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Abstract. The exponential model for the spectrum of a time series and its fractional extensions are based on

the Fourier series expansion of the logarithm of the spectral density. The coefficients of the expansion form

the cepstrum of the time series. After deriving the cepstrum of important classes of time series processes,

also featuring long memory, we discuss likelihood inferences based on the periodogram, for which the

estimation of the cepstrum yields a generalized linear model for exponential data with logarithmic link,

focusing on the issue of separating the contribution of the long memory component to the log-spectrum.

We then propose two extensions. The first deals with replacing the logarithmic link with a more general

Box-Cox link, which encompasses also the identity and the inverse links: this enables nesting alternative

spectral estimation methods (autoregressive, exponential, etc.) under the same likelihood-based framework.

Secondly, we propose a gradient boosting algorithm for the estimation of the log-spectrum and illustrate its

potential for distilling the long memory component of the log-spectrum.

Key words and phrases: Frequency Domain Methods; Generalized linear models; Long Memory; Boosting.

1



1 Introduction

The analysis of stationary processes in the frequency domain has a long tradition in time series analysis;

the spectral density provides the decomposition of the total variation of the process into the contribution of

periodic components with different frequency as well as a complete characterization of the serial correlation

structure of the process, so that it contains all the information needed for prediction and interpolation.

Inferences on the spectrum are based on the periodogram, which possesses a well established large sample

distribution theory that leads to convenient likelihood based estimation and testing methods.

This paper is concerned with a class of generalized linear models formulated for the logarithm of the

spectral density of a time series, known as the exponential (EXP) model, which emerges by truncating the

Fourier series expansion of the log-spectrum. Modelling the log-spectrum (rather than the spectrum) is

most amenable for processes whose spectral densities can be factorized as products of spectra of different

components, as it is the case for processes with long range dependence, for which the long memory and the

short memory components enter multiplicatively. The coefficients of the expansion are known as the cepstral

coefficients and are in turn obtained from the discrete Fourier transform of the log-spectrum; their collection

form the cepstrum. This terminology was introduced by Bogert, Healey and Tuckey (1963), cepstral and

cepstrum being anagrams of spectral and spectrum, respectively.

The Fourier transform of the logarithm of the spectral density function plays an important role in the

analysis of stationary stochastic processes. It is the key element of the spectral factorization at the basis of

prediction theory, leading to the Kolmogorov-Szegö formula for the prediction error variance (see Doob,

1953, theorem 6.2, Grenander and Rosenblatt, 1957, section 2.2, and Pourahmadi, 2001, Theorem VII).

Bogert, Healey and Tuckey (1963) advocated its use for the analysis of series that are contaminated by

echoes, namely seismological data, whose spectral densities typically factorize as the product of two com-

ponents, one of which is the the contribution of the echo. We refer the reader to Oppenheimen and Schafer

(2010 ch. 13), Brillinger (2001) and Childers, Skinner and Kemerait (1977) for historical reviews on the

cepstrum and its applications in signal processing.

Bloomfield (1973) introduced the exponential (EXP) model and discussed its maximum likelihood es-

timation, relying on the distributional properties of the periodogram, based on Whittle (1953) and Walker

(1964). As illustrated by Cameron and Turner (1987), maximum likelihood estimation is computationally

very attractive, being carried out by iteratively reweighted least squares.

Local likelihood methods with logarithmic link for spectral estimation have been considered by Fan and

Kreutzberg (1998). Also, the exponential model has played an important role in the Bayesian estimation

of the spectrum (Wahba, 1980; Carter and Kohn, 1997), for regularized spectral estimation, where smooth-

ness priors are enforced by shrinking higher order cepstral coefficients toward zero, and has been recently

considered in the estimation of time-varying spectra (Rosen, Stoffer and Wood, 2009, and Rosen, Wood
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and Stoffer, 2012). Among other uses of the EXP model we mention discrimination and clustering of time

series, as in Fokianos and Savvides (2008).

The model was then generalized to processes featuring long range dependence by Robinson (1991) and

Beran (1993), originating the fractional EXP model (FEXP), whereas Janacek (1982) proposed a method

of moments estimator of the long memory parameter based on the sample cepstral coefficients estimated

nonparametrically using the log-periodogram. Maximum likelihood estimation of the FEXP model has been

dealt with recently by Narukawa and Matsuda (2011). Hurvich (2002) addresses the issue of predicting with

it. The sampling distribution of the periodogram is also at the basis of log-periodogram regression, that is

widely applied for long memory estimation (Geweke and Porter-Hudak, 1983; Robinson, 1995; Moulines

and Soulier, 1999; Andrews and Guggenberger, 2003; Hsu and Tsai, 2009).

Against this background, the paper contributes to the current literature in the following way.

• After deriving the cepstrum of important time series models, we illustrate the potential and the lim-

itations of cepstral analysis for long memory time series. In particular, we focus on the issue of

separating the long memory component from the short one; the sampling distribution of the max-

imum likelihood estimators of the parameters points at an inherent difficulty in disentangling the

contribution of the long memory component from the log-spectrum. This is the topic of sections 2-4.

• We introduce the class of generalized linear cepstral models with Box-Cox link, according to which

a linear model is formulated for the Box-Cox transformation of the spectral density. The link func-

tion depends on a power transformation parameter, and encompasses the exponential model, which

corresponds to the case when the transformation parameter is equal to zero. Other important special

cases are the inverse link (which leads to modelling the inverse spectrum), and the identity link. The

coefficients of the model are related to the generalized autocovariances, see Proietti and Luati (2012),

and are termed generalized cepstral coefficients. To enforce the constraints needed to guarantee the

positivity of the spectral density, we offer a reparameterization of the generalized cepstral coefficients

and we show that our framework is able to nest alternative spectral estimation methods, in addition

to the exponential approach, namely autoregressive spectral estimation (inverse link) and moving av-

erage estimation (identity link), so that the appropriate method can be selected in a likelihood based

framework. We also discuss testing for white noise in this framework. This is the content of section

5.

• We introduce a boosting algorithm for variable selection and spectral estimation with a fractional

exponential model and illustrate its great potential for separating long memory from short (section 6).

The procedure offers clear advantages over the selection of the order of the truncation of the FEXP

model, due to the regularization properties of the boosting algorithm.
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These points are illustrated in section 7 by three case studies and a Monte Carlo simulation experiment.

Finally, in section 8 we offer some conclusions.

2 The Exponential Model and Cepstral Analysis

Let {yt}t∈T be a stationary zero-mean stochastic process indexed by a discrete time set T , with covariance

function γk =
∫ π
−π e

ıωkdF (ω), where F (ω) is the spectral distribution function of the process and ı is the

imaginary unit. We assume that the spectral density function of the process exists, F (ω) =
∫ ω
−π f(λ)dλ,

and that the process is regular (Doob, 1953, p. 564), i.e.
∫ π
−π ln f(ω)dω > −∞.

As f(ω) is a positive, smooth, even and periodic function of the frequency, its logarithm can be expanded

in a Fourier series as follows,

ln[2πf(ω)] = c0 + 2
∞
∑

k=1

ck cos kω, (1)

where the coefficients ck, k = 0, 1, . . ., are obtained by the (inverse) Fourier transform of ln 2πf(ω),

ck =
1

2π

∫ π

−π
ln[2πf(ω)] exp(ıωk)dω.

The coefficients ck are known as the cepstral coefficients and the sequence {ck}k=0,1,... is known as the

cepstrum (Bogert, Healy and Tukey, 1963). The interpretation of the cepstral coefficients as pseudo-

autocovariances is also discussed in Bogert, Healy and Tukey (1963) and essentially follows from the anal-

ogy with the Fourier pair 2πf(ω) = γ0 + 2
∑∞

k=1 γk cos(kω) and γk =
∫ π
−π f(ω) exp(ıωk)dω.

Important characteristics of the underlying process can be obtained from the cepstral coefficients. The

intercept is related to the the one-step ahead prediction error variance (p.e.v.), σ2 = Var(yt|Ft−1), where Ft

is the information up to time t: by the Szegö-Kolmogorov formula,

σ2 = exp

[

1

2π

∫ π

−π
ln[2πf(ω)]dω

]

we get immediately that c0 = lnσ2. Moreover, the long run variance is obtained as

2πf(0) = exp

(

c0 + 2
∞
∑

k=1

ck

)

.

Also, if we let yt = φ(B)ξt denote the Wold representation of the process, with φ(B) = 1 + φ1B +

φ2B
2 + . . . ,

∑

j |φj | < ∞, ξt ∼ WN(0, σ2), where B is the lag operator, Bjyt = yt−j , then the moving

average coefficients of the Wold representation are obtained recursively from the formula

φj = j−1
j
∑

r=1

rcrφj−r, j = 1, 2, . . . , (2)
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with φ0 = 1. The derivation, see Janacek (1982), Pourahmadi (1983) and Hurvich (2002), is based on the

spectral factorization 2πf(ω) = σ2φ (e−ıω)φ (eıω); setting φ (z) = exp
(
∑∞

k=1 ckz
k
)

, and equating the

derivatives of both sides with respect to z at the origin, enables to express the Wold coefficients in terms

of the cepstral coefficients, giving (2). The autoregressive representation π(B)yt = ξt, where π(B) =
∑∞

j=0 πjB
j = φ(B)−1, is easily determined from the relationship lnπ(z) = − lnφ(z), and it is such that

π0 = 1 and πj = −j−1
∑j

r=1 rcrπj−r, j = 1, 2, . . . .

The mutual information between the past and the future of a Gaussian time series is defined in terms of the

cepstral coefficients by Li (2005), Ip−f = 1
2

∑∞
k=1 kc

2
k, provided that

∑∞
k=−∞ kc2k <∞, and the following

relation hold between cepstral coefficients and the partial autocorrelation coefficients, {ϕkk}k=1,2,..., the so

called reflectrum identity,
∑∞

k=1 kc
2
k = −∑∞

k=1 k ln(1 − ϕ2kk) and c0 = ln γ0 +
∑∞

k=1 ln(1 − ϕ2kk), the

latter being a consequence of the Kolmogorov-Szegö formula.

We also note that the Fourier expansion (1) is equivalent to express the logarithm of the spectral density

function as ln[2πf(ω)] = c0 + s(ω) where s(ω) is a linear spline function, s(ω) =
∫ ω
0 B(z)dz, and

B(z) is a Wiener process, when the canonical representation for the spline basis functions is chosen, i.e.

via the Demmler-Reinsch basis functions (Demmler and Reinsch, 1975, see also Eubank, 1999). This

representation is applied in a Bayesian setting by Rose, Wood and Stoffer (2012) and Rosen, Stoffer and

Wood (2009).

2.1 Cepstral Analysis of ARMA Processes

If yt is a white noise (WN) process, ck = 0, k > 0. Figure 1 displays the cepstrum of the AR(1) process

yt = ϕyt−1 + ξt, ξt ∼ WN(0, σ2) with ϕ = 0.9 and coefficients ck = ϕk/k (top left plot). The behaviour

of the cepstrum is analogous to that of the autocovariance function, although it will dampen more quickly

due to the presence of the factor k−1. The upper right plot is the cepstrum of the MA(1) process yt =

ξt + θξt−1, with θ = 0.9; the general expression is ck = −(−θ)k/k. Notice that if ck, k > 1, are the

cepstral coefficients of an AR model, that of an MA model of the same order with parameters θj = −ϕj
are −ck. Hence, for instance, the cepstral coefficients of an MA(1) process with coefficient θ = −.9 are

obtained by reversing the first plot. The bottom plots concern the cepstra of two pseudo-cyclical processes:

the AR(2) process yt = 1.25yt−1 − 0.95yt−2 + ξt with complex roots, and the ARMA(2,1) process yt =

1.75yt−1 − 0.95yt−2 + ξt + 0.5ξt−1. The cepstra behave like a damped sinusoidal, and again the damping

is more pronounced than it shows in the autocovariance function. Notice also that even for finite p and q we

need infinite coefficients ck to represent an ARMA model.

For a general ARMA process yt ∼ ARMA(p, q), ϕ(B)yt = θ(B)ξt, with AR and MA polynomials
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Figure 1: Cepstral coefficients ck, k = 1, . . . , 20 for selected ARMA models
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factorized in terms of their roots, as in Brockwell and Davis, 1991, section 4.4,

ϕ(B) =

p
∏

j=1

(1− a−1
j B), θ(B) =

q
∏

j=1

(1− b−1
j B), |aj | > 1, |bj | > 1,

we have the following general result

ln[2πf(ω)] = c0 + 2
∞
∑

k=1





q
∑

j=1

c
(b)
jk −

p
∑

j=1

c
(a)
jk



 cos(kω),

where

c
(a)
jk =

1

2π

∫ π

−π

ln |1− a−1
j e−ıω|2 cos(ωk)dω, c(b)jk =

1

2π

∫ π

−π

ln |1− b−1
j e−ıω|2 cos(ωk)dω.

This is the sum of elementary cepstral processes corresponding to polynomial factors. When aj and bj are

real c
(a)
jk = −a−k

j /k and c
(b)
jk = −b−k

j /k (see Gradshteyn and Ryzhik , 1994, 4.397.6).

When there are two complex conjugate roots, aj = r−1eıϖ, āj = r−1e−ıϖ, with modulus 1/r and phase

ϖ, their contribution to the cepstrum is via the coefficients rk cos(ϖk)/k. Hence, the cepstral coefficients

of the stationary cyclical process (1 − 2r cosϖB + r2B2)yt = ξt are ck = rk cos(ϖk)/k, k = 1, 2, . . .;

see the bottom left plot of figure 1, for which r = 0.97 and ϖ = 0.87: the cepstral coefficient have a period

of about 7 units.

2.2 Truncated Cepstral Processes

The class of stochastic processes characterised by an exponential spectrum was proposed by Bloomfield

(1973), who suggested truncating the Fourier representation of ln 2πf(ω) to the K term (EXP(K) process),

so as to obtain:

ln[2πf(ω)] = c0 + 2
K
∑

k=1

ck cos(ωk). (3)

The EXP(1) process, characterized by the spectral density f(ω) = (2π)−1 exp(c0 + 2c1 cosω), has

autocovariance function

γk = σ2Ik(2c1) = σ2
∞
∑

j=0

c2j+k
1

(k + j)!j!
,

where Ik(2c1) is the modified Bessel function of the first kind of order k, see Abramowitz and Stegun,

(1972), 9.6.10 and 9.6.19, and σ2 = exp(c0). Notice that there is an interesting analogy with the Von

Mises distribution on the circle, f(ω) = σ2I0(2c1)g(ω; 0, 2c1), where g(.) is the density of the Von Mises

distribution, see Mardia and Jupp (2000). For integer k, γk is real and symmetric. Moreover,

∞
∑

k=−∞
γk = σ2 exp{2c1}
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which follows from
∑∞

k=0 γk = σ2 12 (I0(2c1) + exp(2c1)), see Abramowitz and Stegun (1972, 9.6.37).

The coefficients of the Wold represention are obtained from (2): φj = (j!)−1cj1, j > 0, which highlights

the differences with the impulse response of autoregressive (AR) process of order 1 (it converges to zero at

a faster rate than geometric).

The truncated cepstral process of order K, with f(ω) = 1
2π exp(c0 + 2

∑K
k=1 ck cos(ωk)), is such that

the spectral density can be factorized as

f(ω) =
σ2

2π

K
∏

k=1



I0(2ck) + 2

∞
∑

j=1

Ij(2ck) cos(ωkj)



 .

This result comes from the Fourier expansion of the factors exp(2ck cos(ωk)).

2.3 Fractional Exponential (FEXP) processes

Let us consider the process yt, generated according to the equation yt = (1 − B)−dξt, where ξt is a short

memory process and d is the long memory parameter, 0 < d < 0.5. The spectral density can be written

as |2 sin(ω/2)|−2d fξ(ω), where the first factor is the power transfer function of the filter (1 − B)−d, i.e.

|1− e−ıω|−2d =
∣

∣2 sin ω
2

∣

∣

−2d
, and fξ(ω) is the spectral density function of a short memory process, whose

logarithm admits a Fourier series expansion.

The logarithm of the spectral generating function of yt is thus linear in d and in the cepstral coefficients

of the Fourier expansion of ln 2πfξ(ω), denoted ck, k = 1, 2, . . .:

ln[2πf(ω)] = −2d ln
∣

∣

∣
2 sin

ω

2

∣

∣

∣
+ c0 + 2

∞
∑

k=1

ck cos(ωk). (4)

Here, c0 retains its link to the p.e.v., σ2 = exp(c0), as
∫ π
−π ln

∣

∣2 sin ω
2

∣

∣ dω = 0. In view of the result

− ln
∣

∣

∣
2 sin

ω

2

∣

∣

∣
=

∞
∑

k=1

cos(ωk)

k

(see also Gradshteyn and Ryzhik, 1994, formula 1.441.2), which tends to infinity when ω → 0, we rewrite

(4) as

ln[2πf(ω)] = c0 + 2

∞
∑

k=1

(c∗k + ck) cos(ωk),

with

c∗k = − 1

2π

∫ π

−π
2d ln |2 sin(ω/2)| cos(kω)dω =

d

k
, k > 0.

Hence, for a fractional noise (FN) process, for which yt ∼ WN(0, σ2), the cepstral coefficients show an

hyperbolic decline (ck = d/k, k > 0).
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When ln 2πfξ(ω) is approximated by an EXP(K) process, i.e. the last summand of (4) is truncated at K,

a fractional exponential process of order K, FEXP(K), arises. The fractional noise case corresponds to the

FEXP(0) process.

Finally, consider the long memory Gegenbauer processes (1 − 2 cosϖB + B2)dyt = ξt (see Hosking,

1981, Gray, Zhang and Woodward, 1989, and McElroy and Holan, 2012), where ξt ∼ WN(0, σ2) and

ϖ ∈ [0, π]. The log-spectrum is linear in the memory parameter (although it depends nonlinearly on λ) and,

in particular,

ln[2πf(ω)] = lnσ2 − 2d ln

∣

∣

∣

∣

4 sin

(

ω +ϖ

2

)

sin

(

ω −ϖ

2

)∣

∣

∣

∣

.

By straightforward algebra,

ln[2πf(ω)] = lnσ2 + 2
∞
∑

k=1

2d cos(ϖk)

k
cos(ωk)

and by application of Gradshteyn and Ryzhik (1994), formula 1.448.2, the cepstral coefficients for k =

1, . . . ,∞ of the above Gegenbauer process are

ck =
2d

k
cos(ϖk).

It is perhaps interesting to remark the difference with the short memory cyclical process, (1− 2r cosϖB +

r2B2)yt = ξt, considered in section 2.1: if r is close to one it will be difficult to discriminate this process

from a long memory Gegenbauer process.

3 The Periodogram and its Sampling Properties

The main tool for estimating the spectral density function and its functionals is the periodogram. Due to its

sampling properties, a generalized linear model for exponential random variables with logarithmic link can

be formulated for the spectral analysis of a time series. The strength of the approach lies in the linearity of

the log-spectrum in the cepstral coefficients and the long memory parameter.

Let {yt, t = 1, 2, . . . , n} denote a time series, which is a sample realisation from a stationary Gaussian

process, and let ωj = 2πj
n , j = 1, . . . , [n/2], denote the Fourier frequencies, where [·] denotes the integer

part of the argument. The periodogram, or sample spectrum, is defined as

I(ωj) =
1

2πn

∣

∣

∣

∣

∣

n
∑

t=1

(yt − ȳ)e−ıωjt

∣

∣

∣

∣

∣

2

,

where ȳ = n−1
∑n

t=1 yt. In large samples (Koopmans, 1974, ch. 8)

I(ωj)

f(ωj)
∼ IID

1

2
χ2
2, ωj =

2πj

n
, j = 1, . . . , [(n− 1)/2], (5)
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whereas
I(ωj)
f(ωj)

∼ χ2
1, ωj = 0, π,where χ2

m denotes a chi-square random variable withm degrees of freedom,

or, equivalently, a Gamma(m/2,1) random variable. As a particular case, 1
2χ

2
2 is an exponential random

variable with unit mean.

The above distributional result is the basis for approximate maximum likelihood inferences for the

EXP(K) or FEXP(K) as models for the spectrum a time series. In the sequel we shall exclude the fre-

quencies ω = 0, π from the analysis - the latter may be included with little effort, but their effect on the

inferences is negligible in large samples. This mode of inference is often referred to as Whittle likelihood

estimation and will constitute the topic of the next section.

The same theory has motivated the estimation of the cepstral coefficients via log-periodogram regression,

which, for instance for the EXP(K) model, yields unbiased, but inefficient, estimates of the parameters ck

by applying ordinary least squares to the log-periodogram regression:

ln [2πI(ωj)]− ψ(1) = c0 + 2

K
∑

k=1

ck cos(ωk) + ϵj , ωj =
2πj

n
, j = 1, . . . ,

[

n− 1

2

]

, (6)

where ψ(·) is the digamma function, ψ(1) = −γ, where γ = 0.57722 is Euler’s constant, and ϵj is a cen-

tered log-chisquare variable with Var(ϵj) = ψ′(1) = π2/6 . Log-periodogram regression for seasonal long

memory processes is considered in Hsu and Tsai (2009). The Geweke and Porter-Hudak (1983) estimator

of d is based on the OLS regression of the log-periodogram ordinates on a constant and −2 ln
∣

∣2 sin ω
2

∣

∣. An

improved bias-reduced estimator based on log-periodogram regression is analysed in Andrews and Guggen-

berger (2003).

4 Approximate (Whittle) Likelihood Inference

Estimation by maximum likelihood (ML) of the truncated cepstral, or EXP(K), model was proposed by

Bloomfield (1971); later Cameron and Turner (1987) showed that ML estimation is carried out by iteratively

reweighted least squares (IRLS). Whittle estimation of the FEXP(K) model was proposed by Beran (1993)

and enjoys wide popularity; see, among others, Hurvich (2002) and, more recently, Narukawa and Matsuda

(2011). We now review this methodology with reference to the FEXP(K) model (which nests the EXP(K)

model) and discuss the sampling properties of the ML estimator of the long memory parameter and the

cepstral coefficients.

Denote by zj the vector of explanatory variables at the Fourier frequency ωj and by θ the unknown co-

efficients, e.g. in the long memory case z′j = [1, 2 cosωj , 2 cos(2ωj), . . . , 2 cos(Kωj),−2 ln |2 sin(ωj/2)|],
θ′ = (c0, c1, c2, . . . , cK , d) , so that the exponential model is parameterised as

ln 2πf(ωj) = z′jθ.
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Exploiting the result that, for a Gaussian time series, I(ωj) at the Fourier frequencies 0 < ωj < π is

exponential with mean f(ωj), the log-likelihood of {I(ωj), j = 1, . . . , N = [(n− 1)/2]}, is:

ℓ(θ) = −
N
∑

j=1

[

ln f(ωj) +
I(ωj)

f(ωj)

]

= N ln 2π −
N
∑

j=1

ℓj(θ), (7)

where

ℓj(θ) = z′jθ +
2πI(ωj)

exp(z′jθ)
.

The score vector and and the Hessian matrix are

s(θ) =
∂ℓ(θ)

∂θ
= −

∑

j

zjuj , uj = 1− 2πI(ωj)

exp(z′jθ)

H(θ) =
∂2ℓ(θ)

∂θ∂θ′
= −

∑

j

Wjzjz
′
j , Wj =

2πI(ωj)

exp(z′jθ)

so that the expected Fisher information is I(θ) = −E[H(θ)] =
∑

j zjz
′
j .

Estimation is carried out by the Newton-Raphson algorithm, i.e. iterating until convergence

θ̃i+1 = θ̃i − [H(θ̃i)]
−1s(θ̃i)

or by the method of scoring:

θ̃i+1 = θ̃i + [I(θ̃i)]−1s(θ̃i)

with starting value obtained by log-periodogram regression,

θ̃0 = (
∑

j

zjz
′
j)

−1
∑

j

zj(ln[2πI(ωj)] + γ).

In the former case, θ̃i+1 is obtained equivalently by iteratively reweighted least squares (IRLS), i.e. by the

regression of z′j θ̃i−uj/Wj on zj with weightsWj , j = 1, . . . , N , where both uj andWj are evaluated at θ̃i,

see Cameron and Turner (1987). On the contrary, the Fisher scoring update is carried out by the unweighted

regression of z′j θ̃i − uj on zj .

The estimator is asymptotically normal (Dahlhaus, 1989), with
√
n(θ − θ̃) →d N(0, V ),

V −1 =
1

4π

∫ π

−π
z(ω)z(ω)′dω =



























1
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where z(ω)′ = (1, 2 cosω, 2 cos(2ω), . . . , 2 cos(Kω),−2 ln |2 sin(ω/2)|).
Partitioning V as

V =

[

Vc Vcd

Vdc Vd

]

,

where Vc is the block corresponding to the cepstral parameters (the first K + 1 elements of θ), Vd is the

asymptotic variance of the long memory estimator, Vcd is the K × 1 vector containing the asymptotic

covariances between short and long memory parameter estimators and Vdc = V ′
cd, it can be shown that

Vd =

(

π2

6
−

K
∑

k=1

1

k2

)−1

, Vc =

[

2 0′

0 I + Vdrr
′

]

, Vcd =

[

0

−Vdr

]

, (8)

where we have set r = [1, 1/2, . . . , 1/K]′.

Notice that, in view of π2/6 =
∑∞

k=1 k
−2, Vd → ∞ as K → ∞.

This implies that the asymptotic correlation between the MLEs of ck, k = 1, . . . ,K, and d is

ρckd = −
√

Vd
Vd + k2

,

which is negative and tends to be large when K is large and larger when k is small compared to K.

The selection of the order K is the main specification issue: information criteria like AIC and BIC can

be used for that purpose. Diagnostic checking can be based on the Pearson’s residuals
2πI(ωj)

exp(z′j θ̃)
− 1 = −uj .

A great deal of attention has been attracted by the issue of estimating the long memory parameter. How-

ever, the sampling properties of the FEXP parameter estimators are such that separating long memory from

short will prove problematic, to say the least. First, it should be noticed that while the MLE of d is asymptot-

ically independent of the MLE of the intercept, it is correlated with that of the cepstral coefficients ck, k > 1:

in large samples, corr(2 cos(ωk),−2 ln |2 sin(ω/2)|) =
√
6

π
1
k = 0.78

k ), so that, as we have seen before, the

estimator of d is negatively correlated with that of ck. As K increases, the correlation tends to −1 (see the

formula for ρckd).

The inherent difficulty of separating long memory from short memory can be explained by the nature of

the explanatory variables in the FEXP model and the fact that an high order EXP model can accommodate

long memory effects, when K is sufficiently large.

5 Generalized Linear Cepstral Models with Power Link

The EXP model is a generalized linear model (McCullagh and Nelder, 1989) for exponentially distributed

observations with mean function given by the spectral density a logarithmic link function. The generaliza-

tion that we propose in this section is based on the observation that any continuous monotonic transform
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of the spectral density function can be expanded as a Fourier series. We focus, in particular, on a paramet-

ric class of link functions, the Box-Cox link (Box and Cox, 1964), depending on a power transformation

parameter, that encompasses the EXP model (logarithmic link), as well as the the identity and the inverse

links; the latter is also the canonical link for exponentially distributed observations.

Let us thus consider the Box-Cox transform of the spectral generating function 2πf(ω),

gλ(ω) =

{

[2πf(ω)]λ−1
λ , λ ̸= 0,

ln[2πf(ω)], λ = 0.

Its Fourier series expansion, truncated at K, is

gλ(ω) = cλ,0 + 2
K
∑

k=1

cλ,k cos(ωk), (9)

and the coefficients

cλk =
1

2π

∫ π

−π
gλ(ω) cos(ωk)dω

will be named generalised cepstral coefficients (GCC).

Hence, a linear model is formulated for gλ(ω). The spectral model with Box-Cox link and mean function

f(ω) =

{

1
2π [1 + λgλ(ω)]

1

λ , λ ̸= 0,
1
2π exp[gλ(ω)], λ = 0

will be referred to as a generalized cepstral model (GCM) with parameter λ and order K, GCM(λ,K), in

short. The EXP model thus corresponds the the case when the power parameter λ is equal to zero, and

c0k = ck, are the usual cepstral coefficients.

For λ ̸= 0, the GCC’s are related to the generalised autocovariance function, introduced by Proietti and

Luati (2012),

γλk =
1

2π

∫ π

−π
[2πf(ω)]λ cos(ωk)dω (10)

by the following relationships:

cλ0 =
1

λ
(γλ0 − 1), cλk =

1

λ
γλk, k ̸= 0. (11)

In turn, the generalised autocovariances are interpreted as the traditional autocovariance function of the

power-transformed process:

uλt =
[

σφ
(

Bs(λ)
)]λ

ξ∗t , (12)

where ξ∗t = σ−1ξt, s(λ) is the sign of λ, and
[

σφ
(

Bs(λ))] is a series in the lag operator whose coefficients

can be derived in a recursive manner based on the Wold coefficients by Gould (1974). For λ = 1, c1k = γk,

the autocovariance function of the process is obtained. In the case λ = −1 and k ̸= 0, c−1,k = −γik, where

13



γik is the inverse autocovariance of yt (see Cleveland, 1972). The intercept cλ0 for λ = −1, 0, 1, is related

to important characteristics of the stochastic process, as 1/(1 − c−1,0) is the interpolation error variance,

exp(c0,0) = σ2, the prediction error variance, and c1,0 + 1 = γ0 is the unconditional variance of yt. Also,

for λ→ 0, cλk → ck, i.e. the cepstrum is the limit of the GCC as λ goes to zero.

For a fractional noise process the GCCs are zero for λ = −d−1 and k > 1. This is so since [2πf(ω)]λ =

σ2 |2 sin(ω/2)|−2dλ = σ2|1 − e−ıω|2 for λ = −d−1, which is the spectrum of a non-invertible moving

average process of order 1, whose autocovariances are γλk = 0 for k > 1.

Let gλ(ωj) = z′jθλ where now zj = [1, 2 cosωj , 2 cos(2ωj), . . . , 2 cos(Kωj)]
′
, and θ′λ = [cλ0, cλ1, . . . ,

cλK ]′. Then, the Whittle likelihood is

ℓ(θλ) = N ln 2π −
N
∑

j=1

ℓj(θλ)

where,

ℓj(θλ) =











1
λ ln(1 + λz′jθλ) +

2πI(ωj)

(1+λz′jθλ)
1

λ

, λ ̸= 0,

z′jθ0 +
2πI(ωj)
exp(z′jθ0)

, λ = 0.

The score vector and and the Hessian matrix, when λ ̸= 0 (for the case λ = 0 see section 4), are respectively

s(θλ) =
∂ℓ(θλ)

∂θλ
= −

∑

j

z∗juj , uj = 1− 2πI(ωj)

(1 + λz′jθλ)
1

λ

, z∗j =
zj

1 + λz′jθλ
,

H(θλ) =
∂2ℓ(θλ)

∂θλ∂θ
′
λ

= −
∑

j

W ∗
j z

∗
j z

∗′
j , W ∗

j =
2πI(ωj)

(1 + λz′jθλ)
1

λ

− λuj .

It follows from theorem 2.1 in Dahlhaus (1989) that

√
n(θ̃λ − θλ) →d N(0, Vλ), V −1

λ =
1

4π

∫ π

−π

1

[2πf(ω)]2λ
z(ω)z(ω)′dω.

Dahlhaus (1989) also proves the efficiency of the Whittle estimator.

5.1 White Noise and Goodness of Fit Test

We consider the problem of testing the white noise hypothesis H0 : cλ1 = cλ2 = · · · = cλK = 0 in

the GCM framework, with λ and K given. Interestingly, the score test statistic is invariant with λ and is

asymptotically equivalent to the Box-Pierce (1970) test statistic. This is immediate to see for the traditional

EXP(K) case, that is when λ = 0. Under the assumption yt ∼ WN(0, σ2), 2πf(ω) = exp(c0) and the

Whittle estimator of c0 is the logarithm of the sample periodogram mean, 2πĪ = 1
N

∑

j 2πI(ωj) (which is

also an estimate of the variance - for a WN process the p.e.v. equals the variance): c̃0 = ln
(

2πĪ
)

.
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The score test of the null H0 : c1 = c2 = · · · = cK = 0 in an EXP(K) model is

SWN (K) =
1

n





∑

j

zj ũj





′



∑

j

zj ũj



 ≈ n
K
∑

k=1

ρ̂2k,

where z′j = [1, 2 cosωj , 2 cos(2ωj), . . . , 2 cos(Kωj)], ũj = 1 − I(ωj)/Ī , and we rely on the large sample

approximations: 2N ≈ n, 1
N

∑N
j=1

I(ωj)

Ī
cos(ωjk) ≈ ρ̂k, the lag k sample autocorrelation (see Brockwell

and Davis, prop. 10.1.2). Hence, SWN (K) is the same as the Box-Pierce (1970) portmanteau test statistic.

The same holds in the case when λ ̸= 0, where gλ(ω) = c0, c̃0 =
(2πĪ)λ−1

λ and 1 + λc̃0 = (2πĪ)λ.

On the contrary, the likelihood ratio test can be shown to be equal to

LR = 2N



ln Ī − 1

N

N
∑

j=1

ln f̃(ωj)



 = 2N ln
V

p.e.v.
,

where V = 2πĪ is the unconditional variance of the series, estimated by the averaged periodogram, and

the prediction error variance in the denominator is estimated by the geometric average of the estimated

spectrum under the alternative. The former is also the p.e.v. implied by the null model; the latter depends on

λ. Interestingly, the LR test can be considered a parametric version of the test proposed by Davis and Jones

(1968), based on the comparison of the unconditional and the prediction error variance.

5.2 Reparameterization

The main difficulty with maximum likelihood estimation of the GCM(λ,K) model for λ ̸= 0 is enforcing

the condition 1 + λz′jθλ > 0. This problem is well known in the literature concerning generalized linear

models with the inverse link for gamma distributed observations, for which is the canonical link is the

inverse link (McCullagh and Nelder, 1989). Several strategies may help overcoming this problem, such as

periodogram pooling (Bloomfield, 1973, Moulines and Soulier, 1999, Faÿ, Moulines and Soulier, 2002),

which reduces the influence of the periodogram ordinates close to zero, and weighting the periodogram, so

as to exclude in the estimation those frequencies for which the positivity constraint is violated.

The most appropriate solution is to reparameterize the generalized autocovariances and the cepstral co-

efficients as follows:

[2πf(ω)]λ = σ2λbλ(e
−ıω)bλ(e

ıω), bλ(e
−ıω) = 1 + b1e

−ıω + · · ·+ bKe
−ıωK , (13)

where the bk coefficients are such that the roots of the polynomial 1+ b1z+ · · ·+ bKz
K lie outside the unit

circle, so that, for λ ̸= 0, the GCC’s are obtained as

cλ0 =
1

λ

[

σ2λ(1 + b21 + · · ·+ b2K)− 1
]

, cλk =
1

λ
σ2λ

K
∑

j=k

bjbj−k.
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To ensure the positive definiteness and the regularity of the spectral density we adopt a reparameterization

due to Barndorff-Nielsen and Schou (1973) and Monahan (1984): given K coefficients ςλk, k = 1, . . . ,K,

such that |ςλk| < 1, the coefficients of the polynomial bλ(z) are obtained from the last iteration of the

Durbin-Levinson recursion

b
(k)
λj = b

(k−1)
λj + ςλkb

(k−1)
λ,k−j , b

(k)
λk = ςλk,

for k = 1, . . . ,K and j = 1, . . . , k − 1. The coefficients ςλj are in turn obtained as the Fisher inverse

transformations of unconstrained real parameters ϑj , j = 1, . . . ,K, i.e. ςλj =
exp(2ϑj)−1
exp(2ϑj)+1 for j = 1, . . . ,K,

which are estimated unrestrictedly. Also, we set ϑ0 = ln(σ2λ).

By this reparameterisation, alternative spectral estimation methods are nested within the GCM(λ,K)

model. In particular, along with the EXP model (λ = 0), autoregressive estimation of the spectrum arises

in the case λ = −1, whereas λ = 1 (identity link) amounts to fitting the spectrum of a moving average

model of order K to the series. The profile likelihood of the GCM(λ,K) as λ varies can be used to select

the spectral model for yt. A similar idea has been used by Koenker and Yoon (2009) for the selection of the

appropriate link function for binomial data; another possibility is to test for the adequacy of a maintained

link (e.g. the logarithmic one) using the goodness of link test proposed by Pregibon (1980).

In conclusion, the GCM framework enables the selection of a spectral estimation method in a likelihood

based framework. Another possible application of the GCM(λ,K) is the direct estimation of the inverse

spectrum and inverse autocorrelations up to the lag K, which arises for λ = −1 (this corresponds to the

inverse link) and of the optimal interpolator (Battaglia, 1983), which is obtained in our case from the corre-

sponding bk coefficients as
∑K

k=1 ρ−1,kyt±k with

ρ−1,k =

∑K
j=k bjbj−k
∑K

j=0 b
2
j

.

which represents the inverse autocorrelation at lag k of yt.

6 Gradient Boosting and Regularization for Cepstral Estimation

A crucial element in fitting an exponential model is the selection of the truncation parameter K. Rather

than selecting K, another approach is regularizing the cepstral coefficients. This approach was considered

by Wahba (1980), Chow and Grenander (1985) and Pawitan and O’Sullivan (1994), among others. Further-

more, modelling the log spectrum via periodic splines is a key ingredient in modelling locally stationary

processes, see Rosen, Wood and Stoffer (2009, 2012).

Bayesian estimation of the spectrum by log-periodogram regression has a long tradition. Wahba (1980)

estimated the model

ln [2πI(ωj)]− ψ(1) = C(ωj) + ϵj , (14)
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where C(ω) = ln[2πf(ω)] is a natural cubic spline, assuming a normal distribution for the error term,

ϵj ∼ NID(0, ψ(1)′). The resulting estimate of the log-spectrum is

Ĉ(ω) = ĉ0 +
N
∑

k=1

1

1 + ρk2
ĉk cos(ωk),

where ρ is a smoothness parameter and ĉk are the sample Fourier coefficients of the centered log-periodogram.

This amounts to applying a Butterworth filter to the empirical cepstral coefficients. Carter and Kohn (1997)

modelled C(ω) in (14) as a periodic cubic spline, and approximated the distribution of ϵj in by a Gaussian

mixture with 5 components.

Pawitan and O’Sullivan (1994) proposed a nonparametric estimator of C(ω) = ln[2πf(ω)] based on the

maximisation of the penalised least squares criterion

L(θ) =

∫ π

−π

[

C(ω) +
2πI(ω)

expC(ω)

]

dω +
ρ

(2π)2r

∫ π

−π
|C(r)(ω)|2dω, (15)

where ρ is a penalty parameter and C(r)(ω) is the r-th derivative of C(ω). For the EXP model, C(ω) =

c0 + 2
∑K

k=1 cos(ωk), the penalised least squares estimator maximises

N
∑

j=1

[

ln f(ωj) +
I(ωj)

f(ωj)

]

+ ρ

N
∑

k=1

k2rc2k

Interestingly, this is equivalent to a generalised ridge regression embodying a smoothness prior ck ∼
NID(0, ρk−2r), k > 0 on the cepstral coefficients.

It is not clear whether the above smoothness priors are reasonable. They surely are for cepstra that

originate from ARMA processes. We will present an illustration, dealing with monthly sunspots, for which

they are not, due to the presence of cycles with small periodicity, that require high order cepstral coefficients

to be represented. Moreover, they do not extend straightforwardly to the FEXP model, for which a prior for

the long memory parameter must also be entertained.

In this section we propose a gradient boosting algorithm for the estimation of the FEXP model, which

exploits the generalized additive nature of the model. The proposed algorithm performs incremental forward

stagewise fitting (Friedman, Hastie and Tibshirani, 2000) of the log-spectrum, by a sequence of Newton-

Raphson iterations that iteratively improve the fit. At each step, a single candidate regressor is selected

among the explanatory variables of the FEXP model and the current solution is moved towards the direction

that increases maximimally the Whittle likelihood by a small fraction governed by the learning rate. This

prevents the algorithm from becoming too greedy and yields coefficient patterns that have a close connection

with the lasso (see Bühlmann, 2006, and Hastie, Tibshirani and Friedman, 2009). The stopping iteration can

be selected by an information criterion. Excellent reviews of boosting are Bühlmann and Hothorn (2007)

and Hastie, Tibshirani and Friedman (2009, chapter 10).
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Suppose that we start from the estimate of log-spectrum C(ω) and we look for an improved estimate

C(ω) + νc(ω), where ν is a learning parameter, that we set equal to 0.1 to prevent overfitting, and c(ω)

takes the form αz+(ω), where z+(ω) is an element of the vector of the K + 2 explanatory variables in the

FEXP model, z(ω) = (1, 2 cosω, 2 cos(2ω), . . . , 2 cos(Kω),−2 ln |2 sin(ω/2)|)′, chosen so as to optimise

the improvement in the fit, in the sense specified below. Here K is taken as possibly large number, e.g. Na,

a ∈ [0.3, 0.6]. When long memory is due to the presence of a Gegenbauer process at frequency ϖ, the last

element in the vector z(ω) is obviously replaced by 2 ln
∣

∣4 sin
(

ω+ϖ
2

)

sin
(

ω−ϖ
2

)∣

∣.

For z+(ω) given, the coefficient α can be estimated consistently by Whittle likelihood, performing a

single Newton-Raphson iteration, with starting value α̂0 = 0, which yields (see also section 4):

α̂ =

∑N
j=1 z

+(ωj)uj
∑N

j=1Wj [z+(ωj)]2
, uj = 1− 2πI(ωj)

exp{C(ωj)}
, Wj =

2πI(ωj)

exp{C(ωj)}
.

Equivalently, α̂ results from the weighted least squares regression of uj/Wj on z+(ωj), with weights Wj .

The selection of the regressor z+(ω) is based on the maximum deviance reduction, were the deviance

associated with the log-spectral fit C(ω) is

D(C) = 2

N
∑

j=1

[C(ωj) + 2πI(ωj)/ exp{C(ωj)}] . (16)

Hence, at every boosting iteration, m = 1, . . . ,M , and starting from the initial constant configuration

C0(ω) =
1
N

∑N
j=1 (ln[2πI(ωj)]− ψ(1)) , we performK+2 weighted regressions and select the one which

yields the largest reduction in the deviance (equivalently, the maximum increase in the Whittle likelihood),

and we update the current estimate according to the learning rate ν as follows:

Cm(ω) = Cm−1 + ναz+m(ω),m = 1, 2, . . . ,M. (17)

The stopping iteration is determined by an information criterion which imposes a penalty for the com-

plexity of the fit, measured by the number of degrees of freedom. For the m-th update

dfm = dfm−1 + ν

∑N
j=1[z

+
m(ωj)]

2

∑N
j=1Wj [z

+
m(ωj)]2

.

The initial value, corresponding to the constant spectral fit, is df0 = 1. Alternatively, out of sample valida-

tion can be used, in which case we select the spectral fit that generalizes best to data that have not been used

for fitting.
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Figure 2: Box and Jenkins (1970) Series A. Chemical process concentration readings.
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7 Illustrations

7.1 Box and Jenkins Series A

Our first empirical illustration deals with a time series popularised by Box and Jenkins (1970), concerning a

sequence of n = 200 readings of a chemical process concentration, known as Series A. The series, plotted in

figure 2, was investigated in the original paper by Bloomfield (1973), with the intent of comparing the EXP

model with ARMA models. Bloomfield fitted a model with K chosen so as to match the number of ARMA

parameters. Box and Jenkins (1970) had fitted an ARMA(1,1) model to the levels and an AR(1) to the

differences. The estimated p.e.v. resulted 0.097 and 0.101, respectively. Thus, Bloomfield fitted the EXP(2)

model to the levels and an EXP(1) to the 1st differences by maximum likelihood, using a modification

which entails concentrating σ2 out of the likelihood function. The estimated p.e.v. resulted 0.146 and 0.164,

respectively. He found this rather disappointing and concluded that ARMA models are more flexible.

Actually, there is no reason for constraining K to the number of parameters of the ARMA model. If

model selection is carried out and estimation by MLE is performed by IRLS, AIC selects an EXP(7) for the

levels and an EXP(5) for the 1st differences. The estimated p.e.v. is 0.099 and 0.097, respectively. BIC

selects an EXP(3) for both series. The p.e.v. estimates are 0.103 and 0.103.

Also, the FEXP(0) provides an excellent fit: the d parameter is estimated equal to 0.437 (with standard

error 0.058), and the p.e.v. is 0.100.
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Figure 3: BJ Series A. Spectrum and log-spectrum estimation by an exponential model with K selected by

AIC and a fractional exponential model.
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Figure 3 presents the periodogram and the fitted spectra for the two EXP specifications and the FEXP

model (left plot). The right plot displays the centered log-periodogram ln [2πI(ωj)] − ψ(1) and compares

the fitted log-spectra. It could be argued that EXP(7) is prone to overfitting and that the FEXP(0) model

provides a very good fit, the first periodogram ordinate I(ω1) being very influential in determining the fit.

The FEXP(0) model estimated on the the first differences yields an estimate of the memory parameter

d equal to -0.564 (s.e. 0.056), and the p.e.v. is 0.098. These results are consistent with the FEXP model

applied to the levels, as a negative d is estimated.

This example illustrates that the exponential model provides a fit that is comparable to that of an ARMA

model, in terms of the prediction error variance. There is a possibility that the series has long memory,

which has not been explored in the literature.

When we move to fitting the more general class of GMC(λ,K) models, both AIC and BIC select the

model GCM(-2.29, 1); see table 1, which refers to the AIC. Notice that the EXP(5) and EXP(7) are char-

acterised by a much smaller AIC (see the row corresponding to λ = 0). Table 2 displays the values of the

estimated b1 coefficient and the corresponding generalised cepstral coefficient cλ1, as well as the value of the

maximised likelihood and prediction error variance, for the first order model GCM(λ, 1), as the transforma-
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Table 1: BJ Series A. Values of the Akaike Information Criterion for GCM(λ, K) models. The selected

model is GCM(-2.29, 1).

Values of K

λ 1 2 3 4 5 6 7

-2.50 -3.131 -3.121 -3.118 -3.108 -3.099 -3.089 -3.079

-2.29 -3.133 -3.124 -3.118 -3.108 -3.100 -3.090 -3.080

-2.00 -3.128 -3.126 -3.117 -3.108 -3.100 -3.093 -3.084

-1.50 -3.095 -3.119 -3.109 -3.100 -3.094 -3.091 -3.091

-1.00 -3.049 -3.104 -3.097 -3.090 -3.083 -3.082 -3.091

-0.50 -3.000 -3.083 -3.085 -3.079 -3.071 -3.070 -3.087

0.00 -2.955 -3.055 -3.072 -3.069 -3.061 -3.056 -3.077

0.50 -2.918 -3.024 -3.057 -3.062 -3.053 -3.045 -3.063

1.00 -2.888 -2.994 -3.037 -3.053 -3.048 -3.038 -3.049

tion parameter varies. For the specification selected according to information criteria, the implied spectrum

is 2πf̃(ω) = σ
2/λ̃
λ |1 + b̃1e

−ıω|2/λ̃ = σ
2/λ̃
λ |2 sin(ω/2)|−2×0.44

, which results from replacing b̃1 = −1 and

λ̃ = −2.29 and by application of the two-angle trigonometric formula. This is the spectral density of a frac-

tional noise process with memory parameter d = 0.44. It is indeed remarkable that likelihood inferences and

model selection applied to the GCM(λ, K) model, point to the same results obtained by the FEXP(0) model

discussed above. We interpret these results as further confirming the long memory nature of the series.

7.2 Simulated AR(4) Process

As our second example we consider n = 1024 observations simulated from the AR(4) stochastic process

yt = 2.7607yt−1−3.8106yt−2+2.6535yt−3−0.9238yt−4+ξt, ξt ∼ NID(0, 1). The series is obtained from

Percival and Walden (1993) and constitutes a test case for spectral estimation method, as the data generating

process features a bimodal spectrum, with the peaks located very closely. In fact, the AR polynomial features

two pairs of complex conjugate roots with modulus 1.01 and 1.02 and phases 0.69 and 0.88, respectively. As

in Percival and Walden the series is preprocessed by a dpss data taper (with bandwidth parameterW = 2/n,

see Percival and Walden, sections 6.4 and 6.18, for more details).

The specifications of the class GCM(λ,K) selected by AIC and BIC differ slightly. While the latter

selects the true generating model, that is λ = −1 and K = 4, AIC selects λ = −1 and K = 6. However,

the likelihood ratio test of the null that K = 4 is a mere 4.8.

The estimated coefficients of the GCM(-1, 4) model and their estimation standard errors are
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Table 2: GCM(λ, 1) models: Whittle likelihood estimates of b1, the GCC cλ1; value of log-likelihood at the

maximum, ℓ(ϑ̂), and prediction error variance (p.e.v.).

GCM(λ, 1)

λ b1 cλ1 ℓ(ϑ̂) p.e.v

-2.50 -1.000 124.952 309.399 0.100

-2.29 -1.000 84.230 309.609 0.100

-2.25 -1.000 78.112 309.602 0.101

-2.00 -1.000 48.654 309.070 0.101

-1.50 -0.840 16.878 305.880 0.103

-1.00 -0.578 5.363 301.346 0.108

-0.50 -0.274 1.631 296.491 0.113

0.00 - 0.496 292.100 0.117

0.50 0.221 0.154 288.432 0.122

1.00 0.393 0.049 285.433 0.126

Figure 4: Periodogram and log-spectra estimated by the GCM(-1, 4), selected by BIC, and EXP(5) models.

ln[2πI(ωj)]−ψ(1) 
GCM(-1,4) 
EXP(5)  
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ln[2πI(ωj)]−ψ(1) 
GCM(-1,4) 
EXP(5)  
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bk std. err. true value

-2.7490 0.0007 -2.7607

3.7901 0.0016 3.8106

-2.6353 0.0007 -2.6535

0.9201 0.0025 0.9238

The comparison with the true autoregressive coefficients (reported in the last column) stresses that they are

remarkably accurate. Figure 4 displays the centered periodogram and compares the log-spectra fitted by the

selected GCM(-1,4) model and the EXP(5) model, which emerges if Box-Cox transformation parameter is

set equal to zero. The latter fit is clearly suboptimal, as it fails to capture the two spectral modes.

7.3 Monthly Sunspot Series

The monthly averages of the sunspot numbers visible on the sun and can be considered a testbed for time

series methods, although most often annual sunspot series are analysed (see Xia and Tong, 2011, section

6.2, and the references therein). The series is compiled by the Solar Influences Data Analysis Center in

Belgium and it is known as the International Sunspot Number series; its construction is documented in

Hathaway (2010) and the webpage http://solarscience.msfc.nasa.gov/SunspotCycle.shtml; we consider the

monthly observations from January 1848 to December 2012, for a total of 1980 observations. The series is

plotted in the top panel of figure 5, along with its sample correlogram. The most prominent feature is the

presence of an approximate 11-year cycle (corresponding to 132 monthly observations and to the frequency

ϖ = 0.048). Hathaway (2010) provides an excellent discussion of the main periodic features and discusses

also other shorter cycles that are present in the series, among which the 154-day, annual and biannual cycles.

When the EXP model is fitted to the series, the estimated spectral density has a global maximum at the

zero frequency, so that the implied autocorrelation function is not periodic and an important feature of the

series is missed. As for the FEXP(K), which includes −2 ln
∣

∣4 sin
(

ω+ϖ
2

)

sin
(

ω−ϖ
2

)∣

∣ among the regressors

(here ϖ = 2π/132 is the frequency corresponding to a period of 11 years of monthly data), AIC selects

K = 26, whereas the minimum BIC occurs for K = 3. The parameter estimates, as well as their standard

error, the maximised likelihood and the estimated prediction error variance, are given in the following table

for the two different specifications:

FEXP(26) FEXP(3)

d̃ 0.392 0.454

s.e. 0.080 0.022

loglik -4581.5 -4618.1

p.e.v. 238.0 246.8
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Figure 5: International Sunspot Number series, January 1848 - December 2012, monthly averages. Series

and sample autocorrelation function.
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Figure 6: Log-spectra of FEXP(26) and FEXP(3) models selected by AIC and BIC (first plot). Interval

estimates of the cepstral coefficients 2d cos(ϖk)/k + ck obtained from the FEXP(26) model (central plot)

and the FEXP(3) model (right plot).
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The log-spectra implied by the two different FEXP models are compared in the first plot of figure 6. While

the 11 year cycle is captured by both models, the shorter cycles are fitted only by the FEXP(26) model.

An important open issue is whether all the secondary peaks are a significant feature, or they originate from

overfitting. The overall cepstral coefficients of the series, 2d cos(ϖk)/k+ ck, resulting from the sum of the

long-memory and the short memory component, are displayed in the second and the third plot of the figure,

respectively for the FEXP(26) and the FEXP(3) models, along with their 95% confidence interval.

The smoothness prior used by Wahba and Pawitan and O’Sullivan for the short run coefficients ck’s is

not suitable in this context, as the log-spectrum can feature local maxima. While the very first coefficients

capture the behaviour around the long run frequency, higher order coefficients are responsible for the shorter

cycles and shrinking them to zero would amount to ruling out shorter cycles.

We believe that gradient boosting can add valuable insight for selecting a model for the spectrum of

the time series. Its componentwise approach, by which at each iteration only the contribution of a single
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variable is determined, produces a set of solutions that very closely resembles the solution path for the lasso

(see Bühlmann, 2006 and Hastie, Tibshirani and Friedman, 2009), thereby enabling variable selection and

shrinkage. The total sample of 1980 time series observations is divided into two parts. The first half of the

series is used as a training sample and the rest as a validation sample. The explanatory variables include

cos(ωk), k = 0, . . . , 54 and −2 ln
∣

∣4 sin
(

ω+ϖ
2

)

sin
(

ω−ϖ
2

)∣

∣. The boosting iterations provide a sequence of

log-spectral estimates Cm(ω),m = 0, 1, . . . ,M . The learning rate is set equal to ν = 0.1, as it is customary

to prevent the algorith from becoming too greedy. The coefficient profiles arising from M = 500 iterations

of the algorithm are plotted in the left graph of figure 7.

If we let D(Cm) denote the deviance associated to the log-spectrum fitted at the m-th boosting iteration

(see expression (7.3)), the stopping iteration, mstop, can be chosen according to the value that minimises

AIC = D(Cm) + 2dfm or BIC = D(Cm) + ln(n)dfm. Alternatively, mstop can be determined by out-of-

sample validation, which amounts to evaluating the log-spectral fit Cm(ω) which minimises the deviance

for the hold-out sample,

D∗(Cm) = 2
N
∑

j=1

[C(ωj) + 2πI∗(ωj)/ exp{C(ωj)}] ,

where I∗(ωj) is the periodogram of the validation sample. The stopping iteration selected by AIC ismstop =

215, whereas BIC has mstop = 108. The crossvalidation (CV) criterion selects mstop = 259, and, as a

result, the log-spectrum selected by CV is very similar to that selected by AIC. The values of the long

memory parameter and of the coefficients ck’s corresponding to these choices can be obtained from the left

plot of figure 7. It emerges that the estimated value for d is not at all sensitive to the selection criterion,

and it is about 0.25; the differences arise in the values of the ck coefficients, though, with the AIC and

CV solutions being characterised by larger high order coefficients, which implies that shorter cycles will

be more represented. In conclusion, the selection criteria provide different characterizations of the short

memory component.

The middle plot of figure 7 displays the iteration profile of the overall cepstral coefficients 2d cos(ϖk)/k+

ck; the values selected at mstop for the different criteria can be compared with those plotted in 6. The value

of the first cepstral coefficient is larger for BIC, but all the remaining coefficients are smaller. The right plot

of figure 7 displays the log-cepstral fits Cmstop(ω) corresponding to the three criteria. Despite the fact that

the short memory component is represented differently, the differences are minor, and we may tentatively

conclude that we find statistical support for the presence of shorter cycles in conjunction with the 11 year

cycle.

The next section will confirm that the boosting estimate of the long memory parameter tends to be stable

across the selection criteria; moreover, it will show that it is more reliable than the maximum likelihood

estimate arising from fitting the FEXP model.
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Figure 7: Boosting for cepstral estimation. Coefficient profiles for the parameters d and ck (left plot).

Iteration profile of the overall cepstral coefficients, 2d cos(ϖk)/k+ck (middle plot) and log-spectra selected

by AIC, BIC and crossvalidation (CV) (right plot).
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7.4 Separating Long Memory from Short

Assessing the contribution of the long memory component to the total log-spectrum can be very problematic

when the short run component is very persistent. The difficulty is illustrated by a Monte Carlo simulation

exercise, which also shows that boosting is remarkably much more accurate in this respect. We focus, in

particular, on the long memory process (1− ϕB)(1− B)dyt = ξt, ξt ∼ WN(0, σ2) with ϕ = 0.9, d = 0.4

and σ2 = 1; the cepstral coefficients of yt for k > 0 result from the sum of 0.4/k and 0.9k/k (see also

section 7.4). In this situation it proves difficult to distill the contribution of the long memory component

through the estimation of d in a FEXP framework.

We simulated 10,000 series of length 1000 from such a process and for each replication we estimated

the FEXP(K) model, with K varying between 0 and 30, and with K selected by AIC and BIC. Due to the

high correlation among the explanatory variables, the maximum likelihood estimator of d has a sampling

distribution that depends substantially on K, as it can be seen from the top-left panel of figure 8, which

displays the density of the MLE of the long memory paramenter, denoted d̃K , as K varies. The bias-

variance trade-off is evident: larger values of K imply less bias at the cost of a larger variance. The top

right panel of figure 8 shows that the value K = 13 minimizes the mean square estimation error for d. This

value does not concide with that minimising the Euclidean distance between the true log-spectrum and the

estimated one:
∑N

j=1[ln(2πf(ωj)) − z′j θ̃]
2, displayed in the left bottom plot. Hence, if the criterion for

assessing the quality of the FEXP fit is the mean square estimation error of the log-spectrum, then a smaller

value of K, equal to 6, should be considered. Notice, however, that the density d̃6 is highly concentrated in

the nonstationarity region.

The last panel of figure 8 reports the percent frequency by which the FEXP orderK is selected according

to the BIC and AIC criteria. It seems that the AIC does a better job, in that its distribution is centered around

the value that maximises the accuracy in the estimation of the log-spectrum.

When estimation is carried out by the boosting algorithm outlined in section 6, the picture changes quite

dramatically: table 3 compares the mean, the standard deviation, the mean square error (multiplied by 100)

of the estimates of the parameters c0 (logarithm of p.e.v), c1, c2, c3, and d obtained by the FEXP model with

order selected by AIC and BIC with those obtained by boosting with stopping iteration chosen according

to the two information criteria. It also compares the mean and the standard deviation of the distance of the

estimated log-spectrum with the true one.

While it turns out that boosting achieves the same overall accuracy in estimating the log-spectrum (see

the last column of the table), it is clearly superior in disentangling the contributions of the short and long

memory components of the log-spectrum. The estimate of d suffers from a positive bias, but the distribution

is concentrated in the stationary region and the mean square estimation error of the parameters is remarkably

smaller.
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Figure 8: Density and MSE of the MLE of d when yt is genereated from (1 − ϕB)(1 − B)dyt = ξt, ξt ∼
WN(0, σ2) with ϕ = 0.9, d = 0.4 and σ2 = 1 (top panels). Log-spectrum distance as function of k (bottom

left panel). Frequency distribution of K chosed by AIC and BIC (right bottom plot).
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Table 3: Comparison of the sampling distributions of the estimators of the parameters ck, k = 0, 1, 2, 3, and

d of the FEXP model obtained by maximum likelihood and by the boosting algorithm.

c0 c1 c2 c3 d K Distance

True value 0.000 0.900 0.405 0.243 0.400 ∞ 0

FEXP - AIC

Mean 0.090 0.609 0.266 0.152 0.670 6.156 31.520

St. Dev. 0.128 0.220 0.112 0.080 0.218 3.505 31.352

100× MSE 2.435 13.300 3.173 1.465 12.050

FEXP - BIC

Mean 0.110 0.232 0.074 0.024 1.052 1.361 43.387

St. Dev. 0.128 0.182 0.095 0.055 0.169 1.173 35.642

100× MSE 2.841 47.941 11.863 5.104 45.397

c0 c1 c2 c3 d mstop Distance

True value 0.000 0.900 0.405 0.243 0.400 ∞ 0

Boosting - AIC

Mean -0.001 0.853 0.343 0.192 0.460 163.586 32.433

St. Dev. 0.012 0.050 0.035 0.034 0.027 16.356 34.294

100× MSE 0.015 0.473 0.509 0.369 0.436

Boosting - BIC

Mean 0.001 0.884 0.326 0.171 0.459 106.775 43.864

St. Dev. 0.004 0.051 0.035 0.034 0.027 10.046 37.269

100× MSE 0.002 0.283 0.744 0.627 0.420

30



Figure 9: Comparison of distribution of the estimates d, c1 and c2 arising from the FEXP model with AIC

order selection and the boosting estimates with AIC step selection.
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The differences and the efficiency gains can be better appreciated in figure 9, which compares the distri-

butions of dwhen the selection criterion is the AIC. The central and bottom plot illustrate that the distribution

of the estimators of c1 and c2 is strongly and negatively correlated with that of d; however their distribution

is less sparse and the correlation is less strong when boosting is adopted.

8 Conclusions

Modelling the log-spectrum has a long tradition in the analysis of univariate time series and leads to com-

putationally attractive likelihood based methods. We have devised a general frequency domain estimation

framework within which nests the exponential model for the spectrum as a special case and allows for any

power transformation of the spectrum to be modelled, so that alternative spectral fits can be encompassed.

Another extension has dealt with a boosting algorithm for fitting the spectrum and we have discussed its

potential for the estimation of long memory models. As a direction for future research we think that the

exponential framework can have successful applications for modelling the time-varying spectrum of a lo-

cally stationary processes (Dahlhaus, 2012), by allowing the cepstral coefficients to vary over time, e.g.

with autoregressive dynamics. Finally, a multivariate extension, the matrix-logarithmic spectral model for

the spectrum of a vector time series, could be envisaged, along the lines of the model formulated by Chiu,

31



Leonard and Tsui (1996) for covariance structures.
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[13] Bühlmann, P. and Hothorn, T. (2007), Boosting Algorithms: Regularization, Prediction and Model

Fitting, Statistical Science, 22, 477–505.

[14] Cameron, M.A., Turner, T.R. (1987), Fitting Models to Spectra Using Regression Packages, Journal

of the Royal Statistical Society, Series C, Applied Statistics, 36, 1, 47–57.

[15] Carter, C.K. and Kohn, R. (1997), Semiparametric Bayesian Inference for Time Series with Mixed

Spectra, Journal of the Royal Statistical Society, Series B, 36, 1, 47–57.

[16] Childers, D.G. Skinner, D.P. Kemerait, R.C. (1977), The Cepstrum: A Guide to Processing, Proceed-

ings of the IEEE, 65, 1428-1443.

[17] Chow, Y. and Grenander, U. (1985), A Sieve Method for the Spectral Density, Annals of Statistics, 13,

998-1010.

[18] Chiu, T.Y.M., Leonard, T. and Tsui, K-W. (1996), The Matrix-Logarithmic Covariance Model, Journal

of the American Statistical Association, 91, 198-210.

[19] Cleveland, W.S. (1972), The Inverse Autocorrelations of a Time Series and Their Applications, Tech-

nometrics, 14, 2, 277–293.

[20] Dahlhaus, R. (1989), Efficient Parameter Estimation for Self Similar Processes. The Annals of Statis-

tics, 17, 4, 1749-1766.

[21] Dahlhaus, R. (2012). Locally Stationary Processes. In Handbook of Statistics, Time Series Analysis:

Methods and Applications, Volume, 30, chapter 13, Elsevier, p. 351–408.

[22] Davis, H.T. and Jones, R.H. (1968), Estimation of the Innovation Variance of a Stationary Time Series,

Journal of the American Statistical Association, 63, 321, 141–149.

[23] Demmler, A. and Reinsch, C. (1975), Oscillation Matrices with Spline Smoothing. Numerische Math-

ematik , 24, 375–382.

[24] Doob, J.L. (1953), Stochastic Processes, John Wiley and Sons, New York.

[25] Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression (with discussion).

The Annals of Statistics. 32, 407-499.

[26] Eubank, R.L. (1999), . Nonparametric Regression and Spline Smoothing, Marcel Dekker, New York.

[27] Fan, J. and Kreutzberger, E. (1998), Automatic Local Smoothing for Spectral Density Estimation.

Scandinavian Journal of Statistics, 25, 359–369.

33
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[31] Früwirth-Schnatter, S. and Früwirth-Schnatter, S. (2007), Auxiliary Mmixture Sampling with Appli-

cations to Logistic Models. Computational Statistics and Data Analysis, 51, 3509–3528-783.

[32] Geweke, J. and Porter-Hudak, S. (1983), The Estimation and Application of Long-Memory Time

Series Models, Journal of Time Series Analysis, 4, 221–238.

[33] Gould, H.W. (1974), Coefficient Identities for Powers of Taylor and Dirichlet Series, The American

Mathematical Monthly, 81, 1, 3–14.

[34] Gradshteyn, I.S. and Ryzhik, I.M. (1994) Table of Integrals, Series, and Products Jeffrey A. and Zwill-

inger D. Editors, Fifth edition, Academic Press.

[35] Gray, H.L, Zhang, N.F. and Woodward, W.A. (1989), On Generalized Fractional Processes, Journal of

Time Series Analysis, 10, 233–257.

[36] Grenander, U. and Rosenblatt, M. (1957), Statistical Analysis of Stationary Time Series, John Wiley

and Sons, New York.

[37] Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning, Second Edi-

tion, Springer, New York.

[38] Hathaway, D.H. (2010), The Solar Cycle, Living Reviews in Solar Physics, 7, 1.

[39] Hosking, J.R.M. (1982), Fractional Differencing, Biometrika, 68, 165–176.

[40] Hsu N-J. and Tsai H. (2009), Semiparametric Estimation for Seasonal Long-Memory Time Series

Using Generalized Exponential Models, Journal of Statistical Planning and Inference, 139, 1992–2009.

[41] Hurvich, C.M. (2002), Multistep forecasting of long memory series using fractional exponential mod-

els, International Journal of Forecasting, 18, 167–179.

[42] Janaceck, G.J. (1982), Determining the Degree of Differencing for Time Series via the Log Spectrum,

Journal of Time Series Analysis, 3, 3, 177–183.

34



[43] Koenker R. and Yoon J. (2009), Parametric Links for Binary Choice Models: A Fisherian-Bayesian

Colloquy, Journal of Econometrics, 152, 120–130.

[44] Koopmans, L.H. (1974), The Spectral Analysis of Time Series, Academic Press.

[45] Li, L.M. (2005), Some Notes on Mutual Information between Past and Future, Journal of Time Series

Analysis, 27, 309–322.

[46] Luati, A. and Proietti, T. (2010), Hyper-spherical and Elliptical Stochastic Cycles, Journal of Time

Series Analysis, 31, 169–181.

[47] Luati, A., Proietti, T. and Reale, M. (2012), The Variance Profile, Journal of the American Statistical

Association, 107, 498, 607–621.

[48] Mardia, K.V. and Jupp, P.E. (2000), Directional Statistics, Wiley, Chichester, UK.

[49] McCullagh, T.S. and Nelder, J.A. (1989), Generalized Linear Models, Chapman&Hall Cambridge,

UK.

[50] McElroy, T.S. and Holan, S.H. (2012), On the Computation of Autocovariances for Generalized

Gegenbauer Processes , Statistica Sinica, to appear.

[51] Monahan, J.F. (1984), A Note Enforcing Stationarity in Autoregressive-Moving Average Models,

Biometrika, 71, 2, 403–404.

[52] Moulines, P. and Soulier, E. (1999), Broadband Log-Periodogram Regression of Time Series with

Long-Range Dependence, Annals of Statistics, 27, 1415–1439.

[53] Narukawa, M. and Matsuda, Y. (2011), Broadband Semi-Parametric Estimation of Long-Memory

Time Series by Fractional Exponential Models, Journal of Time Series Analysis, 32, 175–193.

[54] Oppenheimen A.V. and Schafer R.W. (2010) Discrete-Time Signal Processing, Third Edition. Pearson

Eucation, Upper Saddle River.

[55] Pawitan, Y. and O’Sullivan, F. (1994), Nonparametric Spectral Density Estimation Using Penalized

Whittle Likelihood, Journal of the American Statistical Association, 89, 600–610.

[56] Percival, D.B. and Walden, A.T. (1993), Spectral Analysis for Physical Applications, Cambridge Uni-

versity Press.

[57] Pourahmadi M. (1983), Exact factorization of the spectral density and its application to forecasting

and time series analysis Communications in Statistics, 12, 18, 2085–2094.

35



[58] Pourahmadi M. (2001), Foundations of Time Series Analysis and Prediction Theory, Wiley Series in

Probability and Statistics, John Wiley and Sons.

[59] Proietti, T., and Luati , A. (2012), The Generalised Autucovariance Function, MPRA working paper,

47311.

[60] Robinson, P. (1991). Nonparametric function estimation for long memory time series. In Nonpara-

metric and Semiparametric Methods in Econometrics and Statistics: Proc. of the 5th Int. Symposium in

Economic Theory and Econometrics, 437–457.

[61] Robinson, P. (1995). Log-Periodogram Regression of Time Series with Long Range Dependence, An-

nals of Statistics, 23, 1048–1072.

[62] Rosen, O., Stoffer, D.S., Wood, S. (2009). Local Spectral Analysis via a Bayesian Mixture of Smooth-

ing Splines, Journal of the American Statistical Association, 104, 249–262.

[63] Rosen, O., Stoffer, D.S., Wood, S. (2012). AdaptSPEC: Adaptive Spectral Estimation for Nonstation-

ary Time Series, Journal of the American Statistical Association, 107, 1575–1589.

[64] Wahba, G. (1980). Automatic Smoothing of the Log-Periodogram, Journal of the American Statistical

Association, 75, 122–132.

[65] Walker, A.M. (1964). Asymptotic Properties of Least Squares Estimates of Parameters of the Spectrum

of a Stationary Non-Deterministic Time Series, Journal of the Australian Mathematical Society, 4, 363–

384.

[66] Whittle, P. (1953). Estimation and Information in Stationary Time Series, Arkiv för Matematik, 2,

423–434.

[67] Xia Y. and Tong, H. (2011), Feature Matching in Time Series Modeling. Statistical Science, 26, 1,

21-46.

36


	Introduction
	The Exponential Model and Cepstral Analysis 
	Cepstral Analysis of ARMA Processes 
	Truncated Cepstral Processes 
	Fractional Exponential (FEXP) processes 

	The Periodogram and its Sampling Properties 
	Approximate (Whittle) Likelihood Inference 
	Generalized Linear Cepstral Models with Power Link 
	White Noise and Goodness of Fit Test
	Reparameterization

	Gradient Boosting and Regularization for Cepstral Estimation 
	Illustrations 
	Box and Jenkins Series A
	Simulated AR(4) Process
	Monthly Sunspot Series
	Separating Long Memory from Short 

	Conclusions 

