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“If you visit American city,

You will find it very pretty.

Just two things of which you must beware:

Don’t drink the water and don’t breathe the air.”

(Tom Lehrer, Pollution)

1 Introduction

It is evident that the development of many local economies has featured adjacent but separate

clean and dirty cities. Examples of such pairs include Seattle/Tacoma and San Francisco/Oakland

with larger clean cities, Ann Arbor/Detroit and Aurora/Denver with smaller clean cities, as well

as Washington, D.C./Baltimore with comparably sized clean and dirty cities. A natural question

arises: Why are dirty firms clustered in one location and why is such an outcome sustainable

over time? Certainly one might address the question with heterogeneity in preferences or increasing

returns in production, for example internal increasing returns of the type used in the New Economic

Geography literature; see the recent paper by Picard and Tabuchi (2010) and papers cited therein.1

Our paper proposes an alternative: a pollution tax with a fixed cost tax component may, by itself,

lead to stratification between clean and dirty firms without heterogeneous preferences or increasing

returns.

Since 1972, the OECD has adopted the polluter pays principle, trying to internalize environ-

mental costs based on the idea first advanced by Pigou (1920). More recently, the OECD (1994)

categorized three types of pollution taxes: (i) a proportional tax on the actual pollution output,

for example according to the amount of emission; (ii) a proportional tax on a proxy for pollution

output, for example according to water consumption, electricity usage or each unit of product when

the production process harms the environment; and (iii) a fixed cost tax levied on each company

or each household. In this paper, we consider all three types. Whereas a fixed cost tax levied on

each firm is considered, the proportional Pigouvian tax is generalized to a linear tax that includes

a fixed cost tax component as proposed by Carlton and Loury (1980).2

1See Porter (1990) for a comprehensive discussion of industrial clustering from a business strategy viewpoint. Our

paper is also related to the locational stratification literature, where stratification is caused by human capital (cf.

Benabou 1996a,b, Chen, Peng and Wang 2009), local public goods (cf. Nachyba 1997 and Peng and Wang 2005), and

the environment (cf. Chen, Huang and Wang 2012).
2See also Baumol (1972) and Buchanan and Tullock (1975) on direct control versus taxation, and Chipman and

Tian (2012) on markets for rights to pollute in an aspatial context. While there is an existing literature on the welfare

consequences of pollution taxation (see citations in Section 7 below), none explores the implication of pollution
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In brief, the purpose of this paper is as follows. We construct a simple model with two locations

and two industries (clean and dirty) where pollution is a by-product of dirty good manufacturing,

and dirty good manufacturing is subject to agglomeration externalities with decreasing private

returns to scale. We could obtain our results without agglomeration externalities, but they help

simplify the analysis and calculations, as we shall explain below. Next, we establish conditions under

which a completely stratified configuration with all dirty firms clustering in one city emerges as the

only equilibrium outcome when there is a fixed cost component of the pollution tax. Finally, we

show that a stratified Pareto optimum can never be supported by a competitive spatial equilibrium

under a linear pollution tax without redistributing the pollution tax revenue from the dirty to the

clean city residents.

Regarding our examples of pairs of clean and dirty cities in the US, it is important to point out

from where, in our view, the fixed component of a pollution tax arises. As discussed by Karp (2005,

pp. 229-230), if firms pay a unit tax based on the aggregate level of pollution, in technical terms an

“ambient tax,” but if they think that they are so small that they have no effect on the aggregate

level of pollution, then they view the tax as a fixed cost.3 Of course, such an ambient tax may

vary by location, as aggregate pollution is generally location-specific. Such a tax is essentially an

aggregate amount of required revenue (the tax rate multiplied by total pollution) divided up among

firms in the local polluting industry, which is exactly the way we model it.4

Our main result establishes that taxing pollution with a fixed component independent of dirty

good output can cause firm agglomeration (a variable tax component on top of the fixed component is

permitted). The key argument is as follows. At a symmetric, integrated equilibrium, wages equalize

both across sectors and locations. Then, in the presence of a fixed total pollution damage payment in

each polluted region, dirty factories may not have sufficient profitability to pay the tax and thus no

integrated equilibrium exists. Now if dirty firms cluster, as they do in a stratified equilibrium, then

they share the fixed pollution tax in the one region where they cluster, implying higher net of tax

profit. Moreover, wage equalization between the two locations is no longer required in equilibrium

because clean and dirty firms are in two different locations, so there is no wage equalization even

taxation for production agglomeration, in particular when pollution is local (so location is relevant) and agents are

mobile. The point of Carlton and Loury (1980) is different, in that they are concerned with firm entry and exit. We

do not consider that in our model.
3Karp (2005) goes on to consider the case where firms are large so each has an effect on the aggregate level of

pollution.
4A natural alternative model, that does not capture this idea, is to use a fixed lump-sum tax for each firm entering

the local market. This would clearly not be: an ambient tax with a large number of firms.
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across sectors. All we need is utility equalization, which only requires that pollution disutility

balance with the wage differential. This is consistent with firm profitability under stratification.

The important part of the argument is as follows. Both the fixed component of the pollution tax

and decreasing private returns are needed for this result, as indicated above. The fixed component

of the pollution tax rules out integrated equilibrium. With decreasing private returns that permit

positive rent for dirty firms, agglomeration ensures enough profitability of dirty firms when fully

clustered to allow existence of stratified equilibrium with the tax. There is a positive feedback

loop: With a variable tax component, more pollution in a region implies more tax revenue that

attracts more worker/consumers (who receive the revenue), thus depressing the wage. A potential

offsetting factor is that the wage must be higher in the region to compensate for disutility due to

more pollution. In the end, the equilibrium configuration is a function of the parameters.

The key difference between this work and the classical literature on Pigouvian taxation is: We

assume that there is a local government in each region that must balance its own budget. We take

the tax system of each local government to be exogenous and uniform, with no tax competition.5

The taxes could be set by a higher level of government. But the revenues stay local. For example,

the tax revenues could pass through a higher level of government and be returned to the local

government in some form such as funding for a local public good. In other words, we are making

an important distinction between the authority that sets the tax on pollution, and the recipients of

the revenue.

There are 3 related potential distortions in our framework: a negative pollution externality

from dirty firm production imposed on consumers, a positive local agglomeration externality for

polluting firms, and a migration incentive for consumers induced by the tax and redistribution

schedules in the two regions. Regarding the last distortion, local tax revenue and local profits are

distributed back to the residents of that location only. The setting would be classical if there were

only one national government with the power to tax differentially and redistribute to consumers

independent of region of residence. In that case, the standard welfare theorems would go through

under Pigouvian taxes, since correction for the pollution externality and migration incentives (the

first and third distortions) can be made in the usual way, whereas the fixed cost component of the

firm tax/transfer system can account for the agglomeration externality. However, with independent

regional government taxation as in our setting, equilibrium allocations might not be Pareto optimal

unless transfers between the regional governments are made so that the regional governments can

5The reader is referred to Markusen, Morey, and Oleviler (1995) for modeling fiscal competition in pollution taxes

with firms choosing the location of plants.
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mimic a national government.

Turning next to a detailed description of our model, to illustrate the possibility that a pollution

tax causes agglomeration of dirty firms, we construct a simple model featuring two industries, clean

and dirty. Both industries use homogeneous labor as inputs. Whereas the clean service production

is Ricardian (constant returns), dirty manufactured good production is socially constant-returns-

to-scale and privately diminishing returns with positive spillovers of the Romer type. Pollution is a

by-product of dirty good manufacturing. To eliminate unnecessary complications associated with a

wealth effect, utility is assumed to be quasi-linear, linear in clean good consumption and pollution

but strictly increasing and strictly concave in dirty good consumption. The pollution tax schedule

features a fixed cost tax component that is independent of pollution (or dirty good output) and

may also contain a marginal tax component that is proportional to dirty good output.

We establish that under proper assumptions, a completely stratified equilibrium with all dirty

firms clustered in one city is supported and such a stratified equilibrium cannot emerge in the

absence of the fixed payment pollution tax. In some circumstances, an integrated equilibrium is

impossible, but a stratified equilibrium exists. Under suitable conditions, we show that the presence

of pollution and a pollution tax with a fixed cost tax component, rather than the Romer-type positive

spillovers, are necessary for agglomeration of dirty firms. Our main findings are robust, and remain

valid even when: (i) quasi-linearity of utility is abandoned, or (ii) allowing producers to choose

between clean and dirty good technologies. We have assumptions on the model’s reduced form that

will generate either integrated or stratified equilibrium. We do not push them back to primitives,

as there are many exogenous parameters and thus many combinations that will work for each type

of configuration. However, in Remarks 6 and 7 below, we fix all but 2 parameters and provide a

description of parameter ranges where the respective equilibrium configurations arise.

Next we turn to the examination of Pareto optima. Depending on exogenous parameter values,

both integrated and stratified configurations can arise as optima. Whereas an integrated Pareto

optimum can be supported by a competitive spatial equilibrium with a linear pollution tax, a

stratified Pareto optimum cannot. Specifically, regardless of the linear pollution tax schedule, a

stratified equilibrium is always over-polluted compared to the optimum. To support the stratified

Pareto optimum, one must redistribute pollution tax revenues from the dirty to the clean city

residents. This suggests a new instrument to rectify competitive equilibrium inefficiency when there

is pollution generated by dirty good production.6

6We wish to emphasize that in this paper, we consider only equilibrium or optimal configurations that are completely

stratified in terms of production or that are completely integrated in that production is symmetric across locations.
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The remainder of the paper is organized as follows. Section 2 contains the notation and basic

model. Section 3 provides first order necessary conditions for equilibrium. Section 4 analyzes the

two types of equilibria we consider here, namely integrated and stratified. Section 5 analyzes the

conditions on parameters that generate each of these types of equilibria. Section 6 gives further

results, particularly about stability of equilibrium, that can be derived with specific functional

forms, namely an example. Section 7 discusses Pareto optima and the welfare theorems, whereas

section 8 concludes.

2 The Model

Consider a local economy consisting of two regions/cities (i = A,B) and two sectors (a clean/service

good X and a dirty/manufactured good Y ). Each region has an abundant supply of land of density

one in a featureless landscape. Land is omitted from the benchmark model for tractability reasons,

so the model looks more like one of coalition formation than of an urban economy. Goods are freely

mobile and there is no cost to transport any commodity between regions. Throughout the paper,

the clean good is taken as the numéraire.

This local economy is populated with three groups of active agents: (i) a continuum of households

of a fixed mass one, who are all both consumers and workers; (ii) a continuum of clean (non-

polluting) firms of mass one, and (iii) a continuum of dirty (polluting) firms of mass M > 0. All

households are freely mobile between the two regions, but once a household has chosen a residential

location, it cannot commute between the two regions. This latter assumption is equivalent to

assuming that the commuting cost between two regions is sufficiently high. Such an assumption is

justifiable when the two regions are sufficiently far apart: for many clean-dirty city pairs in the real

world such as Ann Arbor-Detroit and Seattle-Tacoma, the fraction of people commuting between

cities is essentially negligible. We will discuss in Section 5.1 (see Remark 4) what happens if workers

are allowed to commute between the two regions.

In addition to the three groups of active agents, there is a local government ruling each region,

whose only activity is to collect pollution taxes/fees for redistribution to consumers. To close the

economy, we shall assume that dirty firms in a particular region are owned by consumers in the

same region.

We relegate the discussion of other possible configurations to the concluding section.
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2.1 Firms

The clean good is produced with labor input under a Ricardian technology,

xi(j) = ψ · nix(j), i = A,B, j ∈ [0, ki] (1)

where xi(j) denotes the output of clean firm j in location i, ψ > 0 is the inverse of the unit

labor requirement for clean good production, nix(j) represents clean firm j’s demand for labor, and

ki ∈ [0, 1] denotes the mass of clean firms in region i. The total local supply of the clean good in

region i is given by Xi =

∫ ki

0
xi(j)dj and the total local clean industry employees in the region i

can be specified as:

N i
x =

∫ ki

0
nix(j)dj i ∈ A,B (2)

Under ex post symmetry of firms in a region, imposed throughout, we have N i
x = kinix.

Denote by mi the mass of dirty firms in region i, by niy(j) the labor demand by a dirty firm j

in region i, and by N i
y the total local dirty industry employees in region i, where:

N i
y =

∫ mi

0
niy(j)dj i ∈ A,B (3)

Each dirty good firm employs labor as the sole private input under a privately decreasing-returns-

to-scale and socially constant-returns-to-scale production technology f̃ :

yi(j) = f̃
(
niy(j), N

i
y

)
= N i

yf

(
niy(j)

N i
y

)
, i ∈ A,B, j ∈ [0,mi] (4)

where yi(j) is the output of dirty firm j in region i. We assume that f̃ is strictly increasing and

strictly concave in each argument, satisfying the boundary condition f̃
(
0, N i

y

)
= 0 and the Inada

conditions limniy(j)→0
∂f̃(niy(j),N i

y)
∂niy(j)

= ∞ and limniy(j)→∞
∂f̃(niy(j),N i

y)
∂niy(j)

= 0. Under social constant

returns, we can divide firm output by the total number of local dirty industry employees to obtain

f , where the properties of f̃ imply that f is strictly increasing and strictly concave in the fraction

of firm employees in the local dirty industry. The incorporation of N i
y into a dirty firm’s production

function captures positive spillovers of the Romer (1986) type, where N i
y is a positive measure of

small firms, and where each firm is of measure zero. Under an ex post symmetric equilibrium,

N i
y = miniy. The presence of uncompensated positive externalities provides an agglomeration force

for dirty firms. Nonetheless, we will show in Sections 5.1 and 6.1 that the presence of pollution and

a pollution tax with a fixed cost tax component, rather than the Romer-type positive spillovers, are

necessary for agglomeration of dirty firms.
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Both goods (clean and dirty) are traded and freely mobile. Let p denote the global relative price

of the dirty good. Further denote the wage rate prevailing in region i as wi. Let the region-specific

pollution tax in region i be τ i (to be specified later), where τ i

p represents a typical ad valorem tax.7

Each dirty firm in region i chooses labor demand to maximize its profit; its optimization problem

is then given by:

πi(j) = max
niy

p

[
N i
yf

(
niy
N i
y

)
− τ i

]
− winiy(j) (5)

The aggregate output of the dirty good in region i is Y i =

∫ mi

0
yi(j)dj.

2.2 Households

Each household values the consumption of the clean good and the dirty good but suffers disutility

from pollution. Each household is endowed with one unit of labor. Since a household does not value

leisure, the entire one unit of labor is supplied inelastically. Let Qi measure the level of pollution in

region i. Following conventional wisdom, we assume that pollution is a by-product of the production

of dirty goods, taking a simple linear form:

Qi = θY i = θ

∫ mi

0
yi(j)dj (6)

where θ > 0. The utility of a household residing in region i takes a quasi-linear form:

U i = cix − γ ·Q
i + u(ciy) (7)

This utility function is quasi-linear in the spirit of Bergstrom and Cornes (1983): linear in clean

good consumption cx and total pollution Q, but nonlinear in cy, as u(cy) is the utility obtained

from consuming the dirty good. It is strictly increasing and strictly concave, satisfying the boundary

condition u(0) = 0 and the Inada conditions limciy→0
u′(ciy) =∞ and limciy→∞

u′(ciy) = 0.

The household’s budget constraint in region i is simply specified as follows:

cix + pc
i
y = wi + zi (8)

where zi represents the sum of government rebates (of pollution tax collection) and firm profit

redistribution in region i:

zi =
1

N i

∫ mi

0

[
πi(j) + pτ i

]
dj, i ∈ A,B (9)

7The pollution tax schedule is written in this form for analytical convenience.
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Quasi-linear preferences imply that, by substituting in the budget constraint (8), household’s

utility can be rewritten as:

U i =
(
wi + zi

)
− γ ·Qi +

[
u(ciy)− pc

i
y

]

which is income net of pollution disutility plus the consumer surplus derived from consuming the

dirty good. Thus, household’s optimization reduces to one variable: maximization of the consumer

surplus from dirty good consumption, which simplifies the analysis greatly. We will discuss in

Section 5.1 (see Remark 3) what happens if the utility of the clean good is strictly concave.

2.3 The Local Government

The pollution tax levies on the dirty firm are given as follows:

τ i =




0, if yi(j) = 0,∀ j

gi(yi(j), Y i), otherwise

When pollution is nondegenerate, we shall consider two specific regimes of interest, namely, a fixed

pollution tax regime and a linear pollution tax regime:8

gi =





F/mi, under fixed pollution tax regime

L+ tyi(j), under linear pollution tax regime

Under the fixed pollution tax regime, a fixed levy F > 0 is imposed on region i so that each

firm pays an equal share F
mi ; under the linear pollution tax regime, in addition to a lump-sum

tax L > 0, a marginal tax t > 0 is imposed on firm output yi. Whereas the former can best

illustrate the role of pollution taxation played in firm agglomeration, the latter is important because

it encompasses Pigouvian taxation as a special case and allows practical welfare analysis. For

notational convenience, we shall denote generally the marginal tax rate as:

ζ ≡
∂τ i

∂yi(j)
=




0, under fixed pollution tax regime

t, under linear pollution tax regime

3 Optimization and Equilibrium

We are now prepared to derive individual optimizing conditions and to specify market clearing

conditions.

8This functional form also covers the first type of tax mentioned in the introduction because pollution is proportional

to output via θ.
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3.1 Optimization

The first-order condition for profit maximization of each clean and dirty firm is, respectively, given

by:

ψ = wi (10)

VMPL ≡ p(1− ζ)MPLiy = p(1− ζ)f ′

(
niy
N i
y

)
= wi (11)

where VMPL denotes the value of the marginal product of labor (or marginal revenue product)

and MPL denotes the marginal product of labor. Denote the dirty firm’s surplus accrued from

uncompensated spillovers as:

σ(e) ≡ f (e)− (1− ζ)ef ′ (e)

where e ≡
niy
N i
y
. It is convenient to denote the dirty firm’s surplus excluding pollution tax as

σ̃(e) = f (e) − ef ′ (e) . Given our assumptions on the production function for dirty firms, both

σ(e) and σ̃(e) are strictly increasing in e. Substituting the ex post symmetry condition, N i
y = miniy

as well as (11) and (3) into (5) yields the profit for every firm j in region i:

πi(j) = πi = p
[
niym

iσ
(
1/mi

)
− τ i

]
(12)

The lump-sum distribution to each household follows immediately:

zi =
(mi)2

N i
· σ
(
1/mi

)
· pniy, ∀ τ

i (13)

The household’s optimization problem can be written more simply in two steps, solving backward.

In the second step, households choose their best consumption bundle subject to their budget in each

region. In the first step, they choose their region of residence.

Beginning with the second step, each household residing in region i maximizes their utility

subject to the budget constraint by choosing ciy:

max
ciy

wi + zi − pciy − γQ
i + u

(
ciy
)

(14)

The first-order condition of (14) with respect to ciy is given by:

u′
(
ciy
)
= p (15)

It is immediate that, since the relative price of the dirty good across the two regions is one, the

consumption of the dirty good in the two regions must be identical too. From the budget constraint

(8) and (15), we then solve the clean good consumption as:

cix = wi + zi − pciy = wi + zi − ciyu
′
(
ciy
)

(16)
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Substituting (11), (13), and (15) into (16), we have the consumption of the clean good in region i

as:

cix = u′
(
ciy
) [
(1− ζ)f ′

(
1/mi

)
+
(mi)2

N i
σ
(
1/mi

)
niy − c

i
y

]
(17)

In the first step, the household’s residential location can be determined by:

i = argmax
i
U i (18)

3.2 Market Clearance

Denote region i’s labor supply as N i and recall that total labor supply is normalized to one (the

total measure of consumers). The regional and overall labor market clearing conditions are thus:

N i
x +N

i
y = N i (19)

NA +NB = 1 (20)

Moreover, goods market clearing conditions are:

∑

i=A,B

N icix =
∑

i=A,B

∫ ki

0
xi(j)dj = XA +XB (21)

∑

i=A,B

N iciy =
∑

i=A,B

∫ mi

0
yi(j)dj = Y A + Y B (22)

By symmetry, we have:

∑

i=A,B

N icix =
∑

i=A,B

kixi = XA +XB (23)

∑

i=A,B

N iciy =
∑

i=A,B

miyi = Y A + Y B (24)

where mA +mB =M .

Finally, if both locations are occupied, locational equilibrium requires:

UA = UB (25)

4 Equilibrium Configuration

A competitive spatial equilibrium is a tuple of quantities, {nix(j), n
i
y(j), N

i
x, N

i
y, N

i, ki,mi, cix, c
i
y, x

i(j),

yi(j), Qi}, and prices, {wi, p}, such that: (i) all households and firms optimize; (ii) labor markets

clear; (iii) goods markets clear; (iv) the population identity holds; and (v) the locational equilibrium

condition is met.9 Among all possible equilibrium configurations, we are particularly interested in

9The equilibrium concept is based on the multi-class equilibrium concept constructed by Hartwick, Schweizer and

Varaiya (1976).
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two equilibria: The first type is an integrated equilibrium where all clean and dirty firms are spread

symmetrically over the two regions so that both types of firms are completely integrated location-

ally. The second type is a stratified equilibrium where all dirty manufacturing firms agglomerate in

one region (without loss of generality, let it be region A) and all clean service firms are located in

region B (where workers face better environmental conditions). In order to compare the endoge-

nous variables obtained under the two types of equilibria, we shall use arguments I and S to denote

integrated and stratified patterns, respectively.

4.1 Case I: Integrated Equilibrium

In an integrated equilibrium, both firms and households are symmetrically distributed across the

two regions. Thus, we have:

NA
x = NB

x , N
A
y = NB

y , N
A = NB =

1

2

ki = k =
1

2
,mi = m =

M

2
,

nix(j) = nx =
Nx

k
, niy(j) = ny =

Ny

m

nx +Mny = 1

Moreover, wages must be equalized between the clean and the dirty sectors in each region. From

(10) and (11), we can thus depict in Figure 1 the labor allocation between clean and dirty sectors

under the integrated equilibrium.

[Insert Figure 1 here]

Figure 1 illustrates that dirty firms’ labor demand, which is a downward-sloping function of niy/N
i
y,

is determined by wage equalization between the clean and the dirty sectors (see point EI), namely

where:

p(1− ζ)MPLy = p(1− ζ)f ′ (2/M) = w = ψ (26)

which determines the relative price of the dirty good as a decreasing function of the mass of dirty

firms. The Inada conditions assumed are sufficient for the existence of an interior level of dirty

industry employment and production.

Under symmetry, a dirty firm’s output is now given by, y = f
(
1/mi

)
miniy =

M
2 f (2/M)ny.

From the dirty good market clearing condition, ciy = cy =My, so we have:

cy =M · y =
M2

2
f (2/M)ny (27)
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This dirty good market clearing condition enables us to express the dirty good demand as a linear,

upward-sloping function of the induced demand for labor starting from the origin, which is referred

to as the dirty good market-clearing (DM) locus (see Figure 2). Moreover, we can combine (26) and

(15), yielding the dirty good optimization (DO) locus:

u′ (cy) =
ψ

(1− ζ)f ′(2/M)
(28)

Thus, the demand for the dirty good is independent of the induced demand for labor.

[Insert Figure 2 here]

As depicted in Figure 2, one can see that the integrated equilibrium quantity of the dirty good and

employment are jointly determined at point EI.

Clean good market clearance implies:

cx = x = ψnx(I) = ψ[1−M · ny(I)]

One may easily check that one of (8), (27) and the above equation are redundant, i.e., Walras’ law

is verified. Substituting the equilibrium ny(I) and (28) into (12), we have:

π(I) =
M

2

ψ

(1− ζ)f ′(2/M)

[
σ (2/M)ny(I)− (2/M) τ

i
]

(29)

Finally, locational equilibrium (25) in this case is trivial. See Table 1 for a summary of the values

of the endogenous variables at equilibrium.

4.2 Case II: Stratified Equilibrium

Now, we move to examine stratified equilibrium. At a stratified equilibrium, assume that the

dirty firms agglomerate in region A, and the clean firms agglomerate in region B. Then stratified

equilibrium is as shown in Table 1, and we have:

kA = 0, kB = 1,mA =M,mB = 0, πB = zB = 0

NA =Mny, N
B = nx, nx +Mny = 1

Thus, we obtain the dirty good production for each dirty firm in region A as: y = f
(
1
mA

)
mAnAy =

Mf (1/M)ny. In this case, wages need not be equalized between the two regions: those residing in

the dirty region receive a higher wage but suffer from pollution. The utility levels of workers in the
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two regions are equal. The wages in the regions A and B are wA = p(1− ζ)f ′ (1/M) and wB = ψ,

respectively. The dirty good market clearing condition implies:

cy =My =M2f (1/M)ny (30)

which can be combined with (15) to yield:

p = u′
[
M2f (1/M)ny

]
(31)

By diminishing marginal utility, the above expression entails a negative relationship between dirty

good price and employment (see the bottom panel of Figure 3). From the clean good market clearing

condition, one obtains: NAcAx +N
BcBx = x = ψnx, or, using (8) and Table 1,

cx(S) = x = ψnx = ψ(1−Mny)

which can again be used with (8) and (30) to verify Walras’ law.

Next, we can rewrite (12) under stratified equilibrium as:

π(S) =Mu′
[
f (1/M)M2ny(S)

] [
σ (1/M)ny(S)− (1/M) τ

i
]

(32)

The equilibrium level of pollution in region A is given by: QA = θY A = θMy = θM2f (1/M)ny(S).

We can derive the utility level attained by households residing in region A as:

UA =Mf (1/M)
{
u′
[
f (1/M)M2ny(S)

]
[1−Mny(S)]− γθMny(S)

}
+ u

[
f (1/M)M2ny(S)

]

Since there are no dirty firms and thus no pollution in region B, in equilibrium there is no pollution

tax revenue nor redistribution of dirty firm profits in region B. The utility level attained by a

household residing in region B is:

UB = ψ − f (1/M)M2ny(S)u
′
[
f (1/M)M2ny(S)

]
+ u

[
f (1/M)M2ny(S)

]

We can then compute the utility difference between regions A and B as:

∆U ≡ UA − UB =Mf (1/M)
{
u′
[
f (1/M)M2ny(S)

]
− γθMny(S)

}
− ψ (33)

By employing (31) and (33), we determine the stratified equilibrium relative price p and dirty

firm labor demand ny(S) as shown in Figure 3. Specifically, from the top panel of Figure 3, utility

equalization pins down the equilibrium level of dirty industry employment under stratification,

which can be plugged into the bottom panel to obtain the relative price of the dirty good.

[Insert Figure 3 here]
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5 Characterization of Equilibrium

Before turning to each of the two specific pollution tax regimes, one may compare dirty sector

employment per firm, ny(I) and ny(S), under integrated and stratified equilibrium, respectively.

In an integrated equilibrium, we can use the dirty good market clearing condition and the dirty

good demand, (27) and (28), to derive:

u′
[
M2

2
f (2/M)ny

]
=

ψ

(1− ζ)f ′(2/M)
(34)

In a stratified equilibrium, we can apply the location equilibrium condition in (33) to obtain:

δ(ny) ≡ u′
[
M2f (1/M)ny

]
− γθMny =

ψ

Mf (1/M)
(35)

where δ(ny) measures the household’s net surplus from consuming the dirty good.

These equilibrium relationships can be referred to as the dirty good market equilibrium loci, DE(I)

and DE(S), respectively, under integrated and stratified configurations (see Figure 4). Whereas the

DE(I) locus yields the equilibrium ny(I) as shown in the top panel of Figure 4, the DE(S) locus

pins down the equilibrium ny(S) as depicted in the bottom panel of Figure 4. In the top panel of

Figure 4, the LHS of DE(I) yields a downward sloping locus as a result of diminishing marginal

utility, whereas the RHS is simply a constant that is decreasing in the exogenous mass of dirty

firms. Thus, the integrated equilibrium is pinned down at point EI . In the bottom panel, the LHS

of DE(S), δ(ny), is also a downward sloping locus and the RHS a constant depending negatively

on the exogenous mass of dirty firms. These loci determine the stratified equilibrium at point ES .

To establish nice sufficient conditions for stratification in the next two subsections, we shall restrict

our attention to a plausible scenario with ny(I) < ny(S), i.e., dirty industry employment under

integration is lower than that under stratification. It is clear from the definition of δ(ny) that the

above scenario is more likely to arise the smaller γθ is. In other words, for all of the results below,

we shall assume that γθ is small, a condition sufficient to ensure that dirty industry employment

under integration is smaller than under stratification.

[Insert Figure 4 here]

5.1 Fixed Pollution Tax Regime

We examine under what conditions the stratified equilibrium emerges under the fixed pollution

tax regime but the integrated equilibrium does not, where the pollution tax levied by the local

14



government under the two different configurations is given by:

τ i =




2F/M, for Case I

F/M, for Case S

For purposes of comparison, in the stratified case only one local government raises pollution tax

revenue, whereas in the integrated case each local government raises the same revenue as the dirty

city in the stratified case. One interpretation of this assumption is that the simple presence of

pollution in a city is enough to trigger a tax.

We impose a regularity condition on the dirty firm’s surplus from uncompensated spillovers:

Condition R-1: (Regularity Condition on a Dirty Firm’s Surplus)

1

4
σ̃ (2/M) < σ̃ (1/M)

Under Condition R-1, we then consider the following:

Condition S-1: (Sufficient Condition for Stratification Under a Fixed Tax)

1

4
σ̃ (2/M) <

F

M2ny(S)
< σ̃ (1/M)

We can then establish:

Theorem 1: (Stratified Equilibrium) Consider a local economy in which pollution production

is not too severe and pollution disutility is not too high, in other words γθ is sufficiently small.

Under Condition R-1, we suppose that the fixed pollution tax is moderate so that the inequalities in

Condition S-1 are met. Then the stratified configuration arises as an equilibrium outcome, but the

integrated configuration does not.

Proof. The proofs of all the theorems and propositions are relegated to the Appendix. �

Thus, under Condition R-1, Condition S-1 is sufficient to ensure that the stratified configuration is

an equilibrium outcome, but the integrated configuration is not. Intuitively, the first inequality of

Condition S-1 implies negative profit received by dirty firms under integration, whereas the second

inequality guarantees positive profit obtained by dirty firms under stratification. The main tipping

point here is the gains from clustering under the fixed pollution tax regime.

Remark 1: (Impossibility of Integrated Equilibrium) It is not difficult to show that when F is

large enough to satisfy F > M
4 σ (2/M), then dirty firms always incur negative profit, implying that

an integrated configuration can never arise in equilibrium.
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Remark 2: (On the Role of Agglomerative Externalities) It is important to note that despite

the agglomeration force from uncompensated spillovers, the key driving force for all dirty firms to

cluster in one region (A) is the presence of a fixed pollution tax that is independent of an individual

firm’s output. Specifically, with F = 0, it is clear that π(I) > 0, implying that the integrated

configuration always arises in equilibrium. Moreover, we can compute the profits under the two

configurations as follows:

π(I) =
M

2

ψ

f ′(2/M)
σ̃ (2/M)ny(I)

π(S) = Mu′
[
M2f (1/M)ny(S)

]
σ̃ (1/M)ny(S)

Further, assume that 1
2 σ̃ (2/M) > σ̃ (1/M). Then, dirty firms will incur higher profit under inte-

grated equilibrium compared to stratified equilibrium when the following inequality is met:

1
2 σ̃ (2/M)

σ̃ (1/M)
>
u′
[
M2f (1/M)ny(S)

]
ny(S)

ψ
f ′(2/M)ny(I)

Refer to the top panel of Figure 4. The ratio on the right-hand side of the above inequality is

measured by the ratio of the lightly shaded area covering EO to the shaded area covering EI . As

long as this ratio is less than
1
2
σ̃(2/M)

σ̃(1/M) (which is greater than one under the additional condition

stated above), dirty firms will earn higher profits under an integrated equilibrium compared to a

stratified equilibrium, and thus is viable whenever the stratified equilibrium is viable.

An important, related point is that we could accomplish our goal without any agglomeration

externalities at all. Suppose that we simply used a decreasing returns technology for dirty firms,

so that they make positive profits in any equilibrium without taxes. With the tax as specified,

for F low both integrated and stratified equilibria will exist, with profits higher under stratified

equilibrium. For higher F , only stratified equilibrium exists, as dirty firm profits are negative at

integrated equilibrium. But this argument neglects an important issue. In comparing the integrated

and stratified equilibria, there is movement along the supply curve for the dirty good due to wage

differences (for the compensating differential from pollution), resulting in price changes and thus

demand changes for the consumption goods as well. So the comparison is not that easy. Allowing for

agglomeration externalities with socially constant returns actually simplifies the analysis because the

dirty good production function (inclusive of the agglomeration externality) is linear in equilibrium.

Nonetheless, once we have specific functional forms for the dirty good production technology, we

will be able to return to this issue and provide a more concrete discussion (see Remark 7 in Section

6.1 below).
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Remark 3: (On Strictly Concave Utility of the Clean Good) Suppose the utility of the clean

good is strictly concave but the clean good (say, food) is more of a necessity than the dirty good

in the sense that the income elasticity of demand for the clean good is lower than that of the

dirty good. (In the current specification, the income elasticity of the demand for clean good is, by

construction, one.) Then, for a richer jurisdiction, the willingness to pay for the pollution-generating

good is higher, making integration more likely to survive the equilibrium profitability test. That

is, consideration of a more general utility function specification with the clean good being more of

a necessity than the dirty good reduces the likelihood of dirty firms clustering. Thus, the presence

of income effects per se is not as important as the relative income elasticity of demand for the two

consumption commodities.

Remark 4: (On Interregional Commuting of Workers) Recall that, in our benchmark model, at

any stratified equilibrium, utility levels, but not wages, are equated between cities. What happens

if commuting between cities is allowed? Notice that in our model all households have identical

utility functions. Suppose we go to another extreme, setting commuting cost to zero. Free com-

muting implies that wage equalization also holds even under stratification. This wage equalization

condition restricts the dirty firm’s profitability, making stratification less likely to emerge as an

equilibrium outcome. In conclusion, sufficiently high intercity commuting cost is necessary for dirty

firm clustering to arise in equilibrium.

5.2 Linear Pollution Tax Regime

Under the linear pollution tax regime, ζ = t and

g =





L+ tM
2 f(

2
M )ny(I), in integrated equilibrium

L+ tMf( 1M )ny(S), for stratified equilibrium

We impose a stronger regularity condition on the dirty firm’s surplus from uncompensated spillovers:

Condition R-2: (Regularity Condition on a Dirty Firm’s Surplus)

1

2
σ̃ (2/M) < σ̃ (1/M)

Under Condition R-2, we further consider the following condition:

Condition S-2: (Sufficient Condition for Stratification Under Linear Tax)

1

2
σ̃ (2/M) <

L

(1− t)Mny(S)
< σ̃ (1/M)
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This ensures:

Theorem 2: (Stratified Equilibrium) Consider a local economy in which pollution production is

not too severe and pollution disutility is not too high, in other words γθ is sufficiently small. Under

Condition R-2, we suppose that the lump-sum component of the linear pollution tax is moderate and

the marginal tax rate is not too high so that the inequalities in Condition S-2 are met. Then the

stratified configuration arises as an equilibrium outcome but the integrated configuration does not.

In Section 6 below, we shall verify that both the presence of pollution and the presence of a

fixed tax are crucial for a stable stratified equilibrium to arise.

6 The Case with Specific Functional Forms

Under the fixed pollution tax regime, we are left to check whether the stratified equilibrium is

stable. Due to the difficulty of examining stability in the general setting, we shall conduct our

analysis under specific functional forms for the dirty good production technology and the subutility

for the dirty good. Specifically, we assume that f̃ and u both take simple Cobb-Douglas forms:

f̃
(
niy(j), N

i
y

)
= φ[niy(j)]

β[N i
y]
1−β, φ > 0 and β ∈ (0, 1)

u (cy) = η (cy)
α , η > 0 and α ∈ (0, 1)

Before deriving the stability condition, it is useful to provide explicit conditions in this special case

under which the stratified configuration is an equilibrium outcome but the integrated configuration

is not.

6.1 Fixed Pollution Tax Regime

Under the fixed pollution tax regime with the specific functional forms, we can derive a sufficient

condition to ensure existence of a stratified equilibrium as follows:

Condition S-1′: (Stratified Equilibrium)

β

[
1 +

γθF

(1− β)φψM1−β

]
<
αβηφ

ψ
M1−β

(
1− β

F

)1−α
< 22−α−β

We can establish:

Proposition 1: (Stratified Equilibrium under Fixed Pollution Tax) Consider a local economy in

which pollution production is not too severe and pollution disutility is not too high, in other words
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γθ is sufficiently small, and Condition R-1 is met. Then, under a fixed pollution tax regime with

Condition S-1 ′, a stratified competitive spatial equilibrium emerges.

We are now ready to check whether the stratified equilibrium is stable. Informally, stability is

defined using small perturbations of firms from one region to the other, checking to see whether or

not they would return to their equilibrium region.

Consider,

Condition I: (Instability without Pollution Tax)

ψ + γθ

[
φ(
αηβ

ψ
)βM1−β

] 1
1−αβ

>
{
ψβ(1−α)(αηβφα)1−βMα[2−β(2−β)]

} 1
1−αβ

We can then obtain:

Proposition 2: (Instability of Stratified Equilibrium) Consider a local economy in which pollution

production is not too severe and pollution disutility is not too high, in other words γθ is suffi-

ciently small, and Condition R-1 is met. Then, under Condition I, a stratified competitive spatial

equilibrium is unstable in the absence of the pollution tax.

Remark 5: (On Pollution vs. Corporate Tax) One may inquire whether our analysis applies to

general corporate taxation. First, thinking of τ as a corporate tax in an economy without pollution

concerns is not economically sensible, since it is not a tax on profits. Second, even if we ignore

economic considerations, should γθ = 0, Conditions S and I would contradict each other if

M
2α−(1−α)β2

1−β >

[
(1− β)φ

F

]1−α

That is, should the above inequality be met, pollution concerns are crucial for supporting the

stratified equilibrium as a stable equilibrium configuration. Third, Condition S-1′ (particularly the

second inequality) cannot hold when there is no fixed pollution tax (F = 0). In summary, we have

shown that pollution and a fixed tax are crucial for a stable stratified equilibrium to arise.10

Remark 6: (Equilibrium Classification and Bifurcation Diagram) It is possible to delineate nu-

merically a diagram in (M,F ), namely the exogenous measure of dirty firms and the exogenous

fixed cost tax revenue, that shows how changes in the values of (M,F ) result in different types

10 If there is no tax and both industries have (different) CRS production functions (with no Romer externality) but

there is still pollution, then an integrated equilibrium will arise with both wage and utility equalized but with a corner

solution in consumption (only the dirty good is consumed).
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of equilibria, i.e. integrated versus stratified. Specifically, we set α = β = γ = 0.5, φ = η = 1,

ψ = 0.1 and θ = 0.02. We can then vary the values of each of M and F from 0 to 30. As shown

in Figure 5(a), stratification is more profitable than integration for lower values of M and higher

values of F : the indifference boundary between the two configurations is given by B̃EC. Of course,

a configuration can be supported only under positive profit, which is met for the area under ÃES

in the case of stratification and for the area under ÕEI in the case of integration. Thus, a stratified

equilibrium arises in the area of OAEB (shaded with horizontal lines) whereas an integrated equi-

librium emerges in the area of BEID (shaded with vertical lines). We now set F = 5 and vary the

measure of dirty firms, M . As long as M > 1.60, a nondegenerate equilibrium exists where firms

earn sufficient profits to pay for the pollution tax. Over the rangeM ∈ (1.60, 12.42), the equilibrium

configuration is stratified and the fraction of dirty firms in city A is one. As firms continue to enter,

the equilibrium configuration becomes integrated and the fraction of dirty firms in city A drops to

1
2 . This is depicted in the bifurcation diagram, Figure 5(b).

11

[Insert Figures 5(a,b) here]

The intuition behind the equilibrium configuration of firms under various parameter values is as

follows. At moderate levels of fixed tax cost F , if there are few dirty firms M , they must cluster

together to be able to pay the tax. However, as the number of dirty firms increases, enough profit is

generated to allow them to separate into halves and afford to pay the tax out of profits. Although

they could conceivably generate even more profit if they stratified, the missing items are the level

of pollution and the wage. With many dirty firms, the level of pollution in a stratified configuration

is high, so the wage rate must also be high to attract workers, and this makes such a configuration

impossible. For other parameter values that we have not discussed, for example if the number of

dirty firms is low but the fixed tax cost is moderate or high, the dirty firms will all shut down even

with the Inada condition on utility. If they all produce just a little, profits are insufficient to pay

the tax.

Remark 7: (Reexamining the Role of Agglomerative Externalities) In our benchmark setup, by

incorporating a regional-specific agglomeration externality following the Romer (1986) convention,

dirty goods production exhibits private decreasing-returns-to-scale and social constant-returns-to-

scale. Social constant returns simplify the analysis greatly, enabling a clean analysis of the equi-

librium configuration, namely integration versus stratification. Nonetheless, the parameter β on

the one hand captures the degree of externality and on the other hand measures the magnitude of

11 If one allows the location of dirty city to be in either A or B, then a standard fork bifurcation diagram is obtained.
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producer rent. Let us examine how the magnitude of β would affect the result by looking at the

two inequalities in Condition S-1′ separately:

[
1 +

γθF

(1− β)φψM1−β

]
<

αηφ

ψ
M1−β

(
1− β

F

)1−α

M1−β

(
1− β

F

)1−α
<

ψ22−α−β

αβηφ

It is clear that higher β (lower producer rent and lower magnitude of externality) implies that the

first inequality of the stratification condition is less likely to hold. Both the left hand side and the

right hand side of the second inequality are, however, lower and the net effect on the likelihood

of stratification is thus ambiguous. For sufficiently high β (for example, taking the extreme case

as β → 1), the first inequality always fails to hold while the second always holds. Intuitively,

as the region-specific agglomeration externality diminishes, dirty firms will have less incentive to

cluster. However, when β becomes too high, dirty firms can never generate enough rent to cover

fixed costs regardless of the underlying configuration (integration versus stratification). This is

because we cannot separate the role of the agglomerative externality from producer rent.12 We can

further resort to our numerical example, presented in Remark 6 above, to discuss how equilibrium

classification changes in response to β.

[Insert Figure 6(a,b) here]

From Figure 6(a), we can see that, under the benchmark parametrization, when β < 0.6273 and

F takes intermediate values falling between the long dashed curve and the solid curve, a stratified

configuration arises in equilibrium; when β is higher than the critical value and F takes low values

falling below both the the solid curve and the dashed curve, an integrated configuration emerges.

As β increases, the range of F that can support a nondegenerate competitive spatial equilibrium

(namely one with positive dirty good production and finite relative prices) narrows. We can also

reproduce the bifurcation diagram 5(b) in Figure 6(b): it indicates that, given the benchmark values

F = 5 and M = 12.571, the equilibrium configuration is stratified over the range β ∈ (0, 0.5000);

the equilibrium configuration turns integrated when β ∈ (0.5000, 0.7220), and only a degenerate

competitive spatial equilibrium (with no dirty good production and infinite relative price) exists

when β continues to rise, exceeding 0.7220.

12 In order to separate these two channels (producer rent and magnitude of externality), one must give up social

constant returns, assuming instead social decreasing returns: f̃
(
niy(j), N

i
y

)
= φ[niy(j)]

β
1 [N i

y]
β
2 , φ > 0, β1, β2 ∈ (0, 1)

and β1 + β2 < 1. We have tried this but lost analytic tractability.
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Remark 8: (On Endogenous Choice of Production Technologies) In the benchmark economy, we

have followed an Arrow-Debreu convention by assuming that producers are endowed with specific

technologies for producing particular goods. One may inquire what happens if producers are allowed

to make an endogenous choice of production technologies (clean versus dirty). Consider the model

modified so that a potential producer can choose between clean and dirty good production, followed

by location choice and then production. Then the value of being a clean good producer (zero profit)

must be equal to the value of being a dirty good producer, implying: max {π(I), π(S)} = 0, where

π(I) =
M

2

ψ

(1− ζ)f ′(2/M)

[
σ (2/M(I))ny(I)− (2/M(I)) τ

i
]

π(S) = Mu′
[
f (1/M)M2ny(S)

] [
σ (1/M(S))ny(S)− (1/M(S)) τ

i
]

Let the equilibrium mass of dirty firms as a result of free entry be denoted as M∗(I) and M∗(S),

respectively, for the cases of integration and stratification. Thus,

σ (2/M∗(I))

2/M∗(I)
=

τ i

ny(I)

σ (1/M∗(S))

1/M∗(S)
=

τ i

ny(S)

Recall from our discussion of the bifurcation diagram that as M rises, σ(e)e would increase in e and

hence σ(2/M))
2/M would become more likely to dominate σ(1/M)

1/M . Using this property and manipulating

(see the Appendix), we arrive at:

M∗(I) = 2

[
ψ

αβηφ

(
2F

1− β

)1−α] 1
1−β

M∗(S) =

{
[ψ(1− β) + γθF ]

α(1− β)2−αηφ
F 1−α

} 1
1−β

This is familiar from the monopolistic competition literature with endogenous entry of firms, as

in the work by Melitz (2003). While one may impose constraints in various ways to determine

the equilibrium outcome, a land requirement is natural in our economy (as proposed by Helpman,

1998). Suppose there is a fixed land requirement for all households and firms, each at an inelastic

unit normalized to one (which can be justified as an equilibrium outcome as in Berliant, Peng and

Wang, 2002). Consider the public land ownership structure delineated in Fujita (1989, pp. 60-61)13

with a total supply of L > 2 in the entire local economy. Then the total land demand is: 2 +M

(clean firms of mass one + dirty firms of mass M + households of mass one). It is straightforward

13The public land ownership model features land rent collections that are refunded equally to all inhabitants of a

location.
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to see that the necessary and sufficient condition for the stratified configuration to arise as the only

equilibrium outcome is:

2 +M∗(S) ≤ L < 2 +M∗(I)

The above inequalities can be manipulated to yield (see the Appendix):

1 +
γθF

(1− β)ψ
≤
αηφ(1− β)1−α (L− 2)1−β

ψF 1−α
<
22−α−β

β
(36)

which can hold true only if

1 +
γθF

(1− β)ψ
<
22−α−β

β
(37)

The latter inequality is satisfied when β is sufficiently small (i.e., with a sufficiently strong spillover

externality). Given Condition (37), then Condition (36) ensures that the equilibrium is stratified.

This condition requires that (i) the fixed payment F is not too large (otherwise, too many firms

must cluster, implying that land demand exceeds land supply) and (ii) land supply is not too large

(otherwise, even an integrated equilibrium can be supported). Notice that neither the firms’ nor

the households’ optimization problems change with the introduction of the land market. This is

because, for producers, the same amount of land rent is added and subtracted from profits, whereas

for consumers the same amount of land rent is added to both sides of the budget. In short, adding

endogenous technology choice by allowing potential producers choose between clean and dirty good

production would not alter our main findings once we introduce a simple land market under public

ownership with an appropriate land supply satisfying Condition (36).

6.2 Linear Pollution Tax Regime

We turn next to examining the case of a linear pollution tax. Consider,

Condition S-2′: (Stratified Equilibrium)

β(1− t) +
βγθML

φψ(1− β)
<
αβηφMα−β(1− t)2−α

ψ
(
1− β

L
)1−α < 21−β

We now have:

Proposition 3: (Stratified Equilibrium under Linear Pollution Tax) Consider a local economy in

which pollution production is not too severe and pollution disutility is not too high, in other words

γθ is sufficiently small, and Condition R-2 is met. Then, under a linear pollution tax regime with

Condition S-2 ′, a stratified competitive spatial equilibrium emerges.
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7 Can Pareto Optimum Be Price Supported?

Since individuals are ex ante identical, we restrict our attention to within-region-equal-treatment

Pareto optimum in the sense that all households within a given region reach an identical indirect

utility level and consume the same bundle. Such a Pareto optimum must satisfy the following

constraints:

xi(j) = ψnix(j), i = A,B, j ∈ [0, ki]

yi(j) = N i
yf

(
niy(j)

N i
y

)
, i ∈ A,B, j ∈ [0,mi]

N i
x =

∫ ki

0
nix(j)dj, N i

y =

∫ mi

0
niy(j)dj, NA

x +N
B
x +N

A
y +N

B
y = 1

∑

i=A,B

N icix =
∑

i=A,B

∫ ki

0
xi(j)dj,

∑

i=A,B

N iciy =
∑

i=A,B

∫ mi

0
yi(j)dj

where the first two equations specify production technologies, the third gives labor material balance

and the population identity, and the last represents commodity material balance. Such Pareto

optima are found by solving the following optimization problem:

maxUA = cAx − γθ

∫ mA

0
yA(j)dj + u(cAy )

s.t. UB = cBx − γθ

∫ mB

0
yB(j)dj + u(cBy ) = U

and the above technology and material balance constraints.

We consider equilibria with linear taxes in the next two subsections.

Remark 9: (Pareto Optimal Configuration) It is natural to inquire at this point whether, for

given parameters, the Pareto optimum features an integrated or stratified configuration. Indeed,

although it is not central to our analysis, in general it depends on the comparison of utility from

dirty good production and pollution damage in a region with half or all of the dirty firms. In our

quasi-linear setting, it amounts to u(2f(2/M))−γθf(2/M) for an integrated configuration compared

with u(f(1/M))− γθf(1/M) for a stratified configuration.

7.1 Case I: Integrated Optimum

At an integrated optimum, we have all interior allocations. We can establish:

Theorem 3: (Equilibrium Support of Integrated Configuration) Consider a local economy in

which pollution production is not too severe and pollution disutility is not too high, in other words
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γθ is sufficiently small, and Condition R-2 is met. Then, the Pareto optimum with an integrated

configuration can be supported by a competitive spatial equilibrium under the following marginal tax

rate: ζ = {1 + 2ψ/ [γθf ′(2/M)]}−1.

Intuitively, the higher the pollution damage (captured by larger γθ) is, the greater the marginal

pollution tax will be.

7.2 Case II: Stratified Optimum

At a stratified optimum, we have: kA = mB = 0. We can establish:

Theorem 4: (Suboptimality of Stratified Equilibrium) Consider a local economy in which pollution

production is not too severe and pollution disutility is not too high, in other words γθ is sufficiently

small, and Condition R-2 is met. Then, a stratified competitive spatial equilibrium is suboptimal

with over-employment and over-production in the dirty goods sector relative to the stratified Pareto

optimum.

Thus, a stratified equilibrium can never reach Pareto optimality by means of a linear pollution tax

(which encompasses Pigouvian taxation). In fact, the equilibrium employment in the dirty sector

under the stratified configuration is always too large, implying that dirty goods and pollution are

both over-produced. Such an over-polluting equilibrium outcome can never be corrected by a linear

pollution tax.

To understand the result, it is best to refer to Figure 7, where we plot the downward-sloping

after-tax MPL locus in the top panel and repeat the locational equilibrium diagram (the top panel

of Figure 3) in the bottom panel of Figure 7. A high marginal tax will shift down the after-tax

MPL locus without altering any other curves. Thus, the only change is the corresponding reduction

in the dirty industry wage, wA. As long as wA > ψ still holds after the tax increase, the lower

wage will be fully offset by the tax and profit redistribution, keeping consumers in region A as well

off as before the tax increase. This is equivalent to saying that although dirty good demand is

elastic, dirty good supply is perfectly inelastic. As a result, dirty good employment and production

in stratified equilibrium remain at levels higher than the respective optimum quantities, regardless

of the linear pollution tax levied.

[Insert Figure 7 here]

Another way of interpreting our welfare results is as follows. The same number of distortions

and tax instruments are available no matter the equilibrium configuration of firms, so that one

would expect that Pareto optimum would be either supportable or unsupportable with prices and
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taxes independent of the equilibrium configuration. However, the integrated Pareto optimal con-

figuration has the unique feature that it is symmetric across locations, so the distortion associated

with migration is not present. Thus, one fewer instrument is needed to support the integrated

configuration, in contrast with the stratified configuration.

In the conventional literature, Pigouvian taxes (a special form of a linear tax without the lump-

sum component) need not work in practice due to the difficulty of computing marginal damages

at the optimum (Baumol 1972), or when firms have monopoly power so that they can transfer

the tax burden (Buchanan and Tullock, 1975), or when oligopolistic firms have dynamic strategic

interactions (Benchekroun and Van Long 1998), or when lobbying groups care about the distribution

of income in political games (Aidt 1998)). In our paper, assuming away all of these issues, we show

that even a generalized Pigouvian tax as proposed by Carlton and Loury (1980) cannot restore first

best under a static, competitive environment, when we allow locational choice with endogenous

clustering.

Whereas the linear pollution tax cannot correct equilibrium inefficiency, it should be noted

that an appropriate redistribution scheme may do the job. In particular, consider a lump-sum

redistribution from polluted region A to clean region B. This induces ∆U to shift down and hence

equilibrium employment in the dirty industry to fall. Thus, as long as γθ is not too large, there

exists an appropriate level of such a redistribution to support the Pareto optimal level of dirty

industry employment as an equilibrium.

8 Concluding Remarks

In this work, we have shown how a fixed charge component of a tax system can cause agglomeration

of polluting firms as an equilibrium phenomenon. We have also established that whereas an

integrated Pareto optimum can be supported by a competitive spatial equilibrium with a linear

pollution tax, a stratified Pareto optimum cannot. Regardless of the linear pollution tax schedule,

a stratified equilibrium is always over-polluted compared to the optimum. To support the stratified

Pareto optimum, however, an effective (but practically not implementable) policy prescription is

to redistribute the pollution tax revenue from the dirty to the clean city residents. Such a policy

will induce migration to the clean city, thereby reducing production of the dirty good and thus of

pollution.

In this paper, we have considered only equilibrium configurations that are completely stratified

in terms of production or that are completely integrated in that production is symmetric across
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locations. One may inquire whether other configurations may emerge in equilibrium. The answer is

positive: it is possible that one city is mixed with both clean and dirty industries present, whereas

another has only the clean industry. In this configuration, clean industry workers must have equal

utility across locations and all workers must have the same wage in the city with mixed industries.

Under the Ricardian technology where clean workers are paid an exogenously fixed wage, the two

equalization conditions can be met only in knife-edge cases. It is therefore innocuous to ignore this

partially integrated configuration.

Many extensions of the model are possible. For example, global or interregional pollution could

be present in addition to the local pollution we have considered. Naturally, agglomeration is a

product of local pollution, as global pollution affects everyone in the same way. Aside from the

extension to endogenous technology choice delineated in Remark 8, we have refrained from adding

land to the model for tractability reasons. Future work should proceed in this direction. Capital-

ization of pollution damages and lump-sum transfers to localities could change the results. It would

also be interesting to examine zoning in this context.
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Appendix

Proof of Theorem 1: A condition sufficient to show that the stratified configuration is an

equilibrium but the integrated configuration is not is:

π(I) < 0 < π(S)

That is, the dirty firms only operate under stratification. From (29) and (32), in turn, we need the

following inequality condition:

1

4
σ̃ (2/M)ny(I) <

F

M2
< σ̃ (1/M)ny(S)

When ny(I) < ny(S), the above inequality holds under Condition S-1, which can be met only under

Condition R-1. Since ny(I) and ny(S) are endogenous, we must further investigate their magnitudes

in order to establish precise sufficient conditions on primitives. This can be accomplished utilizing

Figure 4, by comparing the positions of point EI and point ES . We can see from the top panel of

Figure 4 that, as long as γθ is not too large, we can have ny(I) < ny(S) (as shown in the bottom

panel of Figure 4). Given this and Condition R-1, we can always choose F to satisfy Condition

S-1, which subsequently ensures the existence of a stratified configuration but not the integrated

configuration as an equilibrium outcome, as illustrated diagrammatically where ny(S) is pinned

down by Figure 4 with Conditions R-1 and S-1 met as in Figure 7(a). �

Proof of Theorem 2: In this case, the profits generated by each dirty firm under integrated and

stratified configurations become:

π(I) =
M

2

ψ

(1− t)f ′( 2M )
[(1− t)σ̃(

2

M
)ny(I)−

2

M
L]

π(S) = Mu′[f(
1

M
)M2ny(S)][(1− t)σ̃(

1

M
)ny(S)−

1

M
L]

Similar to the fixed tax case, here is a sufficient condition to ensure that the stratified configuration

is an equilibrium but the integrated configuration is not:

π(I) < 0 < π(S)

which can be rewritten as the following inequalities:

1

2
σ̃ (2/M)ny(I) <

L

(1− t)M
< σ̃ (1/M)ny(S)

Under Condition R-2, as shown in Figure 7(b) and the circumstances delineated by Figure 4,

ny(I) < ny(S) and thus Condition S-2 is sufficient to ensure the inequalities above. �
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Proof of Proposition 1: With specific functional forms, dirty firm employment in integrated

equilibrium can be solved explicitly:

ny(I) =
1

2

[
αηβφα

ψ(M/2)1−α(2−β)

] 1
1−α

whereas dirty firm employment in stratified equilibrium must satisfy:

αηφα

M1−α(2−β)[ny(S)]1−α
= ψ + γθφM2−βny(S)

Substituting these into Condition S-1 gives the result. �

Proof of Proposition 2: Suppose the stratified equilibrium is not stable. We have deviation of

dirty firms of positive measure ε moving from A to B, receiving joint profit given by:

πε = pφ(ñyε)
βε1−β − ψñyε − pτ̃

From the clean and dirty firms’ first-order conditions for profit optimization, we have:

ñyε = ε(
βφp

ψ
)

1
1−β

Combining these expressions, we obtain:

πε = ψ(
1− β

β
)ε(

βφp

ψ
)

1
1−β − pτ̃

Thus, the per deviating firm profit can be computed as follows:

π̃ =
πε
ε
= ψ(

1− β

β
)(
βφp

ψ
)

1
1−β − p

F

ε

Recall that the profit of a firm that doesn’t deviate is:

πA = p

[
(1− β)φM1−βny −

F

M

]

To ensure stability, we therefore need: limε→0 π̃ < πA, which holds trivially as limε→0 π̃ = −∞.

It remains to check that the Romer positive externality alone cannot lead to stable dirty firm

agglomeration. This is equivalent to showing that, with F = 0,

π̃ > πA

which requires:

ny <

[
αηβφα

ψM
1−αβ(2−β)

β

] β
1−αβ

Using (35), we can rewrite the inequality above in primitives, yielding Condition I. �
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Proof of Remark 8: Suppose that the locational choice and production in stage 2 yields an

integrated configuration. Then from

π(I) =
M(I)

2

ψ

(1− ζ)f ′( 2
M(I))

[
σ

(
2

M(I)

)
ny(I)−

(
2

M(I)

)
τ i
]
= 0

and the proof of Proposition 1 (in this Appendix), we have

ny(I) =
1

2

[
αβηφα

ψ[M(I)
2 ]1−α(2−β)

] 1
1−α

Since τ I = 2F/M(I) and under the fixed tax pollution scheme ζ = 0, free entry implies:

σ

(
2

M∗(I)

)
ny(I)−

[
2

M∗(I)

]2
F = 0

Using the definition of σ, the specific functional form for the dirty good production technology and

the population identity under the integrated configuration, N i
y(I) =

M(I)
2 niy(I), we have:

f(
niy(I)

N i
y(I)

) = φ[
niy(I)

M(I)
2 niy(I)

]β = φ[
2

M(I)
]β and f ′(

niy(I)

N i
y(I)

) = φβ[
2

M∗(I)
]β−1

Plugging in ny(I) into the free entry condition yields:

[
f(

(
2

M∗(I)

)
−

2

M∗(I)
f ′(

(
2

M∗(I)

)]
1

2





αβηφα

ψ
[
M∗(I)
2

]1−α(2−β)





1
1−α

=

[
2

M∗(I)

]2
F

or

φ(1− β)

[
2

M∗(I)

]β




αβηφα

ψ
[
M∗(I)
2

]1−α(2−β)





1
1−α

= 2

[
2

M∗(I)

]2
F

which can be manipulated to derive the expression for M∗(I) in Remark 8.

Suppose now that the locational choice and production in stage 2 yields a stratified configuration.

Then from

π(S) =Mu′
[
f (1/M)M2ny(S)

] [
σ (1/M(S))ny(S)− (1/M(S)) τ

S
]
= 0

the proof of Proposition 1, and τS = F
M(S) , we have:

σ

(
1

M(S)

)
ny(S)−

[
1

M(S)

]2
F = 0

where ny(S) satisfies:

αηφα

M(S)1−α(2−β)[ny(S)]1−α
= ψ + γθφM(S)2−βny(S)
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Straightforward manipulations of the free entry condition using the definition of σ, the specific

functional form for the dirty good production technology and the population identity imply:
[
f(

(
1

M∗(S)

)
−

1

M∗(S)
f ′
(

1

M∗(S)

)]
ny(S) =

[
1

M(S)

]2
F

or [
φ[

1

M∗(S)
]β −

1

M∗(S)
φβ[

1

M∗(S)
]β−1

]
ny(S) = [

1

M∗(S)
]2F

or

ny(S) =
F

φ(1− β)

[
1

M∗(S)

]2−β

Substituting the above expression into the ny(S) equation, we obtain:

αηφα

M∗(S)1−α(2−β)
{

F
φ(1−β)

[
1

M∗(S)

]2−β}1−α = ψ +
γθF

(1− β)

which can be manipulated to derive the expression for M∗(S) in Remark 8.

Given a total supply of L > 2 in the entire local economy and one unit inelastic demand

for land by each household and producer, the necessary and sufficient condition for the stratified

configuration to arise as the only equilibrium outcome can be manipulated to yield:

M∗(S) ≤ L− 2 < M∗(I)

or
{
[ψ(1− β) + γθF ]

α(1− β)2−αηφ
F 1−α

} 1
1−β

≤ L− 2 < 2

{
ψ

αβηφ

(
2F

1− β

)1−α} 1
1−β

or Condition (36), which can hold true only if Condition (37) is met. �

Proof of Proposition 3: Under a linear pollution tax, it is easily verified that the sufficient

condition S-2 becomes Condition S-2
′

. �

Proof of Theorem 3: Upon substituting out the production technologies, this problem can be

solved by setting up the Lagrangian as follows:

L = cAx − γ · θ

∫ mA

0
NA
y f

(
nAy (j)

NA
y

)
dj + u(cAy )

+λU [c
B
x − γθ

∫ mB

0
NB
y f

(
nBy (j)

NB
y

)
dj + u(cBy )− U ]

+λN

[
1−

∫ kA

0
nAx (j)dj −

∫ kB

0
nBx (j)dj −

∫ mA

0
nAy (j)dj −

∫ mB

0
nBy (j)dj

]

+λX
∑

i=A,B

[∫ ki

0
ψnix(j)dj −

(∫ ki

0
nix(j)dj +

∫ mi

0
niy(j)dj

)
cix

]

+λY
∑

i=A,B

[∫ mi

0
N i
yf

(
niy(j)

N i
y

)
dj −

(∫ ki

0
nix(j)dj +

∫ mi

0
niy(j)dj

)
ciy

]
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where λU , λN , λX and λY are Lagrange multipliers associated with the utility constraint and labor

and goods material balance constraints, respectively. Since kA and mB are zero under a stratified

configuration, we must derive the Pareto optimum under each configuration separately.

The first-order conditions with respect to the 4 consumption and the 4 labor variables are given

by:

∂L

∂cAx
= 1− λX

(∫ kA

0
nAx (j)dj +

∫ mA

0
nAy (j)dj

)
= 0

∂L

∂cBx
= λU − λX

(∫ kB

0
nBx (j)dj +

∫ mB

0
nBy (j)dj

)
= 0

∂L

∂cAy
= u′(cAy )− λY

(∫ kA

0
nAx (j)dj +

∫ mA

0
nAy (j)dj

)
= 0

∂L

∂cBy
= λUu

′(cBy )− λY

(∫ kB

0
nBx (j)dj +

∫ mB

0
nBy (j)dj

)
= 0

∂L

∂nAx (i)
= −λN + λX(ψ − c

A
x )− λY c

A
y = 0

∂L

∂nBx (i)
= −λN + λX(ψ − c

B
x )− λY c

B
y = 0

∂L

∂nAy (i)
= −γθf ′

(
nAy (j)

NA
y

)
− λN − λXc

A
x + λY

[
f ′

(
nAy (j)

NA
y

)
− cAy

]
= 0

∂L

∂nBy (i)
= −λUγθf

′

(
nBy (j)

NB
y

)
− λN − λXc

B
x + λY

[
f ′

(
nBy (j)

NB
y

)
− cBy

]
= 0

Straightforward manipulation and simplification yields:

u′(cAy ) = u′(cBy ) =
λY
λX

(A1)

cBx − c
A
x = u′(cAy )c

A
y − u

′(cBy )c
B
y (A2)

{
[u′(cAy )− γθN

A]f ′

(
nAy
NA
y

)
− ψ

}
= nBy

{
[u′(cBy )− γθN

B]f ′

(
nBy
NB
y

)
− ψ

}
= 0 (A3)

1 = kAnAx + k
BnBx +m

AnAy +m
BnBy (A4)

ψ(kAnAx + k
BnBx ) = (kAnAx +m

AnAy )c
A
x + (k

BnBx +m
BnBy )c

B
x (A5)

mANA
y f

(
nAy
NA
y

)
+mBNB

y f

(
nBy
NB
y

)
= (kAnAx +m

AnAy )c
A
y + (k

BnBx +m
BnBy )c

B
y (A6)

Under an integrated configuration, we have: NA = NB = 1
2 , n

A
y = nBy = ny and nx = 1 −Mny.

From (A1) and (A2), we must have the same consumption bundles across the two locations. Using

(A4) and (A5) then yields:

cx = ψ(1−Mny) (A7)
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Combining (A4) and (A6), we obtain:

cy = 2(
M

2
)2f(

2

M
)ny (A8)

Both consumptions are identical to the equilibrium ones. Substituting (A8) into (A3) implies:

[
u′
(
2(
M

2
)2f(

2

M
)ny

)
−
1

2
γθ

]
=

ψ

f ′( 2M )
(A9)

By setting ny in the equilibrium captured by (34) and in the Pareto optimum captured by (A9)

equal to one another, one obtains:

ψ

f ′( 2M )
+
1

2
γθ =

ψ

(1− ζ)f ′( 2M )

which can be manipulated to derive the marginal tax rate given in the statement of the theorem. �

Proof of Theorem 4: At a stratified optimum, we have: kA = mB = 0, together with the

following 6 first-order conditions:

∂L

∂cAx
= 1− λX

(∫ kA

0
nAx (j)dj +

∫ mA

0
nAy (j)dj

)
= 0

∂L

∂cBx
= λU − λX

(∫ kB

0
nBx (j)dj +

∫ mB

0
nBy (j)dj

)
= 0

∂L

∂cAy
= u′(cAy )− λY

(∫ kA

0
nAx (j)dj +

∫ mA

0
nAy (j)dj

)
= 0

∂L

∂cBy
= λUu

′(cBy )− λY

(∫ kB

0
nBx (j)dj +

∫ mB

0
nBy (j)dj

)
= 0

∂L

∂nBx (i)
= −λN + λX(ψ − c

B
x )− λY c

B
y = 0

∂L

∂nAy (i)
= −γθf ′

(
nAy (j)

NA
y

)
− λN − λXc

A
x + λY

[
f ′

(
nAy (j)

NA
y

)
− cAy

]
= 0

in conjunction with two corner labor allocations: nAx (i) = nBy (i) = 0. Manipulations similar to those

in the proof of Theorem 3 above give (A1) and (A2) — so consumption bundles must still be the

same across the two locations — together with:

[u′(cAy )− γθN
A]f ′

(
nAy
NA
y

)
− ψ = 0 (A10)

1 = kBnBx +m
AnAy (A11)
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ψkBnBx = mAnAy c
A
x + k

BnBx c
B
x (A12)

mANA
y f

(
nAy
NA
y

)
= mAnAy c

A
y + k

BnBx c
B
y (A13)

Under a stratified configuration, we have: nAx = nBy = 0, n
A
y = ny, N

A = MnAy , N
B = 1 −MnAy ,

and nBx = nx = 1 −Mny. Whereas clean good consumption still takes the same form as in (A7),

(A4) and (A6) together yield:

cy =M2f(
1

M
)ny (A14)

implying again that both (location-specific) Pareto optimal consumption bundles are identical to

the equilibrium ones. From (A10) and (A14), we have:

[
u′
(
M2f(

1

M
)ny

)
− γθMny

]
=

ψ

f ′( 1M )
(A15)

Since ny in a stratified equilibrium is determined by (35), and since σ̃( 1M ) = f( 1M )−
1
M f

′( 1M ) > 0,

we can see that:
ψ

Mf( 1M )
<

ψ

f ′( 1M )

This implies that ny in a stratified equilibrium exceeds the Pareto optimal level, which completes

the proof. �
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Table 1.  Population Accounting

Integrated
City A City B Aggregate

Firms Workers Firms Workers Firms Workers
Integrated

City A City B Aggregate

Firms Workers Firms Workers Firms Workers

Clean
1

Sector

Dirty

Clean
1

Sector

Dirty

2

1
kA  x

A

x nN
2

1


2

M
mA 

y

A

y n
M

N
2


2

M
mB 

2

1
kB  x

B

x nN
2

1


y

B

y n
M

N
2

 M

xn

MnN 
Sector

Total 1

Sector
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Figure 1.  Labor Allocation Under Integrated Equilibrium 
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Figure 2. Dirty Good Equilibrium under Integrated Configuration
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Figure 3. Locational Equilibrium Under Stratified Configuration
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Figure 4. Integrated vs. Stratified Equilibrium 
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Figure 5. Equilibrium Configuration

(a) Equilibrium Classification
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Figure 6. Equilibrium Configuration with β
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Figure 7. Tax Effects in Stratified Equilibrium 
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Figure 8. Surplus from Uncompensated Spillovers

a. Fixed Pollution Tax Regime: Conditions S-1 and R-1
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b. Linear Pollution Tax Regime: Conditions S-2 and R-2
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