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This paper explores the relationship between economic development (in the form of 
GDP/c) and environmental pollution (in the form of sulphur emissions) by using a 
dynamic panel data for 97 countries for the time period 1950*2003.  Various panel data 
econometric techniques are applied to a sample including only European Union (EU) 
countries and to a full sample including both the EU countries of the EU*countries  
sample, as well as, certain non*EU countries. The empirical results indicate significant 
differences between the two samples. For the case of the full sample, cross*country 
variation in the estimated slopes is observed, and parameters are extremely 
heterogeneous across countries making aggregate summarization not to be useful at all.   
However, the previous findings do not hold for the sample of the EU country members, 
resulting to the conclusion that policies to control pollution have to take into 
consideration both the specific economic situation and the structure of the industrial and 
the business sectors of each region. The last argument is even more important if 
someone takes into consideration transboundary pollution problems. Finally, in terms of 
policy implications, the study discusses the main options for sulphur emissions 
abatement.  
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During the various economic development stages, income inequalities first 

increase and then start to fall as shown by Kuznets (1955). The environmental Kuznets 

curve (hereafter EKC) hypothesis relies on this idea and proposes that there is an 

inverted U*shaped relationship between environmental degradation and per*capita 

income. The EKC estimates for any environmental degradation dependent variable (like 

SO2, NOX etc.) peak at income levels around the world’s mean income per capita.  At 

the same time, income is not normally distributed but skewed (with a lot of countries 

below mean income per capita) and environmental damage seems to be lower in the 

most developed countries compared to middle*income countries and higher in many 

middle*income countries compared to less developed countries.  

 Among others, Arrow et al. (1995), Ekins (1997) and Ansuategi et al. (1998) 

provide a number of reviews and critiques of the EKC studies. Stern et al. (1996) 

point out the problems associated with some of the main EKC estimators and their 

interpretation. Specifically, they refer to the mean*median income problems, to the 

interpretation of particular EKCs in isolation from other environmental problems and 

the possible synergistic effects, the asymptotic behaviour and the assumption of 

unidirectional causality from growth to environmental quality and the reversibility of 

environmental change. They also refer to econometric problems claiming that many 

empirical studies do not provide any diagnostic tests for heteroskedasticity (due to 

large variations in income levels and environmental degradation variables) and 

autocorrelation.  

The existence of spatial relationships in the data may affect the properties of the 

econometric methods used and lead to biases, inconsistencies, invalid inferences etc 

(Anselin and Griffiths, 1988). Dijkgraaf and Vollebergh (2005) claim that across 
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countries the homogeneity of income is not proved by the data set used and turning 

points in higher income levels may be found even when cross*country heterogeneity 

is permitted. 

At the same time an important issue is the choice between homogeneous and 

heterogeneous estimators. Due to potential heterogeneity bias associated with the use 

of pooled estimators, some researchers propose the employment of heterogeneous 

estimators that permit individual slopes (Pesaran and Smith, 1995; Hsiao et al. 1999). 

This situation is possible to occur when the range of independent variables (like 

GDP/c) differs across cross*sections. Other researchers propose in*between estimators 

like Bayesian shrinkage estimators (Maddala et al. 1997) or Pooled Mean Group 

(PMG) estimators (Pesaran et al., 1999).  Finally, Mazzanti and Musolesior (2011) 

use "heterogeneous estimators" like Swamy’s (1970) random coefficients GLS 

estimator, the Mean Group (MG) estimator (Pesaran and Smith, 1995) for dynamic 

models, the hierarchical Bayes approach (Hsiao et al. 1999) and the Empirical and the 

Iterative Empirical Bayes estimators (Maddala et al. 1997).  

In this paper we use a panel data set of 97 countries for the time*span 1960*

2003 for sulphur dioxide emissions as an index of environmental degradation and 

GDP/c as index of economic development. We use both "homogeneous and 

heterogeneous estimators". Specifically, a number of panel data models are used like 

fixed (within) effects, between effects, random effects with GLS and MLE, fixed and 

random effects with AR(1) errors and a "heterogeneous estimator" like Swamy’s 

random coefficient estimator. Our findings and results are given separately, first for 

sample including European Union (EU) and non European Union countries, and then 

for the sample including only the EU countries, exploring for both samples the issues 

of cross*section dependence and the associated policy implications.  



 4 

The structure of the paper is the following. Section 2 reviews the existing 

relative literature. Section 3 discusses the data and the econometric models used in 

this study. The empirical evidence is presented in section 4 while section 5 discusses 

the findings of this paper in terms of justifying the inverted U*shape extracted curves 

and the available abatement techniques for sulphur emissions control. The last section 

concludes the paper. 

�

&��"�	����	��	
�	��

 Empirical formulations of the environment*income relationship and the 

exploration of the EKC hypothesis rely on econometric specifications that consist of an 

environmental damage indicator served as dependent variable and an economic variable 

representing economic development, like GDP/c in level, square and cubic values, 

being used as independent variable. Different variables have been used so far in 

empirical modelling to approximate environmental damage like air pollutants (SOX, 

NOX, CO2, PM10, CO, etc.), water pollutants (e.g. toxic chemicals discharged in water, 

etc.) and other environmental indicators (e.g. deforestation, municipal waste, energy 

use, urban sanitation and access to safe drinking water). 

 Grossman and Krueger’s (1995) and Shafik and Bandyopadhyay’s (1992) 

suggest that at high*income levels, material use increases in a way that the EKC is N*

shape. Specifically, Grossman and Krueger (1991), using the Global Environmental 

Monitoring System (GEMS) for 52 cities in 32 countries in the time span 1977*88, 

found N*shape curves in the cases of  SO2, dark matters and suspended particles with 

turning points between $4000*$5000. But as income approached the $10000*$15000 all 

the pollutants started to rise again. Shafik and Bandyopadhyay’s (1992) examined 10 

different indexes of environmental damage like among others sulphur oxides, xabon 
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emissions, deforestation, etc for 149 countries for the time span 1960*1990. On 

contrary to other indexes, air pollutants presented an EKC behaviour with turning 

points between $300*$4000. At the same time Panayotou (1993) using cross sectional 

data found turning points for air pollutants between $3000 and $5000. Selden and 

Song (1998) found EKC for sulphur and NOX among others in the case of developed 

countries with turning points at $8700 for SO2, $11200 for NOX and $5600 for CO. 

Stern and Common (2001) find that sulfur emissions per capita are a monotonic 

function of income per capita, when they use a global sample and an inverted U*shape 

function of income when they use a sample of high*income countries only. They 

calculate a much larger in size turning point ($908178) compared with the total 

sample, again implying a monotonic EKC. Halkos (2003a), using the same database 

but proposing a dynamic model formulation finds much lower turning points in the 

range of $2805*$6230 and inverted U*shape curves. The differences in the extracted 

relationships as well as in the estimated turning points may be attributed to the 

econometric models’ functional form used and the adoption of static or dynamic 

analysis.  

Ansuategi (2003) used emission density as a dependent variable for a sample of 

21 Western and Eastern European countries taking into account the spatial dispersion 

of pollutants in the growth–pollution relationship.  De Bruyn (1997) examined mainly 

the 1994 Oslo Sulfur Protocol environmental policy and the agreed reduction targets 

in sulfur emissions of the 27 signatories for the year 2000. One of the main findings 

was that reductions of emissions at high levels of income are justified by 

environmental policy and not by any structural change. Panayotou (1997) used 

income per capita to capture the ‘‘quantitative’’ aspects of policy (e.g., environmental 

expenditures by the government) as well as an index of the enforcement of contracts. 



 6 

The empirical results indicated that effective institutions and policies may reduce 

environmental damage at low income levels. At the same time they may speed up 

progresses at higher income levels. In this way, the EKC starts to become flatter while 

the environmental cost of growth decreases.   

Markandya et al. (2006) examined the EKC hypothesis using sulphur dioxide 

emissions in Europe, like Ansuategi (2003) but with attention to countries of the 

Western European region. Similarly to De Bruyn (1997) and Panayotou (1997) they 

also paid attention to the effect of policy variables, like EU Directives and other 

national and international agreements.  

At the same time the inclusion of other independent variables in the model 

formulation, affects significantly the estimated relationship. Roca et al. (2001) claim 

that estimated EKC is weaker when more explanatory variables are used together with 

income. Empirical evidence is not clear and mixed results have been found (Galeotti 

et al., 2006; He and Richard, 2010; Chuku, 2011). Shafik and Bandyopadhyay (1992) 

estimated an EKC for ten different indicators of environmental degradation (lack of 

clean water, ambient sulfur oxides, annual rate of deforestation, etc.). The study uses 

three different functional forms (log*linear, log*quadratic in income, logarithmic 

cubic polynomial in GDP/c and a time trend). GDP was measured in PPP and other 

variables included were population density, trade, electricity prices, dummies for 

locations, etc.  Finally, Akbostanci et al. (2009) examined the income–environment 

relationship in the case of Turkey and found an N*shaped relationship in the case of 

SO2 using time series and provincial panel data for the periods 1968*2003.  

�

�

�
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3.1� Data 

 Our sample consists of the 97 countries1 which have a full set of sulphur and 

GDP per capita information for the period 1950*032. The database used has 4947 

observations per variable. In terms of raw data, it is observed that emissions increase 

with income, but there is some sign of a decrease at high*income levels. We have 

used emissions rather than concentrations as the latter depends upon emissions and 

geographic location, as well as atmospheric conditions in the form of wind velocity. 

We may justify the use of emissions, as there is no reason to expect that developing 

countries differ in any systematic manner in the dispersion of pollutants.  

3.2� Proposed econometric methods 

 We analyze the sulphur emissions in the European Union framework as well as 

for the full sample of countries. To establish the relationship between air pollution and 

GDP/c, Box*Cox tests have been performed to test linearity against logarithmic 

functional forms. Findings of the tests lead us to propose the following model:      

        (SO2/c)it = β0 + αi + γt + β1 (GDP/c)it  + β2 (GDP/c)
2

it + β3 (GDP/c)
3

it + εit  

                                                 
1 The countries considered in our analysis are the ones with full record on the data used. These are: 
)���������	: Afghanistan, Albania, Algeria, Angola, Argentina, Australia, Austria. Bahrain. Belgium, 
Bolivia, Brazil, Bulgaria, Canada, Cape Verde, Chile, China, Colombia, Costa Rica, Cuba, Denmark, 
Djibouti, Dominican Rep, Ecuador, Egypt, El Salvador, Ethiopia, Finland, France, Germany, Ghana, 
Greece, Guateala, Guinea, Guinea Bissau, Haiti, Honduras, Hong Kong, Hungary, India, Indonesia, 
Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kenya, Lebanon, Liberia, Libya, Madagascar, 
Mauritius, Mexico, Mongolia, Morocco, Mozambique, Nepal, Netherlands, New Zealand, Nicaragua, 
Nigeria, North Korea, Norway, Panama, Paraguay, Peru, Philippines, Poland, Portugal, Puerto Rico, 
Qatar, Romania, Sierra Leone, South Africa, South Korea, Spain, Sri Lanka, Sudan, Sweden, 
Switzerland, Syria,  Taiwan, Thailand, Togo, Trinidad, Tunisia, Turkey, Uganda, United Kingdom, 
United States, Uruguay, USSR, Venezuela, Yugoslavia, Zaire. 
�*: Austria. Belgium, Bulgaria, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Ireland, 
Netherlands, Poland, Portugal, Romania, Spain, Sweden, United Kingdom. 
2 The source for the sulphur dioxide emissions is: 

http://www.sterndavidi.com/datasite.html‘GlobalSulfurEmissionsbyCountry covering the time period 
1850*2003 (although for the majority of countries the data refer to the period 1950*2000); while for the 
Gross Domestic Product the source is  http://www.ggdc.net/MADDISON/oriindex.htm. 
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where SO2/c is sulphur dioxide emissions per capita (in tons of sulphur) and GDP/c is 

Gross Domestic Product per capita (in 1990 Int$). Indexing countries by i and time by t, 

αi’s represent country specific intercepts, while γt’s time specific intercepts. Finally, εit is 

the stochastic error term.  

We have applied panel data methods to estimate the above equation. The first 

method employed is the fixed effects (hereafter FE) allowing each individual country 

to have a different intercept treating the αi and γt as regression parameters. This 

practically means that the means of each variable for each country are subtracted from 

the data for that country and the mean for all countries in the sample in each 

individual time period is also deducted from the observations from that period. Then 

OLS is used to estimate the regression with the transformed data.  

The second model is the random effects (hereafter RE) in which the individual 

effects are treated as random. In this model the αi and γt are treated as components of 

the random disturbances. The residuals from an OLS estimate of the model with a 

single intercept are used to construct variances utilized in a GLS estimates (for further 

details see Hsiao, 1986). If the effects αi and γt are correlated with the explanatory 

variables then the random effects model cannot be estimated consistently (Hsiao, 

1986, Mundlak, 1978). 

The orthogonality test for the RE and the independent variables is also 

examined. For this reason, a Hausman test is used in order to test for inconsistency in 

the RE estimate. This test compares the slope parameters estimated for FE and RE 

models. A significant difference indicates that the RE model is estimated 

inconsistently due to correlation between the independent variables and the error 

components. If there are no other statistical problems the FE model can be estimated 
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consistently although the estimated parameters are conditional on the country and 

time effects in the selected sample of data (Hsiao, 1986).   

 We test for cross*sectional dependence using the Pesaran’s (2004) cross*

section dependence (CD) test to evaluate if the time series in the panel are cross*

sectional independent. If not, OLS Dummy estimator (FEM) allowing for individual 

fixed effects with Driscoll*Kraay standard errors, correcting the variance*covariance 

matrix in cases of serial and spatial correlation after testing for cross*sectional 

dependence, is used. Pesaran’s CD test is valid for N and T tending to ∞ in any order 

and the test is robust to structural breaks (Camarero et al, 2011). According to Pesaran 

(2004) the need for unit root tests that take into account cross*section dependence for 

errors in panel with short T and large N emerges, as will be discussed in the next 

subsection. Also in the case of random effects estimation robust standard errors, after 

applying a Breusch*Pagan LM test for individual effects, are used.  

 Finally, we use a heterogeneous estimators’ method, the random coefficients 

model, known as Swamy’s (1970) model. This relies on the idea that the cross*section 

coefficient vectors are “drawn” from a distribution with a common mean (Hildreth 

and Houck, 1968; Judge et al., 1988) and is described in Halkos (2003a).  

 

3.2.1 Unit root tests 

� In order to examine the stochastic nature and properties of the variables a 

number of unit root tests are applied. The usual Dickey*Fuller (DF) and Augmented 

Dickey*Fuller (ADF) tests are extended in panel data analysis.  

 The first tests used in testing stationarity in panel data sets relied on the 

assumption of cross*section independence. Specifically, Levin, Lin and Chu (LLC, 

2002) expanded the ADF test in the case of panel data analysis to examine whether 
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each individual time series presents non*stationarity assuming independence across 

cross*sections and homogeneity across all i. A test that allows heterogeneity is the one 

proposed by Im, Pesaran, and Shin (2003) as an average of the ADF tests with serially 

correlated error and with the assumption of independence across cross*sections. Both 

LLC and IPS test statistics are distributed asymptotically as N(0,1).   

 Similarly, the Harris*Tzavalis (1999) test assumes cross*sectional 

independence. Finally, Hadri (2000) suggested a residual based Lagrange Multiplier 

test. O’ Connell (1998) and Banerjee et al. (2004) claim that panel unit root tests are 

biased towards concluding in favour of variance stationarity when individuals (units, 

countries) are cross*section dependent. A number of recent tests take cross*section 

dependence among units in the panel data set into consideration. It is expected that the 

countries examined are correlated to each other and probably these countries are 

influenced by common experienced global shocks, like the oil prices shocks. These 

common shocks may create a kind of dependence among the countries in the panel 

data set, with possibly different effects across the various cross*section units. This 

implies the need for panel unit root tests that take account of cross*sectional 

dependence. 

 Recent efforts remove correlations across units as nuisance parameters. 

O'Connell (1998) and Levin et al. (2002) propose the subtraction of the cross*section 

mean from the data but it still assumes that the influence of cross*section dependence 

is the same for all units. For this reason we also apply the cross*section ADF (CADF) 

test suggested by Pesaran (2007) that expands the typical ADF for an individual series 

using current and lagged cross*section averages of all the series in the panel data set3. 

The Breitung (2000) test that allows cross*section dependence is also presented.  

                                                 
3 CADF test was applied using STATA’s “pescadf” command written by Piotr Lewandoski. 
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 Similarly, panel co*integration tests can be performed using either test based 

on the Engle and Granger (1987) methodology (Kao, 1999; McCoskey and Kao, 

1998; Pedroni, 2000, 2004) or on the most recent approach by Westerlund (2007). 

Pedroni (1999, 2000, 2004) suggested seven test statistics for the null of no co*

integration, with four panel statistics and three group statistics test for testing either 

panel co*integration or cointegration across cross*sections. The Westerlund test 

checks for co*integration relying on the significance of the error correction term in the 

error correction model. The null hypothesis of this test is that there is no error 

correction with acceptance to imply no co*integration4. Specifically we use the four 

panel cointegration tests as proposed by Westerlund (2007). The Gt and Ga statistics 

test the null hypothesis of no cointegration for all cross sectional units with rejection 

implying cointegration for at least one unit. The Pt and Pa statistics test the null 

hypothesis of no cointegration for all cross sectional units with rejection implying 

cointegration for the panel in total. 

+�������������	�����

� Our analysis starts with examination of panel unit root tests for the variables 

considered in the model formulation. A graphical examination suggested that both a 

trend and a constant term were to be included in the model formulation with the 

number of lags to be determined by the use of the Akaike and Schwarz information 

criteria. The results of the tests applied to the variables involved are presented in 

Table 1. As such, table 1a presents the results of the variables of interest (i.e. SO2/c 

and GDP/c and its square and cubic transformations). From this table it can be seen 

that there is evidence against non*stationarity in levels.  Specifically, in all cases and 

                                                                                                                                            
 
4 These tests were performed using STATA’s “xtwest” command (Persyn and Westerlund, 2008). 
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according to the tests adopted, our variables are I(1). That is they are stationary in first 

differences and non*stationary in levels in all levels of statistical significance. 

Similarly Table 1b presents the unit roots test results for Harris*Tzavalis and Hadri 

tests where the same result emerges. 

����	�$�: Summary of panel unit root tests (H0: Panels contain unit roots) 
�

"	
	���

"	
��,�"����� ��

#���
-$
�

.�	������

���

%�,�/	�����,�

0����1����

/	�����2��

#�() 

 
SO2/c 1.0993 

[0.8642] 
*0.27611  
[0.3912] 

*0.62875 
[0.2648] 

t*bar =*2.160 
z*bar = 2.063 
P = 0.9800 

 
GDP/c 1.0451 

[0.852] 
3.15143  
[0.9992] 

1.20928 
[0.8867) 

t*bar =*1.798 
z*bar = 6.202 
 P = 1.0000 

 
GDP/c 2 

0.93 
[0.8238] 

3.76456 
[0.999] 

0.6819] 
[0.7523] 

t*bar =*1.247 
z*bar=12.515 

 P = 1.0000 

 
GDP/c 3 

0.62275 
[0.733] 

4.23399  
[1.0000] 

0.60553 
[0.7276] 

t*bar =*0.918 
z*bar=13.288 

 P = 1.0000 
)�����

�(���	�	��	��

"	
��,�"����� ��

#���
-�

.�	������

����

%�,�/	�����,�

0����1����

/	�����2��

#�()�

X SO2/c 
 *12.5026 

[0.0000] 
*10.0493  
[0.0000] 

*12.3862 
[0.0000] 

t*bar =*4.446 
z*bar =*28.033 
 P = 0.0000 

 
X GDP/c *4.37983 

[0.0000] 
*4.7753  
[0.0000] 

*6.09345 
[0.0000] 

t*bar=*3.852 
z*bar= 21.810 
  P = 0.0000 

 
X GDP/c 2 

*3.78108 
[0.0001] 

*3.86762  
[0.0001] 

*5.81441 
[0.0000] 

t*bar= *3.590 
z*bar=*19.064 

 P = 0.0000 

 
X GDP/c 3 *4.02816 

[0.0000] 
*3.02462  
[0.0012] 

*5.91921 
[0.0000] 

t*bar =*3.271 
z*bar=*15.729 

 P = 0.0000 

P*values in brackets.  

�

����	�$�: Panel unit root tests (continuation) 
� ��������3�
����

$�
�� ��

&�

SO2/c ρ=0.9766 
Z=12.5742 
P=1.0000 

 
Z=213,0239 

P=0.0000 

GDP/c ρ=0.9433 
Z=9.0304 
P=1.000 

 
Z=182.8739 

P=0.0000 

GDP/c2 ρ=0.9147 
Z=5.9809 
P=1.000 

 
Z=157.1438 

P=0.0000 
1 H0: Panels contain unit roots   
2 H0: All panels are stationary 
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 Table 2a presents the Pedroni Cointegration tests where in eight of the eleven 

cases we reject the null hypothesis of no cointegration at the conventional statistical 

significance level of 0.05. Similarly, table 2b presents the computed values of the 

Westerlund co*integration test. From the Gt and Ga statistics we reject H0 only in the 

former, implying cointegration for at least one unit. From the Pt and Pa statistics we 

reject H0 implying cointegration for the panel in total. 

����	�&�: Pedroni Residual Cointegration Test  

�

Statistic Prob. 
Weighted  
Statistics Prob. 

/��	��
�0������  4.800879  0.0000  0.526756  0.2992 

/��	������0������ *1.882124  0.0299 *1.257785  0.1042 

/��	��//�0������ *5.433513  0.0000 *4.490219  0.0000 

/��	���()�0������ *4.448394  0.0000 *2.465203  0.0068 

     

 Statistic Prob.   

����������0������  1.107611  0.8660   

������//�0������ *3.987579  0.0000   

�������()�0������ *1.968379  0.0245   

�

�

����	�&�: Westerlund ECM panel cointegration tests (H0: no cointegration)  
� Value Z*value P*value1 Robust P*values2 

�� *2.836 *3.600 0.0000 0.0000 

�� *11.595 2.741 0.9970 0.2200 

/ *38.764 *17.996 0.0000 0.0200 

/� *15.469 *7.258 0.0000 0.060 
1 Pvalues for a one sided test based on the normal distribution 
2 P*values for a one sided test based on 100 replications 

 
  
 Table 3 presents the results of both fixed and random effects model 

formulations first for the full sample of countries (1st and 2nd columns) and then for 

the EU countries (4th and 5th columns) for the best quadratic and cubic formulations 

respectively. The Hausman test implies the use of the fixed effects model 

formulations. As the Pesaran cross*section dependance (CD) test (Pesaran, 2004)  

rejects the null hypothesis that errors are independently distributed across countries 

we proceed with the estimation of FE with Driscoll*Kraay standard errors calculated 
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using the formula by the Driscoll*Kraay (1998)5  which corrects the variance*

covariance matrix for the presence of serial as well as spatial correlation (Camarero et 

al, 2010). Similarly in the case of the cubic specifications the best formulation was the 

one with the FE regression with AR(1) disturbances. Table 3 presents a number of 

diagnostic tests. Namely, three tests for heteroskedasticity and two tests for 

specification errors. In the case of the quadratic formulation all tests indicate no 

problem of heteroskedasticity and specification errors. In the case of the cubic 

formulation it seems that we face problems of both hetroskedasticity and 

misspecification for 10% levels of significance.  

 Moving now to the examination of the results for the EU countries we can first 

mention that the Pesaran cross*section dependance (CD) test does not reject the null 

hypothesis of independently distributed errors across countries. The Hausman test 

implies the use of the random effects and an inverted U*shape relationship can be 

observed in the quadratic formulation of RE Maximum Likelihood Estimators (MLE) 

with statistical significant estimates for GDP/c and GDP/c squared. Again in the case 

of the quadratic formulation all tests indicate no problem of heteroskedasticity and 

specification errors while in the case of the cubic formulation it seems that we face 

problem of misspecification.  

 We have also tried a number of random coefficients models that differed in two 

dimensions: whether the variables were in logs or levels and whether a quadratic or 

cubic GDP/c term was included. In table 3 we present for simplicity only the quadratic 

formulations for the full sample and the EU countries. In the first case both GDP/c and 

GDP/c squared are not statistically significant. This implies that there is a huge cross*

country variation in iβ ’s implying that even if an inverted ‘U’ shape relationship do 

                                                 
5 Applied using STATA’s “xtcsd” command (De Hoyos and Sarafidis, 2006). 
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exist, its parameters are so extremely heterogeneous across countries that an aggregate 

summarization is not very useful at all. However the result is exactly the opposite in the 

case of considering just the EU countries where both GDP/c and GDP/c squared are 

significant implying an inverted ‘U’ shape relationship with homogeneous parameters 

across countries. So in the latter case aggregate summarization is useful and conforms 

to Pesaran’s CD test in the case of EU countries. 

����	�': Parameter estimates for the panel data models      
� )����0����	�� �*�������	��

�

4� 	��

)��(��������

��������	��

)������

�56$7�

5�� ���

#�	�����	���

5���

�����4"��

�

5���

5�� ���

#�	�����	����

Constant 0.006322 
(5.09) 

[0.0000] 

*0.02206 
(*194.41) 
[0.0000] 

0.03364 
(0.97) 

[0.3300] 

*0.02482 
(*0.53) 

[0.5970] 

*0.02062 
(*4.08) 

[0.0000] 

*0.0087 
(*1.26) 
[0.209] 

GDPc 4.27E*06 
(11.29) 

[0.0000] 

3.88E*06 
(4.86) 

[0.0000] 

*5.75E*06 
(*0.41) 
[0.681] 

8.63E*06 
(22.60) 

[0.0000] 

0.0000157 
(16.81) 

[0.0000] 

0.0000116 
(3.83) 

[0.0000] 

GDPc2 *1.52E*10 
(*11.43) 
[0.0000] 

*1.27E*10 
(*2.89) 

[0.0040] 

7.52E*10 
(0.41) 

[0.679] 

*4.15E*10 
(*25.35) 
[0.0000 ] 

*1.16E*09 
(*12.68) 
[0.0000 ] 

*6.92E*10 
(*2.11) 

[0.0350] 

GDPc3  1.18E*15 
(1.75) 

[0.0800] 

  2.24E*14 
(8.26) 

[0.0000] 

 

Hausman  
Test 

10.58 
[0.0011] 

10.75 
[0.0010] 

 0.55 
[0.4603] 

0.55 
[0.4603] 

 

Pesaran’s  
cross*sectional 

dependence  

 
48.549 

[0.0000] 

 
27.483 

[0.0000] 

  
1.959 

[0.0501] 

 
0.761 

[0.4469] 

 

Wooldridge serial 
correlation LM test 

 41.587 
[0.0000] 

    

Test 1 
(heteroskedasticity) 

1.08 
[0.3411] 

1.14 
[0.3308] 

 0.31 
[0.753] 

1.06 
[0.289] 

 

Test 2 
(heteroskedasticity) 

0.82 
[0.4423] 

2.90 
[0.0338] 

 1.41 
[0.159] 

0.29 
[0.775] 

 

Test 3 
(heteroskedasticity) 

2.01 
[0.1561] 

2.77 
[0.0962] 

 1.46 
[0.144] 

0.86 
[0.391] 

 

Test 4  
(RESET 1) 

1.30 
[0.2730] 

3.12 
[0.078] 

 0.43 
[0.67] 

2.97 
[0.0516] 

 

Test 5   
(RESET 2) 

1.42 
[0.2411] 

2.40 
[0.0962] 

 0.11 
[0.912] 

5.66 
[0.0000] 

 

Turning Points 14046 22055 and 
49700 

* 10413.6 9240.5 and 
25283.3 

8381.5 

Test 1: Regression of the squared residuals on X. That is, t,11t

2

t vγxu +′=  

Test 2: Regression of absolute residuals on X. That is, t,22tt vγx|u| +′=  (a Glejser test) 

Test 3: Regression of the squared residuals on Ŷ  

Test 4: Regression of residuals on 
2Ŷ    Test 5: Regression of residuals on 

3Ŷ  
t statistics in parentheses; p*values in brackets. 
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 What is worth mentioning is that the turning points are not so different 

between the full sample and the EU estimations. Specifically, the turning point for the 

full sample is $14406 while for the EU it is estimated as $10414 in the case of the RE 

estimates and $8382 in the case of the random coefficients. �

� Finally, Figure 1 presents the estimated EKC in the case of the full sample as 

well as in the case of the EU country members. 

)����	�$: The EKC for the full sample and the EU country members 
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5.1 Justifying the inverted U�shape of the EKC 

 Our empirical findings indicate the existence of an inverted U*shaped curve in 

both cases of the full sample and the EU countries. A number of possible explanations 

exist for this inverse U*shape relationship. Panayotou (2003) decomposed the EKC 

into three effects that lead to an EKC: the scale of economic activity or geographical 

intensity of the production, the composition or structure of the production and the 

effect of income on demand and the supply of abatement efforts.  
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 More specifically, natural progression of economic development goes from 

clean agricultural to polluting industrial and to clean service economies. The 

argument here is that “scale effect” in the sense that more output results in more 

adverse effects for the environment is (at least partly) offset by the “composition 

effect” due to the changes in the structure of the economy as well as the “technology 

effect” due to possible changes in the production methods. The improvement in 

environmental quality may be the result of the change in the technological mode of 

production (de Bruyn, 1997; Han and Chatterjee, 1997) or of the exportation of “dirty 

industry” to less developed or developing countries (Rock, 1996; Suri and Chapman, 

1998; Heerink et al., 2001). Rothman (1998) claims that the shape of the EKC is the 

result of high income countries importing polluting intensive commodities and at the 

same time exporting their pollution to lower income countries.  

 In the formalization of the transition to the low*pollution state there is a group 

of authors that provide significant analyses of the role of preferences and regulation 

on the emissions profile of polluters (Lopez, 1994; McConnell, 1997; Stokey, 1998). 

Dinda et al. (2000) claim that technological improvements, structural economic 

change and transition as well as rise in in spending on environmental R&D 

accompanied with increasing per capital income are important in determining the 

nature of the relationship between economic growth and environmental quality.  

Another explanation is that, as air pollution is considered an externality, 

internalization of this externality requires relatively advanced institutions for 

collective decision making. This can be achieved only in developed economies. 

Panayotou (2003) explores the question if environmental improvement at higher 

income levels is automatic or it requires proper institutional or policy reforms. He 

finds that improvement in policy institutions may result to higher payoffs at higher 
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levels of income. A better institutional set up in the form of credible property rights; 

regulations and good governance may create public awareness against environmental 

degradation (Dinda et al., 2000). Jones and Manuelli (1995), using an overlapping 

generations model and determining economic growth by pollution regulations and 

market interactions, show that depending on the decision making institution the 

pollution*income relationship may have an inverted V shape, but it could also be 

monotonically increasing or a “sideways*mirrored S”.  

 Another explanation relies on the fact that pollution will stop to increase and 

start to decrease with economic growth because some constraints will become non*

binding. Stokey (1998) shows that pollution increases linearly with income until the 

threshold is passed and cleaner technologies can be used. The implied pollution*

income path takes the form of an inverse*V with a sharp peak, taking place at the 

point where a continuum of cleaner technologies becomes available. Jaeger (1998), 

similarly to Stokey, finds that the pollution income relationship is an inversed*V. 

Jaeger relies on the assumption that at low levels of pollution consumers’ taste for 

clean air is satisfied and marginal benefit of additional environmental quality is zero.  

 Finally, Andreoni and Levinson (2001) suggest another explanation due to the 

technological link between consumption of a desired good and abatement of its 

undesirable byproducts (pollution). Distribution issues may be considered another 

explanation. Torras and Boyce (1998) argue that greater equality of incomes results in 

lower level of environmental degradation. This claim is challenged by Scruggs 

(1998).   

 Acceptance of an EKC hypothesis means that there is an inevitable level of 

environmental damage that follows up a country’s development at the earlier stage, 

followed by a significant improvement at a later stage of this country’s economic 
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growth. A part of the steepness of the inverted U*shaped relationship between 

economic growth and pollution is due to policy distortions (under*pricing of natural 

resources, subsidies of energy and agrochemicals, etc), which are at the same time 

environmentally and economically destructive. Governments can flatten out their 

EKC by reducing or eliminating policy distortions, defining and applying property 

rights over natural resources, internalizing environmental costs to the sources that 

generate them.  

 It may be expected that required abatement will be greater at higher income 

level countries as we may expect stricter abatement standards. An issue that arises from 

the calculation of the turning points is associated with the level of damage done so far 

and if the critical loads are violated in an irreversible way before the turning down of 

the curve takes place.  

5.2 Abatement options for sulphur emissions reduction 

 The need for technology transfer to help developing countries to achieve 

sustainability emerges. The main idea is that abatement technologies in developed 

countries are cleaner and more advanced. Desulphurisation processes exist to reduce 

the sulphur content of the fuel in use.  The extent of removal is dependent on the 

physical and chemical characteristics of the sulphur in the fuel. Control technologies 

can be classified into three categories (Halkos, 1992, 1993):  

 1.  pre*combustion (physical coal washing and oil desulphurisation);  

 2.  during*combustion (sorbent injection and fluidized bed combustion); and  

  3. post*combustion (flue gas desulphurisation, FGD).  

The choice of the technology will depend upon the characteristics of the fuel being 

burned and the standards for emissions, which must be met.  Ease of disposition or 
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ability to reuse waste products was found to be a secondary but important determinant 

of the technology used, especially as it affects the economics of certain processes.  

 The use of fossil fuels in the generation of electricity from conventional power 

stations is connected with a number of environmental problems. Specifically, generation 

using coal or oil creates air pollution due to sulphur and nitrogen oxides emissions, 

carbon dioxide, and particulates. Highton and Webb (1980) claim that in the UK a 2000 

MW power station burning coal at a 60% load factor uses approximately 4.4 million 

tonnes of coal yearly and emits into the atmosphere (with no abatement control) about 

130,000 tonnes of sulphur dioxide, 40,000 tonnes of nitrogen oxides, 10 million tonnes 

of carbon dioxide, and between 4,000 and 40,000 tonnes of particulate matter. The 

sulphur dioxide emissions are of concern as the use of tall stacks to disperse emissions 

may lead to problems of transnational pollution, characterized as externality. It can be 

said that about 1 tonne of sulphur burned produces 2 tonnes of sulphur dioxide (SO2) 

while sulphur is present, in varying quantities, in both oil and coal.  

The cost of cleaning coal before combustion is a function of the level of 

cleaning, per cent energy recovery, washability and physical characteristics of the coal, 

plant configuration and waste treatment. Each plant must be considered individually 

due to location, terrain, cleaning objectives, raw coal delivery arrangements etc 

(UNECE, 1982). Operating costs mainly arise from thermal losses. 

 Regarding the desulphurisation of oils, costs depend mainly on the size of the 

refinery, the degree of desulphurisation obtained and the nature of the initial crude. For 

controlling sulphur emissions during combustion the primary advantage of these 

systems is that they are relatively simple and easier to retrofit at existing power plants 

when compared to larger more complex conventional dry and wet scrubbing systems. A 

Fluidized Bed Combustion (FBC) unit tackles pollutant emissions at source in the 
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furnace; high and low*grade coal can be used. An FBC boiler takes up less space than 

boilers with other firing systems, construction is simple, personnel requirements are 

low, and overall investment costs are low. Two types of FBC systems have been 

developed: the Atmospheric (AFBC) and the Pressurized (FFBC). Total energy losses 

amount to approximately 0.5*1.0%.  Capital costs are not greatly affected by sulphur 

dioxide removal. The main elements in operating cost are operation and maintenance, 

energy costs of the process, limestone/dolomite raw material costs and waste disposal. 

PFBC disposal costs are nearly twice that of AFBC due to the additional volume of 

waste. Energy costs arise from electrical requirements for material preparation and 

feeding as well as removal and gas clean up. 

  Finally, the costs of controlling sulphur emissions after combustion and by 

using a wet FGD will vary, depending on the process adopted. Capital costs are highly 

sensitive to plant size. The most important determinant of cost is the fuel sulphur 

content. The biggest disadvantage with wet FGD systems is the sludge they produce, 

which is difficult to store and handle. A 500 MW boiler would produce about 600 

tonnes per hour. In a typical 1,000 MW plant, burning coal with 3.5% sulphur, wet 

FGD produces about 225,000 tonnes of sludge annually (Regens and Rycroft, 1988). 

Barrett (1986) gives an output of 520,000 tonnes of gypsum for a 2,000 MW plant.  The 

annual sludge production from a 2,000 MW power station could exceed 300,000 m3 

(Elsworth, 1984). The sludge is difficult to dewater which makes it difficult to dump.  

 The cost of an emission abatement option is given by the total annualised cost 

(TAC) of an abatement option, including capital and operating cost components:     

              TAC = [(TCC) * (r / (1*(1+r)*n)] VOMC + FOMC            

where TCC is the total capital cost ($), VOMC and FOMC are the variable and 

fixed operating and maintenance costs ($) respectively and (r/(1*(1+r)*n) is the 
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capital recovery factor at real discount rate r, which converts a capital cost to an 

equivalent stream of equal annual future payments, considering the time value of 

money (represented by the discount rate, r); n represents the economic life of 

asset (in years). The estimation of the annual operating and maintenance costs 

requires a great deal of information (for example, the sulphur content of fuel 

used, the annual operating hours, removal efficiencies of the control methods, 

etc) and consists of a fixed portion that is dependent on the use of the plant (e.g. 

maintenance and labour costs) and a variable portion dependent on the prices for 

electricity, labour, sorbents and waste disposal and the specific demand for 

energy due to abatement process (Halkos, 1994).  

�
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 In this paper, we use a large database to test the EKC hypothesis applying both 

homogeneous and heterogeneous methods and comparing the results derived. As with 

inequality, environmental degradation tends to become worse before it becomes better 

along a country’s development path. Specifically, we find that: 

i.� Using fixed and random effect models produce inverted U*shaped curves with 

well within the sample turning points in both cases.    

ii.� Using a random coefficients method does not support an EKC hypothesis in 

the case of the full sample.  

iii.� The opposite result is found in the case of the EU countries where an EKC is 

evident. This means that there is no significant cross*country variation in βi’s 

and this implies that their parameters are homogeneous  across countries 

making this aggregate summarization useful. This is in line with the result of 

the Pesaran’s CD test.  
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iv.� Specifically, using here fixed and random effect models produces an EKC for 

both the full and the EU countries with turning points at the levels of $14046 

and $10414 respectively. In the case of the random coefficients and for the EU 

countries the turning point is lower and reaches a level of $8382. 

 As discussed before, the decomposition of the EKC into its main determinants 

shows that economic growth increases pollution levels due to scale and 

industrialization but ignores the abatement effect of richer countries (Panayotou, 

1997). Thus, an EKC is the result of structural change that follows economic growth, 

but this may not be optimal if environmental critical loads are crossed irreversibly. 

 There is obviously a need for technology transfer in order to help developing 

countries to achieve sustainability as sulphur abatement methods in developed 

countries are cleaner and more advanced. Currently available technologies for SO2 are 

classified as pre*combustion, during combustion and post combustion. Fuel cleaning 

techniques are relatively simple and well established but their effectiveness depends on 

the physical characteristics of the specific coals and crude oils, which are subject to 

treatment. Fluidized bed combustion (FBC) can only be used for new installations and 

could only have an effect on total emissions over a long period. It is not possible to 

define abatement costs precisely since air pollution control is an integral part of the 

FBC boiler design. Sorbent injection could be a low cost retrofit option in cases where 

only moderate SO2 emission reductions are required.  

 FGD is the most commercially developed technology and the only one available 

for achieving very high removal efficiency at all types of installation. The general trend 

is for sorbent injection to have the lowest capital costs, with pre*combustion 

technologies, FBC and spray*dry scrubbers next, followed by wet scrubbers with 

regenerable processes having the highest capital costs. Cost estimates for each 
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technology are influenced by fuel type, plant size, sulphur content of fuel, new or 

retrofit application and labour, construction and electricity cost factors (Halkos 1992, 

1995). 

 Acceptance of an EKC may seem as a temporary phenomenon and we may 

seek ways to stimulate growth like trade liberalization, price reform, economic 

restructuring, etc. Some of the steepness of an inverted U*shaped relationship between 

environmental damage in the form of pollution and economic growth is caused by 

various policy distortions such as protection of industry, energy subsidies, etc.  

  Developing countries can flatten out their EKCs by defining and applying 

property rights over natural resources, eliminating any policy distortions and 

internalizing environmental costs to the sources that generate them (Panayotou, 1993). 

Additionally, improper allocation of property rights may result to market failure. The 

economic efficiency of growth policies has to be taken into consideration to avoid any 

possible inconsistencies and inefficiencies as shown in Halkos and Tzeremes (2009). 

It is accepted that economic development is not uniform across regions and may 

substantially differ (Halkos and Tzeremes, 2010). At the same time areas may also 

differ in terms of social, economic, environmental and urban*planning levels (Halkos 

and Salamouris, 2003b). 

�

�
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