (3.17) is suitable for numerical valuation in absence of a closed-form solution.

Though the option price process and the deltas are already found, let us also consider
the homogenous option price function advertised in Sec. 3.1, and now naturally defined by

c(t, a) := amf(t,
a1

am
, · · · ,

an

am
).

Then Ct = c(t, At). Agreeably, δi
t = ∂c

∂ai
(t, At) by (3.7). (For i = m use Euler’s formula for

c(t, a)). By the continuity of X and (3.7), δi
t = ∂c

∂ai
(t, At

−

) too. Therefore by Itô’s formula,

(3.20)
∂c

∂t
(t, At

−

)dt +
1

2

m∑
i,j=1

∂2c

∂ai∂aj

(t, At
−

)d[Ai, Aj]ct = 0.

(The sum of jumps term in Itô’s formula drops out since ∆C =
∑

δi∆Ai.) This yields the

PDE ∂c
∂t

+ 1
2

∑
i,j aiajσ

A
ij(t, a) ∂2c

∂ai∂aj
= 0 for the special case d[Ai, Aj]t = Ai

tA
j
tσ

A
ij(t, At)dt for

some functions σA
ij(t, a). The quotient-space PDE (3.17) is more fundamental for it holds
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in general (even when A is discontinuous) and has one lower dimension. Change of variable

Li = Xi

Xi+1 −1 (i < n), Ln = Xn−1, transforms it to the general Libor market model PDE.

3.8. Multivariate Poisson predictable representation. Let P = (P 1, · · · , P k) be a
vector of independent Poisson processes P i with intensities λi > 0. For any C1 in t function
u(t, p), p ∈ Rk, the process u(t, P ) = (u(t, Pt)) is a finite activity semimartingale, and using
[P i, P j] = 0, one has ∆u(t, P ) =

∑
i ∆iu(t, P−)∆P i, where

(3.21) ∆iu(t, p) := u(t, p1, · · · , pi + 1, · · · pn) − u(t, p)

denotes the i-th forward partial difference of u(t, p) in p. This in turn readily implies

(3.22) du(t, P ) =
∂u

∂t
(t, P−)dt +

k∑
i=1

∆iu(t, P−)dP i.

Let v(p), p ∈ Rk, be a function of exponential linear growth. Define the function

(3.23) u(t, p) :=
∞∑

q1,··· ,qk=0

v(p + q)
k∏

i=1

λqi

i

qi!
(T − t)qie−λi(T−t). (p ∈ Rk)

Clearly, u(T, p) = v(p). Since the unconditional distribution of PT−t is Poisson and is the
same as the distribution of PT − Pt conditioned on Ft, we have

u(t, p) = E[v(p + PT − Pt)] = E[v(p + PT − Pt) | Ft].

Hence, u(t, Pt) = E[v(PT ) | Ft]. (Intuitively, u(t, p) = E[v(PT ) |Pt = p].) Thus the process

(3.24) F = (Ft), Ft := u(t, Pt) = E[v(PT ) | Ft]

is a martingale. But so are P j − λjt. Therefore in view of (3.22) it follows that

(3.25) dF =
k∑

i=1

∆iu(t, P−)d(P i − λit).

and u(t, p) satisfies the partial difference equation

(3.26)
∂u

∂t
(t, Pt

−

) +
k∑

i=1

λi∆iu(t, Pt
−

) = 0.

Since FT = v(PT ) and F0 = u(0, 0), combining (3.23) and (3.25) yields the representation

(3.27) v(PT ) =
∞∑

q1,··· ,qk=0

v(q1, · · · , qk)
k∏

i=1

λqi

i

qi!
T qie−λiT +

k∑
i=1

∫ T

0

∆iu(t, Pt−)d(P i
t − λit).
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3.9. Projective exponential-Poisson SFTS. Let P = (P 1, · · · , P k) be a vector of in-
dependent Poisson processes P j with intensities λj > 0. Let X0 ∈ Rn

+, n ≥ k, and β = (βij)
be an n× k matrix such that the n× k matrix (eβij − 1) has full rank. Then the processes
X i := (xi(t, Pt)), i = 1, · · · , n, are square-integrable martingales (in fact in all Hp), where

(3.28) xi(t, p) := X i
0 exp(

k∑
j=1

(βijpj − (eβij − 1)λjt)). (p ∈ Rk)

Since

∂xi

∂t
(t, p) = −xi(t, p)

k∑
j=1

(eβij − 1)λj, ∆jxi(t, p) = xi(t, p)(eβij − 1),

it follows from (3.22) (or easily also from Itô’s formula) that

(3.29) dX i = X i
−

k∑
j=1

(eβij − 1)d(P j − λjt). (X i
t := xi(t, Pt))

Let α = (αij) be any n × k matrix such that
∑

i(e
βil − 1)αij = δjl, all 1 ≤ j, l ≤ k. Then

(3.30) d(P j − λjt) =
n∑

i=1

αij

dX i

X i
−

.

Now let g(x), x ∈ Rn
+, be a function of linear growth, define the function

v(p) := g(x1(T, p), · · · , xn(T, p)), (p ∈ Rn)

and the function u(t, p) by (3.23). By Sec. 3.8, F := (u(t, Pt)) is a martingale with
FT = v(PT ) = g(XT ) and is represented as (3.25). Substituting (3.30) into (3.25) yields

(3.31) dF =
n∑

i=1

δidX i,

where

(3.32) δi
t :=

1

X i
t−

k∑
j=1

αij∆ju(t, Pt−).

Thus, δ = (δ1, · · · , δm) is a SFTS for (X, 1) where m := n + 1 and δm := F − ∑n

i=1 δiX i.
It is more desirable to express δ in term of X. One has u(t, p) = f(t, x(t, p)), where

(3.33) f(t, x) := E[g(x
XT

Xt

)] = E[g(x
XT

Xt

) | Ft] =

∞∑
q1,··· ,qn=0

g(x1e
∑n

j=1
(β1jqj−(eβ1j−1)λj(T−t)), · · · , xne

∑n
j=1

(βnjqj−(eβnj−1)λj(T−t)))
n∏

i=1

λqi

i

qi!
(T−t)qie−λi(T−t).
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The equalities follows from the definition of v(p) above and of u(t, p) in (3.23) together
with the two formulae following it.3 We clearly have f(T, x) = g(x) and

(3.34) Ft := u(t, Pt) = f(t,Xt) = E[g(XT ) | Ft].

Since u(t, p) = f(t, x(t, p)), the deltas in (3.32) are given by partial differences of f(t, x) as

(3.35) δi
t = δi(t,Xt−), where δi(t, x) :=

1

xi

k∑
j=1

αij(f(t, eβ1jx1, · · · , eβnjxn) − f(t, x)).

We have unique pricing since (X, 1) is arbitrage-free (as X i are martingales). Specifically,

if δ̂ is another SFTS for (X, 1) with payoff F̂T = g(XT ), then F̂ :=
∑n

i=1 δ̂iX i + δ̂m = F

provided that either all δ̂i, i ≤ n are bounded or all δ̂i − δi, i ≤ n are bounded.
Indeed, then F̂ = F̂0 + δ̂′ · X is a martingale since X is a square-integrable integrable

(in the second case, use also that F is a martingale). Hence F̂ = F as F̂T = FT .

Moreover, if k = n we have unique hedging, i.e., δ̂ = δ for any bounded SFTS δ̂ for
(X, 1) with payoff F̂T = g(XT ). Indeed, F̂ = F , as before; thus, setting θi := δ̂i − δi, gives

0 = d〈F̂ − F 〉 =
n∑

i,j=1

θiθjd〈X i, Xj〉 =
n∑

i,j=1

θiθjX i
−Xj

−

n∑
l=1

(eβil − 1)(eβjl − 1)λldt,

the last equality following by (3.29). But the n× n matrix (
∑n

l=1(e
βil − 1)(eβjl − 1)λl)

n
i,j=1

is nonsingular. Therefore θi = 0, i.e., δ̂i = δi for i ≤ n, implying δ̂m = δm too as F̂ = F .
One shows as in Sec. 2.4 that the processes δi are bounded if γi(x) are bounded, where

(3.36) γi(x) :=
1

xi

k∑
j=1

αij(g(eβ1jx1, · · · , eβnjxn) − g(x)), γm(x) := g(x) −
n∑

i=1

γi(x)xi.

3.10. Homogenous exponential Poisson SFTS. Let A > 0 be an m-dimensional semi-
martingale with A− > 0 and set X := (Ai/Am)n

i=1, n := m − 1 as before. Assume that

(3.37) dX i
t = X i

t−

k∑
j=1

(eβij − 1)(dP j
t − λj

tdt),

where 1 ≤ k ≤ n, βij are constants with the n× k matrix (eβij − 1) of full rank, λj > 0 are
bounded predictable processes, and P j are semimartingales with [P j, P l] = 0 for j 6= l such
that [P j] = P j, P j

0 = 0, and P j −
∫

κjdt are local martingales for some locally bounded

predictable processes κj > 0. Assume further that E exp(
∑k

j=1

∫ T

0
(

λ
j
t

κ
j
t

− 1)2κj
tdt) < ∞.

3The projective option price function f(t, x) := E[g(xXT

Xt

)], also encountered for the log-Gaussian case in

(3.13), satisfies f(t, Xt) = E[g(XT ) | Ft] in general when X is the exponential of any n-dimensional process
of independent increments (inhomogeneous Lévy process), but we no longer have hedging in general.
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Due to the above growth condition, the positive local martingale

M := E(
k∑

j=1

∫
(
λj

κj
− 1)(dP j − κjdt)) = e−

∑k
j=1

∫
(λj−κj)dt

∏
s≤·

(1 +
n∑

j=1

(
λj

s

κj
s

− 1)∆P j
s )

is a martingale. Define the measure Q by dQ = MT dP. As in Sec. 2.10,
∫

λjdt are the
Q-compensator of P j. This, (3.37), and boundedness of λj imply that X i are Q-square
integrable martingales. Thus A is arbitrage free. As before, the SDE (3.37) integrates to

(3.38) X i
t = X i

0e
∑k

j=1
βijP

j
t −(eβij−1)

∫ t
0

λ
j
sds.

Now assume λj are constant. Then P j are Q-Poisson processes with intensities λj and
are independent since [P j, P l] = 0, j 6= l. Sec. 3.9 applied under Q implies that δ given by
(3.35) (with δm = F −

∑n

i=1 δiX i) is a SFTS for (X, 1) with price process F = (f(t,Xt))
satisfying FT = g(XT ), where f(t, x) is defined explicitly by the long equation in (3.33), or
equivalently, f(t, x) = EQ g(xXT /Xt). Therefore, by numeraire invariance δ is a SFTS for
A with price process C := AmF satisfying CT = Amg(XT ) = h(AT ) by homogeneity.

Assume finally that the payoff function h(a) is such that the functions γi(x) defined in
(3.36) are bounded (e.g., h(a) = max(a1, · · · , am)). By Sec. 3.9, if k = n then δ is the
unique bounded SFTS for A with payoff CT = h(AT ). In general, since A is arbitrage free,

Ĉ = C for any other bounded SFTS δ̂ for A with payoff ĈT = h(AT ), where Ĉ :=
∑

i δ̂
iAi.
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