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Abstract

We study optimal incentives in a principal-agent problem in which the agent’s outside

option is determined endogenously in a competitive labor market. In equilibrium, strong

performance increases the agent’s market value. When this value becomes sufficiently high,

the threat of the agent’s quitting forces the principal to give the agent a raise. The prospect

of obtaining this raise gives the agent an incentive to exert effort, which reduces the need

for standard incentives, like bonuses. In fact, whenever the agent’s option to quit is close

to being “in the money,” the market-induced incentive completely eliminates the need for

standard incentives.

1 Introduction

The amount of short-term incentives (e.g., bonuses) in compensation packages of many

workers and, especially, executives has attracted a lot of attention and scrutiny in recent years.1

Traditional principal-agent theory provides a rationale for the presence of short-term incentives

in compensation packages: because workers’ actual effort is too costly to monitor and reward

directly, observed performance must be rewarded in order to elicit effort; short-term incentives

∗The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank

of Richmond or the Federal Reserve System.
†Federal Reserve Bank of Richmond, borys.grochulski@rich.frb.org.
‡Texas A&M University, yuzhe-zhang@econmail.tamu.edu.
1For example, the Federal Reserve (2011) states that “Risk-taking incentives provided by incentive compen-

sation arrangements in the financial services industry were a contributing factor to the financial crisis that began

in 2007.”
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are an efficient means of delivering these rewards. Our main result in this paper is that this

rationale does not quite hold once theory recognizes that good to-date performance can boost

a worker’s market value—the value she commands in the labor market if she quits her job. We

introduce a performance-dependent market value to a principal-agent model with limited com-

mitment and show that short-term compensation incentives are usually not needed. Workers’

desire to improve their market value already gives them an incentive, a market-based incentive,

which in a wide range of circumstances is sufficient to elicit effort.

In practice, workers’ consideration for the quality of their future labor market options is an

important source of incentives in numerous occupations ranging from an intern to a tenured

professor. Interns and apprentices work for little or no pay but gain useful skills and experience

that increase the quality of the job they can obtain later. In academia, strong performance in

research or teaching typically is not rewarded with bonuses paid for each publication or for a

high teaching evaluation. Yet, academics work hard to produce strong records of research and

teaching in order to improve their value in the academic labor market. Higher market value

brings quality outside offers that give professors promotions and salary increases in the long run.

In this paper, we capture these forward-looking, market-based incentives in a tractable model

that allows for fully flexible, long-term employment contracts with performance-dependent com-

pensation. In the optimal contract, compensation is downward-rigid and often completely free

of performance-dependent incentives like piece-rate pay or year-end bonuses. Our model deliv-

ers testable predictions on how likely performance-dependent incentives should be observed in

compensation packages of different types of workers.

Market-based incentives arise in our model out of two necessary ingredients. First, workers

have the right to quit at any time. Second, if a worker quits, the value she obtains in the

labor market is higher the stronger her record of to-date performance. The worker’s right to

quit implies that if the market option becomes more attractive to her than her current job,

her employer will have to increase her compensation to match her market value, or she quits.

In either case, the worker benefits when her market value increases. Naturally, this motivates

the worker to boost her market value, which she can do by showing strong performance. Thus,

the worker has an incentive to perform on her current job even if strong performance is not

immediately rewarded in terms of her current pay. Since this incentive is driven by the worker’s
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market value considerations, we will refer to it as a market-based incentive.

Why should a worker’s outside market value increase with stronger on-the-job performance?

In our model, it increases because the worker’s productivity is assumed to be persistent over time

and equally as useful to a potential new employer as it is to her current employer. By putting

in (unobservable) effort on her current job, the worker improves her current productivity, which

benefits her current employer in terms of the increased quantity of output she produces now.

But, because her productivity is persistent, it also makes her more valuable to a potential next

employer. Competition among employers in the labor market translates the next employer’s

higher valuation of the worker into a higher value the worker can obtain by quitting and going

to the market.

It is intuitive that when current effort enhances the worker’s future productivity, fewer short-

term incentives should be necessary because the worker already has some “skin in the game” in

that she benefits when her productivity grows and improves her market value. Since workers’

productivity is persistent in our model, it can be interpreted as human capital. If working hard

on the current job is not only an input into current production but also an investment in the

worker’s (inalienable and transferable) human capital, then it is intuitive that the objectives

of the firm and the worker become better aligned and the need for short-term compensation

incentives decreases.

In our analysis, we make this intuition precise. Formally, we consider a principal-agent

contracting problem in which a risk-neutral firm hires a risk-averse agent/worker whose pro-

ductivity is observable and persistent over time. The evolution of the worker’s productivity

depends on her effort and exogenous, idiosyncratic shocks, both of which are unobservable. We

embed this contracting problem in a simple model of the labor market, where firms match with

workers frictionlessly. The contract between the firm and the worker specifies compensation

and an effort recommendation for any realization of idiosyncratic shocks to the worker’s pro-

ductivity. The worker can quit at any time and go back to the market. We show that this

right to quit and the persistent impact of the worker’s effort on her productivity (and hence

on her value in the labor market) give rise to a forward-looking, market-based incentive that

encourages effort.

Market-based incentives are stronger the closer the worker’s option to quit is to being “in
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the money.” This is because the firm can provide very limited insurance to the worker if the

worker is about to quit. Limited insurance means the worker’s continuation value is highly

sensitive to the worker’s performance, which gives the worker a strong incentive to exert effort.

The link between the strength of market-based incentives and the worker’s “distance to

default” can be easily seen in the following simple example. Suppose the firm pays the worker

constant compensation for as long as the worker chooses to stay with the firm. How well this

simple contract insures the worker depends on how long the worker stays, which in turn depends

on how good the worker’s market option is. The worse her outside option, i.e., the further away

she is from quitting, the longer the expected duration of this simple contract, and, in effect, the

more insurance this contract provides to the worker. A well-insured worker has little incentive

to put in effort, i.e., the market-based incentive is weak. In particular, if the worker’s market

option is valueless or non-existent, she will never quit, so the simple contract will last forever,

effectively giving the worker full insurance. With full insurance, the worker has absolutely no

incentive to put in effort. In contrast, if the worker’s market option is almost “in the money,”

a very small positive shock to her productivity is enough to elevate her market value above the

value of the simple contract. Since such small shocks happen often, the expected duration of

the simple contract is short and so the contract provides very little insurance to the worker.

With little insurance, the worker’s incentive to put in effort is strong.2

In our model, the worker’s option to quit is formally captured by a participation, or quitting,

constraint. This constraint requires that the worker’s value from the contract with the firm be

at all times at least as large as her market value. How close the worker is to quitting at any given

time (i.e., the worker’s “distance to default”) is measured by how slack the quitting constraint

is. We show that, in line with the intuition from the above simple example, market-based

incentives are strong and standard, contract-based incentives are absent whenever slackness in

the quitting constraint is lower than a threshold. Below this threshold, compensation is constant

whenever the quitting constraint does not bind, and, to keep the worker from leaving, it increases

monotonically whenever the quitting constraint binds.3 Above this threshold, market-based

2Note that it is the upside, not downside, risk that is uninsurable when the insured agent lacks commitment.
3Because there is no economic role for job transitions in our stylized model of the labor market with homoge-

neous firms, we derive the optimal long-term contract under the assumption that workers do not quit if indifferent.

The alternative assumption leads to the exact same equilibrium processes for effort and compensation.
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incentives are not strong enough to elicit effort and firms supplement them with some contract-

based incentives, so compensation is not completely independent of current performance. When

slackness in the quitting constraint goes to infinity, the strength of market-based incentives goes

to zero and the optimal contract converges to the solution of the standard principal-agent model

in which there are no market-based incentives.

How frequently market-based incentives are strong in equilibrium depends on how close on

average the quitting constraint is to binding. One important factor determining the average

“distance to default” is the expected change in worker productivity. If productivity tends to

grow over time, the worker’s market value tends to increase, so the quitting constraint binds

often. This makes market-based incentives strong frequently and contract-based incentives

needed rarely. In particular, with a sufficiently large positive trend in worker productivity, the

probability that contract-based incentives are ever used can be arbitrarily small.

We also present an extension of our model in which not only workers but also firms lack

commitment. In particular, firms can fire workers upon incurring a deadweight firing cost. In

this extension, thus, in addition to the worker’s quitting constraint, we have a firm’s partic-

ipation, or firing, constraint. We show that if the firing cost is not too large, the worker is

always exposed to risk and, thus, market-based incentives are always strong. If slackness in the

quitting constraint is low, then, as in our basic model, market-based incentives arise because

the upside risk to the worker’s productivity is uninsurable. If slackness in the worker’s quitting

constraint becomes large, the firm’s firing constraint becomes tight and market-based incentives

arise because the downside risk to the worker’s productivity is not fully insured.

In order to characterize the solution to our model analytically, we make several assumptions

widely used in the dynamic contracting literature. Constant absolute risk aversions (CARA)

preferences and Gaussian shocks let us reduce to one the dimension of the state space sufficient

for a recursive representation of our contracting problem. The optimal contract is then charac-

terized by solving an ordinary differential equation. Although needed for analytical tractability,

these assumptions are not necessary for the existence of market-based incentives. We briefly

consider a version of our model with log preferences and log-normal shocks and show that there,

too, market-based incentives are strong when slackness in the workers’ quitting constraint is

not too large.
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Essential for the existence of market-based incentives are workers’ inability to commit to

staying on the job forever and a positive impact of workers’ on-the-job effort on their market

value. These conditions seem very plausible. The latter condition, in particular, is similar to

learning-by-doing. It will be satisfied whenever putting in effort on the job helps a worker

acquire any kind of skill or experience that is valued in the labor market.

Our characterization of the equilibrium contract gives the following testable predictions of

our model. Performance-based incentives should be more frequently observed (a) in occupations

in which workers do not acquire much general, transferable human capital, (b) when the growth

of a worker’s general productivity is slower, e.g., later in the life-cycle, (c) when firing workers is

costly, and (d) when workers past performance is harder to observe to outsiders. Gibbons and

Murphy (1992), Loveman and O’Connell (1996), and Lazear (2000) provide evidence consistent

with these predictions.

Related literature Market-based incentives are similar to career concerns in that both give

workers a forward-looking motivation for effort. But there are important differences in how

they arise and how they affect workers’ incentives. In the career concerns model of Holmstrom

(1999), workers are risk-neutral, so there is no need for consumption smoothing or insurance.

Workers sell labor services in spot markets every period. Because performance is assumed to be

observable but not contractible, spot wages cannot be made contingent on current performance.

Future spot wages can depend on today’s performance, as the history of performance is available

for each worker. Each period, wages reflect the market’s belief about the worker’s hidden

productivity type. Stronger observed performance improves the market’s expectation of the

worker’s type leading to higher wages in the future. Workers are motivated by career concerns:

they choose effort to manage the market’s assessment of their productivity.

Market-based incentives, by contrast, arise in our model in an environment with risk-averse

workers and risk-neutral firms entering into long-term employment contracts in which compen-

sation can be contingent on current performance. In the optimal long-term contract, compensa-

tion is often insensitive to current performance not because performance is not contractible but

because this way the contract provides maximum feasible consumption smoothing and insur-

ance to the worker. Firms provide incentives mostly through permanent compensation raises

(promotions) that are necessary in order to retain workers whose strong performance bids up
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their market value. Since a worker’s productivity is common knowledge at all times, workers

cannot manage market beliefs in our model.

Our paper builds upon two strands of the literature on long-term principal-agent relation-

ships with risk-averse agents: the studies in which the provision of insurance is impeded by

moral hazard, and the studies in which insurance is limited by the lack of commitment. In

the first group, the paper that we are closest to is Sannikov (2008), whom we follow in study-

ing dynamic moral hazard in continuous time.4 Sannikov (2008), however, does not capture

market-based incentives because in his model shocks and actions only affect current output,

and the agent’s outside option is fixed. In our model, shocks and actions have a persistent

effect and, crucially, the agent’s outside option is endogenous and performance-dependent. In

order to obtain a meaningful outside option function, we do not study the optimal contracting

problem in isolation but rather embed it in an simple equilibrium model of the labor market. A

general lesson from the dynamic moral hazard literature is that it is efficient for compensation

to contemporaneously respond to observed performance. With the new elements that we add

to the model, we show the existence of an incentive for effort driven by the agent’s value of

the outside option. This market-based incentive changes the structure of the optimal contract:

compensation responds to performance to a much smaller extent than previous results suggest;

often, it does not respond at all.

Among the numerous studies of optimal contracting subject to limited commitment, our

paper is closely related to Harris and Holmstrom (1982) and Krueger and Uhlig (2006). As in

these studies, we have in our model persistent idiosyncratic shocks, firms/principals that can

commit to long-term contracts, and workers/agents who cannot. This one-sided commitment

friction leads to a downward rigidity in compensation and to limited insurance of the upside risk

in workers’ productivity. While in Harris and Holmstrom (1982) the workers’ outside option is

autarky (spot markets), Krueger and Uhlig (2006) endogenize the outside option by allowing

agents to enter a new long-term contract with another firm after a separation. We follow the

latter approach to modeling the outside option in this paper. Grochulski and Zhang (2011) study

a one-sided limited commitment contracting problem in continuous time and show that the

4Early contributions to the dynamic moral hazard literature include Spear and Srivastava (1987) and Phelan

and Townsend (1991).
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agent’s continuation value is sensitive to shocks at all times, even when her current consumption

is not. In the present paper, we re-examine these insights in a model that combines the one-

sided commitment friction with moral hazard. We find that, with some qualifications, the

results from the limited-commitment models continue to hold in our more general environment:

wages are downward rigid, the upside risk is not fully insured, and the agent’s continuation

value is sensitive to shocks even if compensation is not. Limited commitment therefore appears

to trump moral hazard considerations in our model: the optimal contract most of the time

looks exactly as if moral hazard were completely absent from the model environment.

There exist a small number of studies that, like we do here, examine optimal contracts under

the two frictions of private information and limited commitment.5 Two studies closely related

to our paper are Thomas and Worrall (1990, Section 8) and Phelan (1995). These papers,

however, do not capture market-based incentives because the agent’s outside option does not

depend on her past performance in the models studied there. In Atkeson (1991), the outside

option of the agent (a borrowing country) does depend on her actions (investment). For this

reason, although that paper asks a different question, we expect that market-based incentives

exist in that environment. However, market-based incentives are probably weak there because

persistence in the impact of the private action (investment) on the value of the outside option

(autarky) is low in that model. In our model, effort has a permanent effect on the worker’s

outside option, which makes market-based incentives much stronger and easier to identify.

Modeling compensation as part of a long-term employment contract has a long tradition in

the economic theory of employment and wage determination that dates back to Baily (1974),

Azariadis (1975), and Holmstrom (1983). Although in this theory, as in our model, employment

contracts provide insurance to workers, shocks considered there are aggregate or industry-

wide, while we consider worker-specific shocks to individual productivity. Also, that literature

abstracts from incentive problems, which are the primary focus of this paper. Our main interest

is in showing the effect of market-based incentives on the structure of the optimal compensation

contract under moral hazard. To this end, we keep the model of the labor market simple. By

assuming frictionless matching between firms and workers, we abstract from search costs and

exogenous separations. All workers in our model economy are employed at all times.

5We will refer to moral hazard as a special case of private information.
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Organization The model environment is formally defined in Section 2. Sections 3 and 4 study

single-friction versions of our model, with full commitment in Section 3 and full information in

Section 4. Optimal contracts from these models serve as benchmarks that we use to solve the

full model in Section 5. In particular, the minimum cost functions from these models provide

useful lower bounds on the cost function in the full model. Section 6 considers robustness of our

results with respect to the functional forms we use as well as with respect to the assumption of

full commitment on the firm side. Proofs of all results formally stated in the text are relegated

to Appendix A.

2 A labor market with long-term contracts

We consider a labor market populated with a large number of agents/workers and a poten-

tially larger number of firms operating under free entry. For concreteness, we will assume that

one firm hires one worker.6 Matching between workers and firms is frictionless: an unmatched

worker can instantaneously find a match with a new firm entering the market. In a newly

formed match, the firm offers to the worker a long-term employment contract. Competition

among firms, those in the market and the potential new entrants, drives all firms’ expected

profits to zero.7

Workers are heterogeneous in their productivity yt, which changes stochastically over time

following a Brownian motion with drift. Let w be a standard Brownian motion w = {wt,Ft; t ≥

0} on a probability space (Ω,F ,P). A worker’s productivity process y = {yt; t ≥ 0} is y0 ∈ R

at t = 0 and evolves according to

dyt = atdt+ σdwt. (1)

The drift in a worker’s productivity at t, at, is privately controlled by the worker via a costly

action she takes. Specifically, at ∈ {al, ah} with al < ah. The volatility of yt is fixed: σ > 0

at all t. Workers are heterogeneous in the initial level of their productivity y0, in the realized

paths of their productivity shocks {wt; t > 0}, and, potentially, in the action path {at; t ≥ 0}

they choose. The path of actions {at; t ≥ 0} taken by each worker is her private information.

6As long as each worker’s performance is observable, our results would be unchanged if firms in the model

hired multiple workers.
7Our results do not depend on frictionless matching or on firms making zero profit in a match.

9



The structure of the productivity process and each worker’s productivity level yt are public

information at all times.

We adopt a simple production function in which the revenue the worker generates for the

firm equals the worker’s productivity yt at all times during her employment with the firm. In

a long-term employment contract, the firm collects revenue {yt; t ≥ 0} and pays compensation

{ct; t ≥ 0} to the worker. We will identify compensation ct with the worker’s consumption at

all t ≥ 0.8

Formally, a long-term contract a firm and a worker enter at t = 0 specifies an action process

a = {at; t ≥ 0} for the worker to take, and a compensation/consumption process c = {ct; t ≥ 0}

the worker receives. Processes a and c must be adapted to the information available to the

firm.

We assume that firms and workers discount future payoffs at a common rate r. In a match,

the firm’s expected profit from a contract (a,c) is given by

E
a

[
∫ ∞

0
re−rt(yt − ct)dt

]

,

where E
a is the expectation operator under the action plan a.

Action at represents the worker’s effort at time t. If the worker takes the high-effort action

ah, she improves her current productivity and, hence, the revenue she generates for the firm.

Because yt is persistent, high effort ah also increases the worker’s expected productivity in the

future. Action ah, however, is costly to the worker in terms of current disutility of effort.

All workers have identical preferences over compensation/consumption processes c and ac-

tion processes a. These preferences are represented by the expected utility function

E
a

[
∫ ∞

0
re−rtU(ct, at)dt

]

.

To make our model tractable analytically, we will abstract in this paper from wealth effects in

the provision of incentives. That is, we will assume constant absolute risk aversion (CARA)

with respect to consumption by taking

U(ct, at) = u(ct)φ
1at=al ,

8We can think of the worker’s savings or financial wealth as being observable and thus contractually controlled

by the firm.
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where u(ct) = − exp(−ct) < 0, 0 < φ < 1, and 1at=al is the indicator of the low-effort action

al at time t. High effort ah is costly to the agent because U(c, ah) = u(c) < u(c)φ = U(c, al)

for all c.9 In Section 6, we discuss the extent to which our results depend on this form of the

utility function.

Firms can commit to long-term contracts, but workers cannot. A worker has the right

to quit and rejoin the labor market at any point during her employment with a firm. In

the market, the worker is free to enter another long-term contract with a new firm. Any

contractual promise by the worker to not use her market option would not be enforceable.

The presence of this inalienable right to quit restricts firms’ ability to insure workers against

the upside risk to their productivity. In particular, contracts will be restricted by workers’

participation (or quitting) constraints defined as follows. Denote by V (yt) the value a worker

with productivity yt can obtain if she quits and rejoins the labor market. This market value will

be determined in equilibrium. We show later (in Proposition 1) that V is strictly increasing.

For a worker with initial productivity y0 ∈ R, a contract (a, c) induces a continuation value

process W = {Wt; t ≥ 0} given by

Wt = E
a

[
∫ ∞

0
re−rsU(ct+s, at+s)ds |Ft

]

. (2)

Contract (a, c) satisfies the worker’s quitting constraints if at all dates and states

Wt ≥ V (yt). (3)

This constraint is standard in models of optimal contracts with limited commitment (e.g.,

Thomas and Worrall (1988)). It also resembles the lower-bound constraint on the continuation

valueWt used in many principal-agent models with private information (e.g., Atkeson and Lucas

(1995) and Sannikov (2008)), but is in an important way different because the lower bound in

these models is given by some fixed value, whereas in (3) the lower bound V (yt) changes with

the worker’s productivity. Later in the paper we will see that this difference has important

implications for the provision of incentives to the worker at the lower bound.

In this paper, we adopt the convention that when the quitting constraint (3) binds, i.e.,

when the worker is indifferent to quitting, the worker stays. In our model, as in Krueger

9We can equivalently write U(ct, at) as u(ct+1at=al
log(φ−1)) and interpret log(φ−1) > 0 as the consumption

equivalent of the utility the agent gets from leisure associated with exerting low effort.
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and Uhlig (2006), there are no efficiency gains from separations. Since switching employers

would not make the worker more productive, the best continuation contract that the worker’s

current employer can provide is as good as the best contract that the worker can get in the

market. Adopting the convention that workers do not quit when (3) binds is thus without

loss of generality, but lets us avoid additional notation that would be needed to describe job

transitions.10

Because action at is not observable, contracts will also have to satisfy incentive compatibility

(IC) constraints. A contract is incentive compatible if no deviation from the recommended

action process a can make the worker better off. We will express IC constraints using the

following results of Sannikov (2008).

Let (a, c) be a contract and W the associated continuation utility process as defined in (2).

There exists a (progressively measurable) process Y = {Yt; t ≥ 0} such that the continuation

utility process W can be represented as

dWt = r(Wt − U(ct, at))dt+ Ytdw
a
t , (4)

where

wa
t = σ−1

(

yt − y0 −

∫ t

0
asds

)

. (5)

Contract (a, c) is IC if and only if for all t and ã ∈ {ah, al},

r (U(ct, ã)− U(ct, at)) + σ−1(ã− at)Yt ≤ 0. (6)

For proof of these results see Sannikov (2008).

In (4), dwa
t = σ−1 (dyt − atdt) represents the worker’s current on-the-job performance. Per-

formance at t is measured by the change in the worker’s productivity, dyt, relative to what this

change is expected to be at t under the recommended action plan, atdt, and normalized by

σ. Note that as long as the worker follows the recommended action at, her (observable) per-

formance dwa
t will be the same as the (unobservable) innovation term dwt in her productivity

process given in (1).

10If we follow the alternative convention and suppose that the worker quits when (3) binds, the optimal contract

is the same except it ends when (3) binds for the first time and is replaced with a new contract identical to the

continuation of the original contract. This interpretation of long-term contracts is equivalent to the no-separation

convention we adopt in that it leads to identical production, consumption, and welfare.
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Also in (4), Yt represents the sensitivity of the worker’s continuation value to current perfor-

mance. Clearly, larger Yt will imply a stronger response ofWt to any given observed performance

dwa
t . The IC constraint (6) requires that the total gain the worker can obtain by deviating from

the recommended action at to the alternative action ã be nonpositive. The first component of

this gain shows the direct impact of the deviation on the worker’s current utility. The second

component shows the indirect impact of the deviation on the continuation utility expressed

as the product of the action’s impact on the worker’s performance and the sensitivity of the

continuation value to performance.

If the recommended action at time t is to exert effort, i.e., if at = ah, then the IC condition

(6) reduces to ru(ct)(φ− 1) ≤ σ−1 (ah − al)Yt, or

Yt
−u(ct)

≥ β, (7)

where β = rσ 1−φ
ah−al

> 0. Analogously, the low-effort action al is IC at t if and only if

Yt
−u(ct)

≤ β.

Written in this form, the IC constraints make it clear that the ratio Yt/(−u(ct)) measures the

strength of effort incentives that contract (a, c) provides to the worker at time t. The high-effort

action ah is incentive compatible at t if and only if this ratio is greater than the constant β. Low

effort is incentive compatible if and only if this ratio is smaller than β. As in Sannikov (2008),

higher sensitivity of the worker’s continuation value to her current on-the-job performance,

Yt, makes effort incentives stronger. Due to non-separability of workers’ preferences between

consumption and leisure, the level of consumption ct also affects the strength of effort incentives

in our model.11 In particular, if the contract recommends high effort, the gain in the flow utility

the worker can obtain by shirking is in our model smaller at higher consumption levels.12 For a

given level of sensitivity Yt, thus, higher current consumption ct makes effort incentives stronger.

11Compare our IC constraint (6) with the IC constraint (21) on page 976 of Sannikov (2008). Consumption ct

does not show up in the IC constraint of that model because preferences considered there are additively separable

between consumption and effort.
12This property is particularly easy to see if we interpret log(φ−1) > 0 as the consumption equivalent of the

utility the agent gets from shirking. Since shirking at t is equivalent to consuming ct + log(φ−1) instead of ct,

decreasing marginal utility of consumption implies that the gain from shirking is lower when ct is higher.
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We are now ready to define the contract design problem faced by a firm matched with a

worker. We will define this problem generally as a cost minimization problem in which the firm

needs to deliver some present discounted utility value W ∈ [V (y0), 0) to a worker whose initial

productivity is y0. Let Σ(y0) denote the set of all contracts (a, c) that at all t satisfy quitting

constraints (3) and IC constraints (6). The firm’s minimum cost function C(W, y0) is defined

as

C(W, y0) = min
(a,c)∈Σ(y0)

E
a

[
∫ ∞

0
re−rt(ct − yt)dt

]

(8)

subject to W0 =W. (9)

The constraint (9) is known as the promise-keeping constraint: the contract must deliver to

the worker the initial value W . In the special case of W = V (y0), the value −C(V (y0), y0)

represents the profit the firm attains in a match with a worker of type y0 when the worker’s

outside value function is V .

Next, we define competitive equilibrium in the labor market with long-term contracts.

Definition 1 Competitive equilibrium consists of the workers’ market value function V : R →

R− and a collection of contracts (ay0 , cy0)y0∈R such that, for all y0 ∈ R,

(i) (ay0 , cy0) attains the minimum cost C(V (y0), y0) in the firm’s problem (8)–(9),

(ii) C(V (y0), y0) = 0 and C(W, y0) > 0 for any W > V (y0).

The first equilibrium condition requires that when firms assume (correctly) that the work-

ers’ outside value is their equilibrium market value, then the equilibrium contracts are cost-

minimizing (i.e., efficient) and in fact deliver to workers their market value. The second condi-

tion comes from perfect competition under free entry: profits attained by firms must be zero in

equilibrium and no firm can deliver to a worker a larger value than her market value without

incurring a loss.

2.1 Level-independence of incentives

The following proposition shows a simple relationship between optimal contracts offered

to workers with different productivity levels. This relationship implies a particularly simple
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functional form for the equilibrium value function V and gives us a partial characterization of

the cost function C.

Proposition 1 If (a0, c0) is the optimal contract for y0 = 0, then, for any y0 ∈ R, the optimal

contract (ay0 , cy0) is given by

ay0 = a0, (10)

cy0 = c0 + y0. (11)

The equilibrium value function V satisfies

V (y) = e−yV (0) ∀y ∈ R. (12)

The minimum cost function C satisfies

C(W, y) = C(Wey, 0) ∀y ∈ R,W < 0. (13)

The independence of the optimal action recommendation from y0, shown in (10), and the

additivity of the optimal compensation plan with respect to y0, shown in (11), follow from

the independence of future productivity changes dyt from the initial condition y0 and from the

absence of wealth effects in CARA preferences. With no wealth effects, incentives needed to

induce high or low effort are the same for workers of all productivity levels. The contribution of

changes in a worker’s productivity to a firm’s revenue is also the same for all workers. Thus, the

same effort process is optimally recommended to workers of all productivity levels, and output

produced by a worker with initial productivity y0 = y > 0 is path-by-path larger by exactly y

than output produced by a worker with initial productivity y0 = 0. Competition among firms

implies then that in equilibrium the worker with y0 = y will obtain the same compensation

process as the worker with y0 = 0 plus the constant amount y at all t.

This structure of the compensation plan allows us to pin down the functional form of the

workers’ market value function V (y0), as given in (12). Intuitively, if a worker with y0 = 0

obtains V (0) in market equilibrium, then a worker with y0 = y will obtain e−yV (0) because her

consumption is larger by y at all t and the utility function is exponential, so u(ct+y) = e−yu(ct)

at all t.

15



In addition, this structure of optimal contracts implies a particular form of homogeneity for

a firm’s minimum cost function C(W, y), as shown in (13). Suppose some contract efficiently

delivers some value W < 0 to a worker whose initial productivity y0 = y > 0 (i.e., this

contract attains C(W, y)). Then a modified contract with compensation uniformly decreased

by y will efficiently deliver value eyW < W to a worker whose initial productivity y0 = 0

(i.e., the modified contract will attain C(eyW, 0)). But these two contracts generate the same

cost/profit for the firm, as in the second case the worker produces less output (uniformly less

by y) and receives less compensation (also less by y).13

The scalability of the contracting problem and the implied homogeneity of the minimum

cost function greatly simplify our analysis in this paper. In order to solve for the equilibrium,

it is sufficient to find one value, V (0), and one contract that supports it, (a0, c0).

2.2 Optimality of high effort

In our analysis, we will focus on the case in which the recommendation of the high-effort

action ah is optimal and therefore always used by firms in equilibrium. We will verify in Section

5 that the following assumption is sufficient for high effort to be optimal.

Assumption 1 Let κ = σ−2
(
√

a2h + 2rσ2 − ah

)

. We assume that

κ

1 + κ
(ah − al) ≥ r log

(

φ−1
)

+
1

2
βσ. (14)

The set of parameter values satisfying this assumption is nonempty.14 We will maintain As-

sumption 1 throughout the paper.

2.3 Recursive formulation

In order to find the cost function C(Wt, yt), we will use the methods of Sannikov (2008) to

study a recursive minimization problem with control variables at, ut ≡ u(ct), and Yt. Scalability

and homogeneity properties of Proposition 1 let us reduce the dimension of the state space in

13Similarly, a worker with initial y0 = −y < 0 will produce and receive y units less than a worker with y0 = 0.
14Take an arbitrary point in the parameter space and consider decreasing the value of al. Assumption 1 will

eventually hold because lower al makes a) high effort relatively more desirable, so the left-hand side of (14) grows

without a bound, and b) shirking easier to detect (β becomes smaller), so the right-hand side of (14) decreases.
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this recursive problem. Instead of studying this problem in the two-dimensional state vector

(Wt, yt), we can reduce the state space to a single dimension as follows. Using (13) and (12)

we have

C(Wt, yt) = C(Wte
yt , 0) = C

(

Wt

e−ytV (0)
V (0), 0

)

= C

(

Wt

V (yt)
V (0), 0

)

. (15)

This shows that the minimum cost C(Wt, yt) is the same for all pairs (Wt, yt) for which the

ratio Wt

V (yt)
is the same. We will find it convenient to transform this ratio further and define a

single state variable as

St ≡ log

(

V (yt)

Wt

)

. (16)

Using St, we can express the worker’s quitting constraint (3) as

St ≥ 0, (17)

and the firm’s cost function as

C(Wt, yt) = C

(

Wt

V (yt)
V (0), 0

)

= C
(

e−StV (0), 0
)

= C (V (St), 0) ,

where the first equality uses (15), the second uses (16), and the third uses (12).15 We will

denote C (V (·), 0) by J(·) and solve for this function in the state variable St.

It is useful to note that St = u−1(Wt)−u
−1(V (yt)), i.e., St represents the difference between

the worker’s continuation value inside the contract and her outside option value when both these

values are converted to permanent consumption equivalents. Indeed, if St = S, the worker is

indifferent between giving up S units of her compensation forever and separating from the

firm.16 Because St shows by how much the worker prefers her current contract over the market

option, it represents slackness in the worker’s quitting constraint at time t. Larger St represents

larger slackness. In particular, the quitting constraint binds at t if and only if St = 0.

With the worker equilibrium value function (12) substituted into (16), we can write the

state variable St as

St = −yt − log(−Wt) + log(−V (0)). (18)

15The IC constraint (7) is not affected by the change of the state variable, as it depends on the control variables

only.
16To see this, note that if St = S and {ct+s; s ≥ 0} is a compensation process that gives the worker the

continuation value Wt, then the compensation process {ct+s − S; s ≥ 0} gives the worker the continuation value

exactly equal to the value of her outside option, V (yt).
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Using Ito’s lemma, the law of motion for yt given in (1), and the law of motion for Wt given in

(4), we obtain the law of motion for the state variable St under high effort as

dSt =

(

r

(

−1−
ut

−Wt

)

+
1

2

(

Yt
−Wt

)2

− ah

)

dt+

(

Yt
−Wt

− σ

)

dwa
t . (19)

We will find it useful to normalize the control variables ut and Yt by the absolute value of the

worker’s continuation utility. Introducing ût ≡
ut

−Wt
and Ŷt ≡

Yt

−Wt
, we express (19) as

dSt =

(

r (−1− ût) +
1

2
Ŷ 2
t − ah

)

dt+
(

Ŷt − σ
)

dwa
t . (20)

The Hamilton-Jacobi-Bellman (HJB) equation for the firm’s cost function J is

rJ(St) = rSt − r log(−V (0)) + min
ût,Ŷt

{

r(− log(−ût)) + (21)

J ′(St)

(

r (−1− ût) +
1

2
Ŷ 2
t − ah

)

+
1

2
J ′′(St)

(

Ŷt − σ
)2
}

,

where control variables must satisfy Ŷt ≥ −ûtβ to ensure incentive compatibility of the recom-

mended high-effort action ah.

The meaning of the terms in the HJB equation is standard. It may be helpful to write the

HJB equation informally as

rJ(St) = min

{

r(ct − yt) + J ′(St) (drift of St) +
1

2
J ′′(St) (volatility of St)

2

}

. (22)

Intuitively, the first derivative J ′ represents the firm’s aversion to the drift of St because, as we

see in (22), the total cost rJ(St) increases by J
′(St) when the drift of St increases by one unit.

Similarly, the second derivative J ′′ shows how strongly the cost function will respond to an

increase in the volatility of St, so in this sense it represents the firm’s volatility aversion. Also,

using definitions of St and ût, it is easy to verify that the first three terms on the right-hand

side of (21) represent the firm’s flow cost r(ct − yt).

In Section 5, we will characterize optimal long-term contracts by finding a unique solution

to the HJB equation subject to appropriate boundary and asymptotic conditions. In the next

two sections, we provide two important benchmarks by finding optimal contracts in simplified

versions of our general environment in which one of the two frictions is absent.
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3 Pay-for-performance incentives in equilibrium with private

information and full commitment

In this section, we will assume full commitment: not only firms but also workers have the

power to commit to never breaking the contract. As in our general model presented in the

previous section, firms match with workers and offer them long-term contracts at t = 0. At

this time, the worker can reject the offer and move to another match instantaneously. Upon

accepting a contract at t = 0, however, the worker commits to not quitting at any t > 0.

This commitment maximizes the match’s surplus as it allows firms to provide better insurance

against fluctuations in workers’ productivity relative to the case in which the workers would

not commit. In particular, it lets firms insure the upside risk to workers’ productivity. We solve

this version of our model in closed form. In equilibrium, firms provide incentives to workers by

making compensation sensitive to current on-the-job performance.

Let ΣFC(y0) denote the set of all contracts (a, c) that at all t satisfy the IC constraint (6).

The contracting problem we study in this section is identical to the cost-minimization problem in

(8) but with the quitting constraint (3) removed, i.e., with the set of feasible contracts expanded

from Σ(y0) to ΣFC(y0). We will use CFC(W, y0) to denote the minimum cost function in this

problem. The reduced-form cost function JFC(S) is defined analogously. Note that JFC(S) is

defined for any S, even negative. Market equilibrium is defined as in the general case but using

the cost function CFC(W, y0) instead of C(W, y0).

The following proposition gives a continuous-time version of standard characterization re-

sults for optimal contracts with private information and full commitment.17

Proposition 2 In the model with full commitment, workers’ equilibrium compensation is given

by

ct = y0 +
µ+ ah
r

− µt+ ρβwa
t , (23)

17Spear and Srivastava (1987), Thomas and Worrall (1990), Atkeson and Lucas (1992), and Phelan (1998)

provide characterization results for optimal contracts in discrete-time models with private information and full

commitment, similar to the moral hazard model with full commitment we study in this section in continuous

time. Atkeson and Lucas (1995) and Sannikov (2008) characterize optimal contracts with private information

assuming an exogenous lower bound on the agent’s continuation utility in, respectively, discrete- and continuous-

time models.
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where 0 < ρ = (
√

1 + 4r−1β2−1)/(2r−1β2) < 1 and µ = r (1− ρ)− 1
2ρ

2β2 > 0. The sensitivity

of the equilibrium continuation value Wt with respect to observed performance dwa
t is

Yt = −u(ct)β at all t. (24)

Proposition 2 shows two main features of optimal compensation schemes in the model with

private information and full commitment: contemporaneous sensitivity of compensation to

performance, represented in (23) by ρβ > 0, and a negative time trend in compensation,

represented in (23) by −µ < 0. The positive contemporaneous sensitivity of compensation

with respect to the worker’s observed performance represents the standard, short-term, “pay-

for-performance” incentive for workers to exert effort. The negative trend in compensation

does not provide effort incentives by itself, but it improves the effectiveness of the pay-for-

performance incentive.

Sensitivity Yt in (24) shows that the IC constraint in (7) binds at all t. This means that

incentives, as measured by the ratio Yt/(−u(ct)), are in equilibrium strong enough to make the

recommended high-effort action ah incentive compatible but not any stronger. Incentives are

costly because they reduce insurance. The equilibrium contract is efficient in holding incentives

down to a necessary minimum at all times. Because this minimum does not change over time,

the strength of incentives provided to the worker is always the same in this model.

This section shows that private information requires positive sensitivity Yt. The next section

shows that positive sensitivity Yt can arise completely independently of private information: if

workers lack commitment, their productivity shocks cannot be fully insured and, therefore,

their continuation values must remain sensitive to realizations of these shocks. Thus, in an

environment in which private information and limited commitment coexist, limited commitment

potentially could deliver the positive sensitivity Yt that private information requires. Our main

results in this paper, which we give in Section 5, consider precisely this possibility.

4 Market-based incentives in equilibrium with limited commit-

ment and full information

In this section, we discuss the full-information version of our model. As in the general model

outlined in Section 2, firms match with workers and offer them long-term contracts at t = 0. A
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worker who has accepted a contract retains the option to quit and go back to the labor market,

where she can find a new match instantaneously. Unlike in the general model, however, we will

assume in this section that workers’ actions on the job are observable, and that workers can

contractually commit to a prescribed course of action.18 The model we study in this section

is essentially a continuous-time version of the Krueger and Uhlig (2006) model with CARA

preferences. This section also generalizes the optimal insurance model studied in Grochulski

and Zhang (2011), where the outside option is assumed to be autarky.

Let ΣFI(y0) denote the set of all contracts (a, c) that at all t satisfy the quitting constraint

(3). The contracting problem we study in this section is identical to the cost-minimization

problem in (8) but with the IC constraint (7) removed, i.e., with the set of feasible contracts

expanded from Σ(y0) to ΣFI(y0). We will use CFI(W, y0) to denote the minimum cost func-

tion in this problem. The reduced-form cost function JFI(S) is defined analogously. Market

equilibrium is defined as in the general case but using the cost function CFI(W, y0) instead of

C(W, y0).

Proposition 3 In the model with full information, workers’ equilibrium compensation is given

by

ct = mt − ψ, (25)

where mt = max0≤s≤t ys and ψ = κσ2

2r > 0. The sensitivity of the continuation value Wt with

respect to observed performance dwa
t is

Yt = −u(ct)
κ

κ+ 1
e−κ(mt−yt)σ > 0. (26)

As in Grochulski and Zhang (2011), the maximum level of productivity attained to date,

mt, is a state variable keeping track of the quitting constraint in this model. The quitting

constraint binds whenever productivity attains a new to-date maximum, i.e., when yt = mt,

and is slack whenever productivity is below its to-date maximum, i.e., when yt < mt. Since

there is no private information and firms and workers discount future payoffs at the same

rate, optimal contracts provide constant compensation (full insurance) to workers whenever

the quitting constraint is slack. When the quitting constraint binds, i.e., when a new to-date

18In short, workers cannot be punished for quitting but can be punished for shirking on the job.
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maximum mt is attained, compensation ct increases, as shown in (25). Thus, compensation

never decreases in the full-information model, and it increases faster the faster new maximal

levels of a worker’s productivity are realized.

Since sample paths of the productivity process are continuous, a worker has a better chance

of attaining a new to-date maximum of her productivity—and thus obtaining a permanent

increase in her compensation—the closer her current productivity level yt is to the current

to-date maximum level mt. The worker’s continuation value in the contract, Wt, increases

whenever the chance for the next permanent increase in compensation improves. This means

that Wt increases when current productivity yt increases, even during time intervals in which yt

remains strictly below mt, i.e., when current consumption ct does not at all respond to changes

in yt. This everywhere-positive sensitivity of the continuation value to current performance

is shown in (26). Moreover, (26) shows that the continuation value’s performance sensitivity

Yt increases as the distance between yt and mt decreases. Like St, the distance mt − yt is a

measure of slackness of the quitting constraint (3).19 Thus, sensitivity Yt is larger the closer

the quitting constraint is to binding.

Positive sensitivity Yt > 0 arises in this section for reasons completely distinct from those

that give rise to positive sensitivity in the private-information model discussed in the previous

section. There, firms pay for performance in order to elicit high effort. Here, firms can directly

control workers’ effort, but face the possibility of workers quitting. When the quitting constraint

becomes binding, the firm must give the worker a raise in order to retain her. This raise is the

source of positive sensitivity of the continuation value to current performance at all times, even

when the quitting constraint is slack. Because the market option is the source of sensitivity Yt

in the model we consider in this section, we will call this Yt market-induced sensitivity.

As we see in the IC constraint (7), incentives are measured in our model by the ratio of Yt

to −u(ct). Sensitivity Yt is therefore closely related to the notion of incentives. Despite there

being no need for effort incentives in this section, as we assume here that effort is observable

(and thus contractually controllable), we should note that the contract in Proposition 3 does

give the worker an incentive to exert effort because the ratio Yt/(−u(ct)) is nonzero under this

19In fact, St and mt − yt are related by St = mt − yt − log
(

κ+ 1− e−κ(mt−yt)
)

+ log(κ). Thus, St is strictly

increasing in mt − yt, and St = 0 if and only if mt − yt = 0.
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contract. Indeed, if the firm for some reason neglects to observe and control the worker’s effort

at some instant t, the worker would still choose to supply effort at t if the ratio Yt/(−u(ct)) she

faces under her contract is larger than β, regardless of what makes this ratio large. Thus, an

effort incentive can exist without private information. Since sensitivity Yt is market-induced,

we will call the effort incentive created by Yt the market-based incentive. The next result shows

that the market-based incentive can be strong in the full-information model.

Corollary 1 The ratio Yt

−u(ct)
is strictly decreasing in mt − yt. In particular, Yt

−u(ct)
≥ β if and

only if mt − yt ≤ δ, where δ = κ−1 log
(

κ
κ+1

σ
β

)

> 0.

This corollary shows that the equilibrium contract obtained in the full-information model

formally satisfies the IC constraint (7) whenever slackness in the quitting constraint (3), as

measured by mt − yt, is small. That means that the market-based incentive is strong in this

region.20 The corollary also shows that the full-information contract is not overall incentive

compatible because it fails to satisfy the IC constraint (7) when the quitting constraint is suf-

ficiently slack. Monotonicity of Yt/(−u(ct)) means that the market-based incentive is stronger

when the quitting constraint is tighter (less slack).

In this section, there is no need for incentives. Yet, they exist in equilibrium as a by-product

of limited commitment. In the next section, we consider the general version of our model with

both moral hazard and limited commitment, where incentives are needed. There, as here,

the market option improves with the worker’s performance, which generates a market-based

incentive. Similar to Corollary 1, the market-based incentive will be strong (sufficient to induce

high effort) when slackness in the quitting constraint is smaller than a threshold. In that region

of the state space, therefore, the equilibrium contract will rely completely on market-based

incentives and will not use pay-for-performance incentives at all.

4.1 Further properties of equilibrium with full information

Proposition 3 describes equilibrium compensation contracts in the full-information model

using two state variables: mt and yt. In Appendix B, we describe the equilibrium of this model

20In particular, the full-information equilibrium contract does satisfy the IC constraint at the onset of every

employment relationship because m0 − y0 = 0 < δ.
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in terms of the single state variable St, and characterize the cost function JFI(St). In particular,

Appendix B discusses the following properties of the equilibrium expressed in terms of St. The

drift and the volatility of St are strictly decreasing in St. The possibility of violating the quitting

constraint makes the firm infinitely averse to volatility in St at St = 0, hence J ′′
FI(0) = ∞ and

the volatility of St at St = 0 is zero in equilibrium. Equilibrium drift in St at St = 0 is strictly

positive (i.e., zero is a reflective barrier for St). In the next section we show that all these

properties continue to hold when both private information and limited commitment are present

in the model.

5 Market-based and pay-for-performance incentives in equilib-

rium with both frictions

In this section, we characterize the optimal contract in our general model, where firms face

both the incentive problem and the quitting constraint.

5.1 Solving the optimal contracting problem

Standard methods for solving second-order differential equations like our HJB equation

(21) require two boundary conditions. Our problem is nonstandard. It has a semi-unbounded

domain (the positive half-line) with only one boundary condition: the second derivative of J

at the boundary St = 0 must be infinite because otherwise the quitting constraint would be

violated immediately after St becomes zero. Despite the lack of a second condition on J at

the boundary, our analysis of the full-information model suggests an asymptotic condition that

can be used to pin down the solution: the cost that the quitting constraint imposes on the

firm must become negligible when St goes to infinity because the (time-discounted) chance of

the constraint binding in the future becomes negligible when St is large. When St goes to

infinity, therefore, the cost function in the model with two frictions, J , must converge to the

cost function from the model with private information and full commitment, JFC . In particular,

first derivatives of these functions, J ′(St) and J ′
FC(St), must become close at large values of St.
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We will use this asymptotic convergence condition to pin down the solution.21 22

Our analysis of the HJB equation gives the following theorem.

Theorem 1 There exists a unique solution to the HJB equation (21) satisfying the boundary

condition J ′′(0) = ∞ and the convergence condition limSt→∞(J ′(St) − J ′
FC(St)) = 0. This

solution represents the true minimum cost function for the firm.

The method of proof given in Appendix A is similar to that in Sannikov (2008) with two

technical difficulties stemming from the specific boundary and convergence conditions we have.

First, our HJB equation does not satisfy the Lipschitz condition at St = 0 because J ′′(0) = ∞.

We overcome this difficulty by using a change of variable technique. Second, the asymptotic

condition requiring convergence of J ′(St) to J ′
FC(St) does not provide an actual restriction on

the boundary of the state space. We overcome this difficulty as follows. We determine a range

of possible values for the first derivative of J at St = 0 and consider a family of candidate

solutions to the HJB equation, one for each possible value of J ′(0) in this range. We show that

the asymptotic condition requiring that J ′(St) converge to J ′
FC(St) as St → ∞ is violated by

all but one candidate solution. We then confirm that the one candidate solution that satisfies

this asymptotic condition indeed represents the true minimum cost function J .

Lastly, we verify that the recommendation of high effort is optimal at all t. Lemma A.11 in

the Appendix A shows that this conclusion follows from our Assumption 1.

5.2 Optimality of constant compensation

We now provide the main result of our paper.

21In order to use the cost function JFC from the one-friction model with full commitment as a benchmark

(lower bound) for J in the two-friction model, one must shift JFC downward by a constant to account for the

fact that a lower level of utility is provided to the worker in equilibrium in the model with two frictions (the

value V (0) is lower in this model). It is thus more convenient to express the asymptotic convergence condition in

terms of first derivatives rather than levels because a uniform vertical shift of JFC does not affect its derivative.
22Appendix B discusses the cost the quitting constraint imposes on the firm in the full-information model

relative to the environment with no frictions (the first best). In that model, this cost does go to zero when

slackness in the quitting constraint goes to infinity: the cost function JFC and its derivatives converge to the

first-best cost function and its derivatives, respectively.
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Proposition 4 In the model with two frictions, there exists a unique S∗ > 0 such that in each

time interval in which St remains strictly above 0 and below S∗, equilibrium compensation ct

is constant. In the equilibrium contract, the IC constraint (7) binds whenever St ≥ S∗, but is

slack whenever St < S∗.

It is a standard result in the literature on optimal compensation that making pay contingent

on current performance is an efficient way of providing effort incentives when the actual effort

of a worker cannot be observed by the firm. That literature, however, assumes that the worker’s

outside option value does not depend on her performance. Our main result shows that when the

worker’s outside option value does depend on her performance, making current pay contingent

on performance may no longer be efficient. In particular, whenever the worker’s market value

is close to the value she obtains by continuing to work for the current employer, optimal

compensation is constant, i.e., completely unresponsive to current performance of the worker,

and the worker chooses to supply effort nevertheless.

Key to this result are two facts. First, as we have seen in Section 4, when the quitting

constraint binds, the firm must increase the worker’s compensation in order to retain her.

Second, when the quitting constraint does not quite bind but is close to binding, the worker’s

effort has a strong impact on the chance that the quitting constraint becomes binding. These

two facts imply that when the worker is close to quitting, she will exert effort in order to actually

hit the quitting constraint and obtain a raise. Knowing this, the firm does not need to provide

an additional incentive via performance-dependent compensation; constant compensation is

efficient.

Proposition 4 also shows that the IC constraint (7) is slack when the quitting constraint (17)

is close to binding. Constant compensation is optimal when St remains in the interval (0, S∗)

precisely because both the quitting and the IC constraint are slack in that region. A slack

IC constraint means that the worker’s incentives are “too strong” (i.e., more than necessary

to induce effort). In fact, when St < S∗ it would be efficient if the firm could provide more

insurance to the worker, thus weakening her incentives, but doing so is impossible due to

the worker’s right to quit. The firm already insures all downside risk to the worker’s future

productivity, but the upside risk is not fully uninsurable. Full insurance is not possible because

the threat of the worker’s quitting will force the firm to adjust the worker’s compensation (give
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her a raise) if her productivity becomes sufficiently high.

When the quitting constraint is relatively slack, St > S∗, the IC constraint binds. This

is because the impact of the worker’s effort on her chance of hitting the quitting constraint is

smaller when the quitting constraint is more distant. The market option still gives the worker

an incentive to supply effort, but this incentive is weak (i.e., not sufficient to induce effort).

The firm must in this case supplement the market-based incentive with a contract-based pay-

for-performance incentive. We study the optimal mix of these incentives in the next section.

In the limiting case with St → ∞, the chance of St ever returning to zero becomes negligible

and the strength of market-based incentives goes to zero.

In sum, when St remains below S∗ the optimal contract looks exactly like the optimal

contract from the model with limited commitment and full information in Section 4.23 When

St goes to infinity, in contrast, the optimal contract looks like the optimal contract from the

model with private information and full commitment in Section 3.

5.3 Strength of market-based incentives

In our model, the strength of effort incentives provided to a worker at time t is measured

by the ratio of Yt to −u(ct). Workers will supply effort if and only if this ratio is larger than

β. Proposition 4 shows that in equilibrium, the strength of incentives is only just sufficient

to induce effort when the quitting constraint is relatively slack (St ≥ S∗), but is more than

sufficient when the quitting constraint is relatively tight (St < S∗).

We will now decompose incentives into two parts: forward-looking market-based incentives

and short-term, contract-based incentives. Market-based incentives will be those induced by the

worker’s outside option (as in Section 4). Contract-based incentives will be those not induced

by the market option (as in Section 3). To measure the strength of market-based incentives at

t, we need to compute the ratio Yt/(−u(ct)) that the firm would optimally choose at t if limited

commitment were the only friction, i.e., as if the worker’s effort were observable (and hence

controllable) by the firm locally at t. We compute this ratio as follows. Given the optimal cost

23Since workers are hired in our model at market value, i.e., without any slack in the quitting constraint,

optimal compensation for newly hired workers is always free of pay-for-performance incentives. New workers,

however, are likely to receive a raise shortly after they are hired.
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function J , we disregard the IC constraint at t in the HJB equation (21) and use first-order

conditions to obtain current utility u(ct) and sensitivity Yt that the firm would choose in such

a relaxed problem. Denoting the ratio of Yt to −u(ct) from this locally relaxed problem by

Ỹt/(−ũ(ct)), we have
Ỹt

−ũ(ct)
=

σJ ′(St)J ′′(St)

J ′(St) + J ′′(St)
.

This ratio gives the portion of the actual Yt/(−u(ct)) that is induced by the presence of the

worker’s market option. Thus, it represents the strength of market-based incentives at t in our

model. The remainder of the actual Yt/(−u(ct)) represents contract-based incentives that the

firm must inject in order to ensure incentive compatibility of high effort at t.

Figure 1 plots the ratio Ỹt/(−ũ(ct)) against St in a typically parameterized numerical ex-

ample. The strength of market-based incentives decreases as the quitting constraint becomes

more distant. Below S∗, market-based incentives are strong, meaning they are sufficient to in-

duce effort, i.e., Ỹt/(−ũ(ct)) ≥ β, and contract-based pay-for-performance incentives are zero.

An implication of strong market-based incentives when St < S∗, as we have seen in Propo-

sition 4, is that compensation is flat and workers provide effort without being compensated

for current performance. Above S∗, market-based incentives are weak, i.e., not strong enough

to induce worker effort, and the optimal contract supplements them with pay-for-performance

incentives. This means that compensation does depend on current performance above S∗. Pay-
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Figure 2: Example with ah > 0. Threshold S∗ = 0.76. Stationary point for St is 0.05.

for-performance incentives become stronger as market-based incentives become weaker when

the quitting constraint becomes more slack.

5.4 Dynamics of the equilibrium contract

Unlike the two single-friction models studied in Sections 3 and 4, the model with both fric-

tions does not admit a closed-form solution. In this section, therefore, we describe the dynamics

of the equilibrium contract by characterizing the drift and the volatility of compensation ct and

the state variable St. We provide a mix of analytical and numerical results in this section.

We start out by presenting in Figure 2 the drift and the volatility of ct and St computed

numerically under the parametrization of our model used earlier to produce Figure 1. In panel

(a), we can identify the region of strong market-based incentives by noting that for all St

above zero and below S∗ the drift and the volatility of compensation are both zero, which

means that dct = 0, i.e., compensation remains constant in this region, as predicted earlier

in Proposition 4. When St goes to infinity, the impact of the quitting constraint vanishes and

optimal compensation converges to the optimal compensation from the full-commitment model,

where, by Proposition 2, the drift of ct is −µ < 0 and the volatility of ct is ρβ > 0.

In addition to these properties of compensation at low and high values of the state variable,

where market-based incentives are respectively strong and negligible, numerical analysis lets us
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characterize the dynamics of ct in the intermediate region of the state space, where market-

based incentives are not strong but are not negligible either. As we see in panel (a), at all St

greater than S∗ the volatility of compensation is increasing in St but remains smaller than its

asymptotic value of ρβ. The intuition for this follows from the monotonicity of the strength

of market-based incentives in St shown earlier in Figure 1. If at some St > S∗ the worker’s

observed performance is positive, dwa
t = dyt − ahdt > 0, then both the worker’s continuation

value inside the contract and her outside market value increase. Because the contract provides

some insurance to the worker, the outside market value increases by more than the continuation

value inside the contract does. This means that the quitting constraint becomes less slack (St

decreases) and, thus, the chance of entering the area of constant compensation (below S∗) and

eventually hitting the quitting constraint (when the worker receives a raise) improves. This

improvement provides some incentive for the worker to supply effort. Therefore, even in the

region of weak market-based incentives, compensation can be less sensitive to contemporaneous

performance than what it must be in the standard principal-agent model, or in our model at St

approaching infinity, where market-based incentives are absent. Because, as shown in Figure

1, the market-based incentive is stronger at smaller St, the sensitivity of ct to performance

decreases when St decreases at all St > S∗.

Panel (a) of Figure 2 shows that at St = S∗ (and, by continuity, also right above S∗), the

sensitivity of compensation to observed performance is actually negative. This feature of the

optimal contract is due to the non-separability in the worker’s preferences between consumption

and leisure.24 The intuition for this is as follows. As we see in (7), higher current compensation

ct relaxes the IC constraint in our model. When the IC constraint binds, the firm saves on

incentive costs by paying higher compensation now. If the IC constraint does not bind, this

effect is absent. At the threshold point St = S∗, positive and negative worker productivity

shocks dwt have an asymmetric effect on the incentive benefit of high current compensation:

positive shocks decrease St and take it into the region in which the IC constraint does not bind,

where high current compensation is not needed, while negative shocks increase St and take it

into the region where the IC constraint binds, where high current compensation does have a

24In numerical examples with separable preferences we computed, the volatility of consumption is everywhere

weakly positive. It is zero at all St below S∗ and positive at all St above S∗.
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benefit. This produces negative sensitivity of compensation ct to innovations in wt at St = S∗:

a positive shock dwt > 0 will not affect ct and a negative shock dwt < 0 will increase ct.

In addition, panel (a) of Figure 2 shows that the drift of compensation is lower than its

asymptotic value of −µ at all St above S
∗, and is monotonic in St in this region. Similar to

the negative volatility of compensation, these properties of its drift are due to the fact that

compensation increases when the state variable crosses the S∗ threshold and enters the region

of weak market-based incentives. A more strongly negative drift in ct right above S∗ helps

average out the monotonic increase in ct occurring at S∗ as the state variable fluctuates around

this threshold level. When St grows and moves away from S∗, this need for a more strongly

negative drift vanishes and the drift in ct approaches −µ.

These dynamic properties of compensation are robust in the numerical experiments with

the model we conducted. The discontinuity in the drift and the volatility of ct at S∗ can be

shown analytically, but we do not have analytical results for the monotonicity of the drift and

the volatility of ct above S
∗.

Moving on to the dynamics of the state variable, we note in panel (b) of Figure 2 that the

volatility of St is everywhere negative and monotonically increasing toward zero as St decreases

toward the boundary St = 0. The intuition for this, which we already mentioned earlier,

follows from the fact that the optimal contract provides more insurance to a worker who is

further away from quitting. At the boundary itself, the contract cannot provide any insurance,

i.e., the volatility of the continuation value inside the contract has to match the volatility of

the worker’s outside option to ensure that the quitting constraint is not violated immediately

after the state variable hits its lower bound. The further away St is from zero, the less likely

it is that the quitting constraint becomes binding, the more the firm can insure the worker

against her productivity shocks, and, in effect, the more negative the volatility of St becomes.

Asymptotically, the volatility of St converges to its value from the model without quitting

constraints.

The negative volatility of slackness St in the quitting constraint (3) means that this con-

straint can become binding only after the worker’s good performance, which is exactly opposite

to the pure moral hazard model of Sannikov (2008). In both models, poor performance decreases

the worker’s continuation value Wt. In Sannikov (2008), the lower bound on Wt is fixed, so
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when Wt decreases, the distance between Wt and its lower bound decreases. In our model, the

lower bound on Wt, V (yt), is not fixed: it is strictly increasing in yt. In fact, V (yt) responds

to the worker’s performance more strongly than Wt. When performance is poor, thus, V (yt)

decreases faster than Wt, so the distance between Wt and its lower bound increases. When

performance is strong, V (yt) increases faster than Wt, i.e., the lower bound “catches up” to the

continuation value Wt. The closer V (yt) approaches Wt the slower this catching up becomes.

When slackness St in the quitting constraint is zero,Wt and V (yt) respond to good performance

exactly the same (St has zero volatility), so V (yt) “pushes up” Wt but never exceeds it.

The drift of St, shown also in panel (b) of Figure 2, is positive at the boundary of the state

space St = 0 and converges to its value from the model without quitting constraints when St

goes to infinity. Similar to the volatility of St, these properties of its drift are explained by the

fact that the quitting constraint is less likely to become binding when St is larger.

Moreover, note in Figure 2 that the drift in St at St = 0 is not only nonnegative, which is

necessary to avoid violating the quitting constraint, but is actually strictly positive. Combined

with the fact that St has zero volatility at zero, this implies that zero is a reflective barrier for

the state variable in equilibrium. This property of our model with market-based incentives is

different from the absorbing lower bound that appears in many dynamic moral hazard models

with a fixed lower bound on the continuation utility (e.g., Sannikov (2008)).

These properties of the drift and the volatility of the state variable hold not only in the

numerical example presented in Figure 2 but are true in our model in general. Formally, we

have the following result.

Proposition 5 Let α(St) and ζ(St) denote, respectively, the drift and the volatility of the

state variable. In the equilibrium contract, α(St) is strictly decreasing with α(0) > 0 and

limSt→∞ α(St) = −µ − ah, and ζ(St) is strictly decreasing with ζ(0) = 0 and limSt→∞ ζ(St) =

ρβ − σ.

Note that Proposition 5 implies that the volatility of St is always negative, but the sign of

the drift in St is not pinned down. In particular, the direction in which St tends to move when

it is large depends on the sign of −µ− ah. This value represents the drift of the state variable

in the full-commitment version of our model as well as in the model with both frictions at large

St. In the example presented in Figure 2, −µ − ah < 0 and the state variable has a unique
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Figure 3: Example with ah < 0. Threshold S∗ = 0.18. No stationary point for St exists, i.e.,

the drift in St is everywhere positive.

stationary point, where its drift is zero. Because this stationary point is much smaller than S∗

in this example, St tends to start to decrease toward zero before it reaches S∗, and thus it will

only infrequently leave the region of strong market-based incentives.

Figure 3 modifies the parametrization used in Figure 2 by using a lower value of the drift

parameter of the worker’s productivity, ah < 0, resulting in a positive asymptotic value for

the drift of the state variable, −µ − ah > 0. Since, by Proposition 5, the drift of St is strictly

positive at zero and monotonic in St, −µ−ah > 0 means that St has in this example a positive

drift everywhere in the state space. In this modified parametrization, therefore, St tends to

drift out of (0, S∗). Over time it thus becomes less and less likely that market-based incentives

are strong: market-based incentives are transient in this parametrization.25 These observations

lead us next to investigate more closely where the state variable tends to spend most time in

equilibrium.

5.5 Market-based incentives in the long run

This section provides two results. The first result gives a sufficient condition for the existence

of a stationary stochastic steady state (an invariant distribution) for the state variable St.

25Panel (a) of Figure 3 shows that dynamic properties of compensation in the parametrization with low ah are

qualitatively the same as those presented in panel (a) of Figure 2 for the case of high ah.
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Theorem 2 If in the model with full commitment the drift of the state variable St is negative,

i.e., if −µ− ah < 0, then in the model with both frictions there exists an invariant distribution

for the state variable St.

This result is intuitive because a negative drift in St when St is large prevents St from diverging.

A strictly positive drift in St at zero makes the lower bound a reflecting barrier for St. These

two forces give rise to a non-degenerate stationary distribution in St in the long run.

The second result uses the stationary distribution for St to examine the fraction of time

that the optimal contract spends in the region with strong market-based incentives. Denote

the invariant distribution of St by π.

Proposition 6 limah→∞ π([S∗,∞)) = 0.

This proposition shows that if the worker’s productivity has a sufficiently large drift under high

effort, the optimal compensation contract will be free of pay-for-performance incentives most

of the time. The argument for this result is that when ah is large, the drift of the state variable

is strongly negative at values of St strictly smaller than S∗. This makes events in which St

leaves the region of strong market-based incentives very rare, and thus eliminates the need for

pay-for-performance compensation incentives in equilibrium almost always.

6 Robustness

In this paper, we adopt the CARA utility function, a Brownian motion productivity process,

and one-sided limited commitment for the tractability of this framework. In particular, in this

framework we can show that the high effort recommendation is optimal everywhere, and we can

characterize the region of strong market-based incentives analytically. However, our main result

showing that market-based incentives have a strong impact on optimal compensation contracts

is not specific to the CARA-normal model with one-sided lack of commitment. In this section,

we examine robustness of our result by considering two extensions. First, we consider two-

sided lack of commitment (i.e., firms can fire workers) in the CARA-normal model. Second, we

consider a model with log preferences and a geometric Brownian motion productivity process

in the one-sided lack of commitment case. The cost of departing from the CARA-normal
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Figure 4: Example with two-sided lack of commitment.

framework in this section is that we are only able to provide numerical solutions for these two

extensions.26

6.1 Two-sided lack of commitment

Following Phelan (1995), we assume in this section that firms can fire workers upon incurring

a deadweight cost F ≥ 0. This introduces a participation constraint on the side of the firm:

J(St) ≤ F at all t. This constraint implies that St ≤ S̄ at all t, where S̄ = J−1(F ). Our model

in Section 5 is a special case with F = ∞.

The numerical solutions we have obtained under various parameterizations show that market-

based incentives become stronger when firm commitment becomes weaker. Figure 4 shows the

equilibrium dynamics of compensation and the state variable in a typically parameterized ex-

ample. In [0, S̄], there are two regions with strong market-based incentives, where compensation

is constant, and one region in which short-term, pay-for-performance incentives are present.27

26Within the CARA-normal framework with one-sided limited commitment our analytical results can easily

be extended to the case in which the absolute risk aversion parameter in the utility function is different from

one. In this paper, we keep the absolute risk aversion parameter fixed at one because considering other values

would make the notation less clear without adding any insight.
27Similar to the one-sided case, due to the non-separability of preferences between consumption and leisure,

there is a discontinuity in the drift and in the volatility of compensation at the boundaries between the regions

of strong and weak market-based incentives.
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Figure 5: Example with two-sided lack of commitment and small firing cost F .

In the lower region of constant compensation, as in the baseline model, the worker is motivated

by the prospect of the raise that the firm must give her to keep her from quitting when St hits

zero. In the upper region of constant compensation, the worker is motivated by the wage cut

that she will have to accept in order to keep the firm from firing her when St reaches S̄.

Like quitting, firing of workers never actually happens in equilibrium. Panel (b) of Figure

4 shows that when St approaches the firing boundary S̄, the drift of St is negative and its

volatility goes to zero. Thus, like zero, S̄ is a reflecting barrier for St.

In addition to the example presented in Figure 4, we have computed examples with different

firing cost F . In these examples, we have examined the structure of equilibrium compensation.

When F decreases, S̄ = J−1(F ) decreases, so the interval [0, S̄] shrinks. The middle region

of that interval, where market-based incentives are weak, shrinks as well. In fact, the middle

region shrinks faster than the interval [0, S̄].

For a small enough firing cost F , the region of weak market-based incentives vanishes com-

pletely and, hence, equilibrium compensation never uses pay-for-performance incentives. In

these cases, compensation is piecewise constant: ct is constant when St fluctuates inside the

interval (0, S̄), ct increases when St hits zero, and ct decreases when St hits S̄. Compensation,

therefore, is the same as what it would be if workers’ effort were observable. The commitment

friction is strong enough to completely crowd out the private information friction in these cases.
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Figure 6: Regions of strong market-based incentives.

Figure 5 presents one such example. In this example, F is smaller than in Figure 4, but greater

than zero.28 The equilibrium firing threshold S̄ is also smaller than in Figure 4, but remains

positive, i.e., the firm still provides insurance to the worker. Panel (a) shows that the drift and

the volatility of ct are both zero everywhere inside (0, S̄). As in the previous example, we can

see in panel (b) that 0 and S̄ are reflecting barriers for St.

The lower the firing cost F , the less insurance firms provide in equilibrium. In the limiting

case with F = 0, we have S̄ = 0 and firms provide no insurance, i.e., they simply pay to workers

the output workers produce: ct = yt at all t.

6.2 Log preferences and geometric Brownian motion

We have also studied numerically a version of our model with the log utility of consumption

additively separable from the utility of leisure, with a geometric Brownian motion productivity

process, and with one-sided commitment. In that framework, the high-effort action is not

always optimal, but it is when slackness in the worker’s quitting constraint is not too large. We

have examined numerically the solution to the optimal contracting problem, and have found

that strong market-based incentives also exist in this model.29 Figure 6 shows the area of strong

market-based incentives in our main CARA-normal model (panel (a)) and in a log-geometric

28All other parameters are the same as in Figure 4.
29Detailed solutions are available upon request.
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model (panel (b)). The main conclusion of our previous analysis holds in the log-geometric

framework: market-based incentives are strong when the quitting constraint is not very slack.

7 Conclusion

In this paper, we extend the classical dynamic principal-agent contracting framework by

allowing the agent’s outside option to depend on her to-date performance. We show that this

extension gives rise to a new incentive for the agent to supply effort. That incentive is not

driven by the response of contract-prescribed compensation to the observed performance, but

rather by the increase in the agent’s market value that occurs when the agent’s performance is

strong. The existence of this market-based incentive depends on the assumption of portability

of at least a part of the agent’s acquired skill or experience from one employer to another. We

show that the market-based incentive can be strong in that it can provide sufficient incentives

for maximum worker effort.

In the optimal long-term contract, the use of short-term compensation incentives, like

bonuses, becomes necessary after an extended period of poor performance because market-

based incentives are weak in this situation. At intermediate levels of performance, optimal

compensation consists simply of constant pay with no incentives. Sustained strong perfor-

mance leads to compensation increases, which can be interpreted as promotions giving the

worker a new, better contract.

When we relax the assumption of full commitment on the side of the firm and allow for

firing of workers upon paying a small firing cost, short-term compensation incentives become

completely useless. When firms can fire workers, market-based incentives are stronger because

workers are motivated not only by the prospect of a promotion but also by the risk of being

fired.

Our theoretical analysis suggests that market-based incentives exist in principal-agent re-

lationships beyond the particular setting of our model, as long as the agent’s effort (or other

desired action) improves her standing in the market outside the present principal-agent relation-

ship. For this reason, we expect that market-based incentives play an important role in many

firm-employee and, perhaps particularly so, firm-executive relationships. As well, market-based
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incentives may be important in lender-borrower relationships, where the borrower’s outside op-

tion (e.g., refinancing terms) can depend on the performance of the loans she has held in the

past.

In our model, maximum worker effort is optimal at all times. The existence of market-based

incentives does not depend on this feature of the model. If less-than-maximum effort were to

be implemented, however, we expect that the impact of market-based incentives on optimal

compensation would be more complicated than the characterization we provide in this paper.
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FOR ONLINE PUBLICATION

Appendix A: proofs

Proof of Proposition 1

The proof proceeds in several steps.

(i) From the definition of equilibrium, we have C(W, y) ≥ 0 for W ≥ V (y). This property

and the quitting constraint Wt ≥ V (yt) imply that the solution to the cost minimization

problem (8) satisfies Ea
[∫∞

0 re−rs(ct+s − yt+s)ds|Ft

]

≥ 0, ∀t ≥ 0.

(ii) Let us define C̃(W, y) for any y and W ≥ V (y) as follows:

C̃(W, y) = min
(a,c)

E
a

[
∫ ∞

0
re−rt(ct − yt)dt

]

(27)

subject to W0 =W, (28)

(a, c) is incentive compatible, (29)

E
a

[
∫ ∞

0
re−rs(ct+s − yt+s)ds|Ft

]

≥ 0, ∀t ≥ 0, (30)

where the process {yt; t ≥ 0} starts from the initial condition y0 = y. We now show that

C(W, y) = C̃(W, y) ∀y, ∀W ≥ V (y). Since the solution to (8) satisfies (30), C(W, y) ≥

C̃(W, y) ≥ 0. This implies C̃(V (y), y) = 0. If W > V (y), denote the contract attaining

the solution to (27) as σ̃. Define λ ≡ min{t : Wt = V (yt)}. Then a contract σ that is

equal to σ̃ on [0, λ) but switches to the market contract at λ has the same cost as σ̃, as

both the market contract and the tail of σ̃ have zero cost starting at λ. Since σ satisfies

(3), it is feasible in (8). Hence C(W, y) ≤ C(σ) = C(σ̃) = C̃(W, y).

(iii) If a contract (a, c) delivers utility W , then (a, c+ x) delivers We−x for any x ∈ R. This

is because W = E
a
[∫∞

0 re−rtU(ct, at)dt
]

if and only if

We−x = e−x
E
a

[
∫ ∞

0
re−rtU(ct, at)dt

]

= E
a

[
∫ ∞

0
re−rtU(ct + x, at)dt

]

.

(iv) The incentive compatibility of (a, c) is equivalent to the incentive compatibility of (a, c+

x). In fact, the incentive compatibility of (a, c) requires that E
a
[∫∞

0 U(ct, at)dt
]

≥

E
b
[∫∞

0 U(ct, bt)dt
]

for any deviation strategy b, which is equivalent to

E
a

[
∫ ∞

0
U(ct + x, at)dt

]

≥ E
b

[
∫ ∞

0
U(ct + x, bt)dt

]

.
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(v) We now verify that C̃(W, y) = C̃(Wey, 0). Suppose (a, c) solves the problem in C̃(W, y).

We verify that (a, c − y) is feasible in the minimization problem defining C̃(Wey, 0).

First, parts (iii) and (iv) imply that (a, c − y) delivers utility Wey and is incentive

compatible. Second, if y = {yt; t ≥ 0} starts with the initial condition y0 = y and

E
a
[∫∞

0 re−rs(ct+s − yt+s)ds|Ft

]

≥ 0, then y0 = {y0t ; t ≥ 0} defined as y0t = yt − y ∀t

starts with the initial condition y00 = 0, and

E
a

[
∫ ∞

0
re−rs(ct+s − y − y0t+s)ds|Ft

]

= E
a

[
∫ ∞

0
re−rs(ct+s − y − (yt+s − y))ds|Ft

]

≥ 0.

Hence (a, c − y) satisfies (30) in C̃(Wey, 0) and so it is a feasible contract in this mini-

mization problem.

Feasibility of (a, c− y) in this problem implies that

C̃(Wey, 0) ≤ E
a

[
∫ ∞

0
re−rt(ct − y − y0t )dt

]

= E
a

[
∫ ∞

0
re−rt(ct − yt)dt

]

= C̃(W, y).

By a symmetric argument, we can show C̃(Wey, 0) ≥ C̃(W, y). Thus, C̃(W, y) = C̃(Wey, 0),

which by part (ii) implies (13).

(vi) To show V (y) = V (0)e−y, suppose the equality does not hold. If V (0)e−y > V (y),

then 0 = C(V (0), 0) = C(V (0)e−y, y) > C(V (y), y) = 0, which is a contradiction. If

V (0) < V (y)ey, then 0 = C(V (0), 0) < C(V (y)ey, 0) = C(V (y), y) = 0, which is again a

contradiction.

(vii) If (a, c) is optimal in the contracting problem for C(y, V (y)) defined in (8), then (a, c−y)

is optimal in the contracting problem for C(0, V (0)). We first show that it is feasible in

this problem. Parts (iii) and (iv) imply that the candidate contract (a, c− y) is incentive

compatible and delivers utility V (y)ey = V (0). The candidate contract satisfies the

quitting constraint (3) because

E
a

[
∫ ∞

0
re−rsU(ct+s − y, at+s)ds |Ft

]

= exp(y)Ea

[
∫ ∞

0
re−rsU(ct+s, at+s)ds |Ft

]

≥ exp(y)V (yt)

= V (yt − y)

= V
(

y0t
)

,

where, as before, the income process yt starts at y, and y0t = yt − y starts at 0. Thus,

the candidate contract (a, c − y) satisfies quitting, IC, and promise-keeping constraints,

and so it is feasible in the contracting problem in a match with a worker whose initial

productivity is 0 and whose market value is V (0).
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Next we show that the candidate contract (a, c− y) attains 0 = C(0, V (0)), and hence is

optimal in this problem:

E
a

[
∫ ∞

0
re−rt((ct − y)− y0t )dt

]

= E
a

[
∫ ∞

0
re−rt(ct − y − (yt − y))dt

]

= E
a

[
∫ ∞

0
re−rt(ct − yt)dt

]

= 0.

�

Proof of Proposition 2

We first show that

JFC(S) = JFC(0) + S, for all S ∈ R. (31)

Indeed, if an IC contract (a, c) delivers to the worker initial utility VFC(0), then for any S ∈ R

the contract (a, c + S) is also IC and delivers to the worker initial utility VFC(0) exp(−S) =

VFC(S). Hence, for any y, the principal’s cost function under full commitment satisfies CFC(

VFC(S), y) = CFC(VFC(0), y)+S. Setting y = 0 in this equality and using definition JFC(S) =

CFC(VFC(S), 0), we obtain JFC(S) = JFC(0) + S.

Substituting (31) into the HJB equation (21) and using J ′
FC = 1 and J ′′

FC = 0, we obtain

r (St + JFC(0)) = rSt − r log(−VFC(0)) + min
ût,Ŷt

{

r(− log(−ût)) + r (−1− ût) +
1

2
Ŷ 2
t − ah

}

.

Canceling rSt on both sides, we obtain a static minimization problem (controls do not change

over time) determining the value of JFC(0)

rJFC(0) = −r log(−VFC(0)) + min
û,Ŷ≥−ûβ

{

r(− log(−ût)) + r (−1− û) +
1

2
Ŷ 2 − ah

}

. (32)

Since the value minimized is quadratic in Ŷ and −ûβ > 0, the IC constraint will bind and

optimal Ŷ = −ûβ, which implies (24). The optimal û solves the convex problem

min
û

{

−r log(−û) + r (−1− û) +
1

2
(−û)2 β2

}

.

The first-order condition of this problem is a quadratic function in (−û) given by

−1 + (−û) + r−1β2 (−û)2 = 0, (33)

with a single positive root

−û =

√

1 + 4r−1β2 − 1

2r−1β2
.
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This root is in Proposition 2 denoted by ρ. Because 0 <
√
1+4x−1
2x < 1 for all x > 0, we have

that 0 < ρ < 1. Substituting −û = ρ and Ŷ = ρβ into (32) yields

rJFC(0) = −r log(−VFC(0))− r log(ρ) + r (−1 + ρ) +
1

2
ρ2β2 − ah. (34)

To confirm that high effort is always optimal, note that the value of JFC(0) under low effort

would be determined by

rJFC(0) = −r log(−VFC(0)) + min
û,Ŷ≤−ûβ

{

r(− log(−û)) + r (−1− ûtφ) +
1

2
Ŷ 2 − al

}

, (35)

where the optimal Ŷ = 0 and the optimal û solves minû {−r log(−û) + r (−1− ûφ)}, which has

a unique solution −û = φ−1. This implies that JFC(0) under low effort would be

rJFC(0) = −r log(−VFC(0))− r log(φ−1)− al.

Thus, high effort is optimal if and only if −r log(φ−1)−al ≥ −r log(ρ)+r (−1 + ρ)+ 1
2ρ

2β2−ah.

To prove this inequality, note that Assumption 1 implies β < σ and

ah − al − r log(φ−1) ≥
1

2
βσ ≥

1

2
β2 =

(

−r log(−û) + r (−1− û) +
1

2
(−û)2 β2

)∣

∣

∣

∣

û=−1

≥ −r log(ρ) + r (−1 + ρ) +
1

2
ρ2β2.

We next show (23). From u(ct)/Wt = −û = ρ, we have − exp(−ct) = Wtρ, which gives us

that dct = −d log(−Wt) = d(St + yt). Recalling (20), or using Ito’s lemma again, we have

dct =

(

r (−1− û) +
1

2
Ŷ 2

)

dt+ Ŷ dwa
t

= −

(

r (1− ρ)−
1

2
(ρβ)2

)

dt+ ρβdwa
t

= −µdt+ ρβdwa
t ,

where the second line uses optimal controls −û = ρ and Ŷ = ρβ, and the third line uses the

definition of µ in Proposition 2. To see that µ > 0 note that r(1−ρ)− 1
2(ρβ)

2 > r(1−ρ)−(ρβ)2 =

0, where the equality follows from (33). To obtain initial consumption c0, note that JFC(0) = 0

in equilibrium. This and (34) imply that

r (log(−VFC(0)) + log(ρ)) = r (−1 + ρ) +
1

2
ρ2β2 − ah = −µ− ah.

From − exp(−c0) =W0ρ = VFC(y0)ρ = VFC(0)e
−y0ρ we have

c0 = y0 − (log(−VFC(0)) + log(ρ)) = y0 +
µ+ ah
r

.

Solving dct = −µdt+ ρβdwa
t with this initial condition yields (23). �
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Proof of Proposition 3

We know from Grochulski and Zhang (2011) that the optimal compensation at time t is

given by ct = u−1(ū(mt)), where ū is a strictly increasing function given by

ū(y) = VFI(y)−
V ′
FI(y)

limε↓0
d
dε

(1− E
ah
y [e−rτy+ε ])

,

with τy+ǫ denoting the hitting time of the level y + ǫ. Because yt is a Brownian motion with

drift ah, we know that E
ah
y [e−rτy+ε ] = e−κε. Thus, limε↓0

d
dε

(1− E
ah [e−rτy+ε ]) = κ and the

function ū is given by ū(y) = VFI(y) −
−VFI(y)

κ
=
(

1 + 1
κ

)

VFI(y) = u(y)
(

1 + 1
κ

)

(−VFI(0)).

Therefore, optimal compensation satisfies u(ct) = u(mt)
(

1 + 1
κ

)

(−VFI(0)). Applying u−1 to

both sides, we obtain ct = mt − log
(

1 + 1
κ

)

− log(−VFI(0)). From JFI(0) = 0 we can compute

log(−VFI(0)) = log
(

κ
κ+1

)

+ κσ2

2r , which gives us (25).

As in Grochulski and Zhang (2011), the worker’s continuation value process satisfies

Wt =
(

1− e−κ(mt−yt)
)

ū(mt) + e−κ(mt−yt)VFI(mt) =

(

1 +
1− e−κ(mt−yt)

κ

)

VFI(mt),

from which we can compute the volatility of Wt as −VFI(mt)e
−κ(mt−yt)σ, which, with u(ct) =

VFI(mt)
(

1 + 1
κ

)

gives us (26). �

Proof of Corollary 1

The proof follows immediately from (26). We only need to check that δ > 0, or κσ
κ+1 > β.

Indeed,

κσ

κ+ 1
>
rσ log(φ−1)

ah − al
>
rσ(1− φ)

ah − al
= β,

where the first inequality follows from Assumption 1. �

Preliminary analysis of the HJB equation

Below, we will often use û, Ŷ , J ′ and J ′′ as shorthand notations for û(S), Ŷ (S), J ′(S) and

J ′′(S), respectively.

Lemma A.1 The IC constraint is slack if and only if σJ ′J ′′

J ′+J ′′ ≥ β. When it is slack,

Ŷ =
σJ ′′

J ′ + J ′′ , (36)

û = −J ′−1. (37)
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Proof The first-order conditions for Ŷ and û are

Ŷ ≥
σJ ′′

J ′ + J ′′ , û ≥ −J ′−1,

with equalities if the IC constraint is slack. Thus, if the IC constraint is slack, then (36) and

(37) hold, and Ŷ ≥ −ûβ implies β ≤ Ŷ
−û

= σJ ′J ′′

J ′+J ′′ . If the IC constraint binds, then Ŷ > σJ ′′

J ′+J ′′

and û > −J ′−1, and thus Ŷ = −ûβ implies β = Ŷ
−û

> σJ ′J ′′

J ′+J ′′ . �

Let H (S, J ′, J ′′) denote the right-hand side of the HJB equation (21), that is

H (S, J ′, J ′′) ≡ min
û,Ŷ ,

Ŷ ≥−ûβ

r(S − log(−V (0))− log(−û))

+J ′
(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+
1

2
J ′′(Ŷ − σ)2, (38)

where J ′ and J ′′ are scalars. Whenever H (S, J ′, J ′′) is invertible in J ′′, we may rewrite the

HJB equation as a second-order ordinary differential equation (ODE)

J ′′(S) = H
−1(S, J, J ′). (39)

We study the invertibility of H (S, J ′, ·) next.

Lemma A.2 If J ′ ≥ κ
κ+1 , then at any J ′′ ∈ [0,∞) the function H (S, J ′, J ′′) is strictly in-

creasing in J ′′, and

Ŷ < σ. (40)

Proof The Envelope theorem states that ∂H

∂J ′′ =
1
2(Ŷ − σ)2, which implies that H (S, J ′, J ′′)

strictly increases in J ′′ whenever Ŷ 6= σ. It is then sufficient to show (40). Indeed, if the IC

constraint is slack, then Ŷ = σJ ′′

J ′+J ′′ < σ. If the IC constraint binds, then

Ŷ = −ûβ < βJ ′−1 ≤
r(1− φ)σ

(ah − al)
κ

κ+1

<
r(1− φ)σ

r log(φ−1)
< σ, (41)

where the inequalities follow from −û < J ′−1, J ′ ≥ κ
κ+1 , Assumption 1, and 1−φ

log(φ−1)
< 1. �

Lemma A.2 allows us to define the ODE (39) in the region

D ≡

{

(S, J, J ′) ∈ R
3 : H (S, J ′, 0) ≤ rJ ≤ H (S, J ′,∞) and J ′ ≥

κ

κ+ 1

}

.

Next we derive an explicit functional form for H −1(S, J, J ′) when the IC constraint is slack.

Lemma A.3 If the IC constraint is slack, then

J ′′ =

(

σ2/2

r(J − S + log(−V (0))− log(J ′)− 1) + (r + ah)J ′ −
1

J ′

)−1

. (42)
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Proof If the IC constraint is slack, substituting (36) and (37) into the HJB equation yields

rJ = rS − r log(−V (0)) + r log(J ′) + J ′

(

r

(

−1 +
1

J ′

)

+
1

2

(

σJ ′′

J ′ + J ′′

)2

− ah

)

+
1

2
J ′′
(

σJ ′′

J ′ + J ′′ − σ

)2

,

which simplifies to

rJ = rS − r log(−V (0)) + r log(J ′)− rJ ′ + r − ahJ
′ +

1

2
σ2

J ′J ′′

J ′ + J ′′ .

Solving for J ′′ in the above yields (42). �

The next lemma studies the HJB equation at the boundary S = 0. Let α(St) and ζ(St)

denote the drift and the volatility of St given in (20) evaluated at optimal controls û(St) and

Ŷ (St).

Lemma A.4 In the model with two frictions,

(i) κ
κ+1 ≤ J ′(0) ≤ r

r+ah− 1
2
σ2 and 0 ≤ α(0) ≤ 1

2(κ+ 1)σ2,

(ii) J ′′(0) = ∞ and ζ(0) = 0,

(iii) the IC constraint is slack when the quitting constraint binds.

Proof That α(0) ≥ 0 and ζ(0) = 0 follow from the nonnegativity of St at all t. In particular,

ζ(0) 6= 0 would imply St < 0 shortly after St = 0 because a typical Brownian motion sample path

has infinite variation. From the law of motion (19) we have that α(0) = r (−1− û(0))+ 1
2σ

2−ah

and ζ(0) = Ŷ (0)− σ.

(i) First, to show κ
κ+1 ≤ J ′(0), by contradiction, suppose J ′(0) < κ

κ+1 = J ′
FI(0). Then

rJFI(0) + r log(−VFI(0))

= min
û
r(− log(−û)) + J ′

FI(0)

(

r(−1− û)− ah +
1

2
σ2
)

= r log

(

κ+ 1

κ

)

+ J ′
FI(0)

(

r(−1 +
κ+ 1

κ
)− ah +

1

2
σ2
)

> r log

(

κ+ 1

κ

)

+ J ′(0)

(

r(−1 +
κ+ 1

κ
)− ah +

1

2
σ2
)

≥ min
−ûβ≤σ

r(− log(−û)) + J ′(0)

(

r(−1− û)− ah +
1

2
σ2
)

= rJ(0) + r log(−V (0)),

where the first inequality follows from
(

r(−1 + κ+1
κ

)− ah +
1
2σ

2
)

> 0, and the second

inequality follows from κ+1
κ
β < σ. Because JFI(0) is the minimum cost to deliver utility
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VFI(0) under one friction (limited commitment), the scalability in Proposition 1 implies

that JFI(0) + log(−VFI(0)) − log(−V (0)) is the minimum cost to deliver utility V (0)

under one friction, which must be lower than J(0), the cost to deliver the same utility

V (0) under two frictions. This contradicts the above inequality.

Second, since part (iii) shows that the IC constraint is slack, it follows from Lemma A.1

that −û = J ′−1. Under this condition, J ′(0) ≤ r

r+ah− 1
2
σ2 is equivalent to r (−1− û(0)) +

1
2σ

2 − ah = α(0) ≥ 0. Further, under −û = J ′−1, κ
κ+1 ≤ J ′(0) is equivalent to

r (−1− û(0)) + 1
2σ

2 − ah ≤ r
(

−1 + κ+1
κ

)

+ 1
2σ

2 − ah = 1
2(κ+ 1)σ2.

(ii) Suppose J ′′(0) < ∞ so that the assumptions of Lemma A.2 are met. But then (40)

contradicts ζ(0) = Ŷ (0)− σ = 0.

(iii) It follows from Assumption 1 and J ′′(0) = ∞ that β = rσ(1−φ)
ah−al

< rσ log(φ−1)
ah−al

< σ = σJ ′J ′′

J ′+J ′′ .

By Lemma A.1, thus, the IC constraint is slack when St = 0.

�

Discussion. It is useful to briefly discuss the intuition behind Lemma A.4. As in the model

with full information, the binding quitting constraint at St = 0 forces the firm to match the

volatility of the worker’s continuation value to that of her outside option, which implies that

ζ(0) = 0. This, in turn, is consistent with the firm’s cost minimization if and only if the firm is

infinitely averse to volatility in St at zero, hence J
′′(0) = ∞.

Because the firm matches the worker’s continuation value volatility to her outside value

volatility, the firm provides no insurance to the worker at St = 0. Because providing insurance

is only feasible when St > 0, the firm induces a positive drift in St at St = 0 in order to be able

to provide insurance. Comparing part (i) of Lemma A.4 with part (i) of Lemma B.1, however,

we see that the firm’s aversion to drift in the state variable, represented by the first derivative

of the cost function, is larger in the two-friction model than in the full-information model.

Accordingly, the positive drift in St at zero is smaller here than in the full-information model.

This difference is due to the cost of future incentives. Part (iii) of Lemma A.4 shows that the

IC constraint is slack when the quitting constraint binds. But we know from our analysis of the

full-commitment model in Section 3 that the IC constraint binds when the quitting constraint

is completely absent. Since the equilibrium contract in the two-friction model approximates the

equilibrium contract of the full-commitment model when St is large, the IC constraint will bind

in the two-friction model at St large enough. Inducing a positive drift in St in the two-friction

model, therefore, has the disadvantage of making it more likely that the quitting constraint

becomes sufficiently slack for the IC constraint to bind. This disadvantage is absent in the

full-information model. The expected cost of future incentives, thus, makes positive drift in St

more costly to the firm in the two-friction model, which is reflected in the firm’s higher drift
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aversion J ′(0) ≥ J ′
FI(0) and lower drift of St at zero, as shown in part (i) of Lemma A.4.30

Closely related is the intuition for why the IC constraint is slack when the quitting constraint

binds. Corollary 1 shows that the IC constraint is slack at St = 0 in the full-information model.

This and the fact that the firm has a higher drift aversion in the two-friction model imply that

the IC constraint must also be slack at St = 0 in the two-friction model. Indeed, a smaller drift

in St at zero implies that the worker in the two-friction model receives a higher utility flow ût.

Since the volatility of St is zero at St = 0, the normalized, market-induced sensitivity of the

worker’s continuation value, Ŷt, must equal σ in both models. With higher ût and the same Ŷt,

the IC constraint is more slack in the two-friction model than in the full-information model.

Proof of Theorem 1

The proof is organized into three lemmas: Lemma A.5, Lemma A.9 and Lemma A.10. Three

auxiliary lemmas are also proved: Lemma A.6, Lemma A.7 and Lemma A.8.

We start out by noting that because J ′′(0) = ∞, the HJB equation at S = 0 reduces to

J(0) = − log(−V (0)) + log(J ′(0)) + 1− J ′(0)
r + ah −

1
2σ

2

r
.

Treating the right-hand side of this equation as a function of J ′(0), denote its value by h(J ′(0)).

Lemma A.4 now implies a range of possible values for J(0), J ′(0) and J ′′(0) given by
(

J(0),

J ′(0), J ′′(0)
)

= (h(J ′(0)), J ′(0),∞) for J ′(0) ∈
[

κ
κ+1 ,

r

r+ah− 1
2
σ2

]

. Thus, the knowledge of J ′(0)

would be sufficient to pinpoint the values for J(0) and J ′′(0). Not knowing J ′(0), however, we

will proceed as follows. Denote by K(S) the function solving the HJB equation starting from

an initial condition K ′(0) ∈
[

κ
κ+1 ,

r

r+ah− 1
2
σ2

]

. This gives us a set of candidate solution curves

K(S), one for each starting value K ′(0) ∈
[

κ
κ+1 ,

r

r+ah− 1
2
σ2

]

. The true cost function J has to

coincide with one of these curves. The asymptotic condition limS→∞ J ′(S) = 1 = J ′
FC(S) will

determine which of the candidate solution curves represents the true cost function J .

In order to carry out this program, we need to first show that the solution to the HJB

equation (42) exists in the neighborhood of zero despite the fact that the HJB does not satisfy

the Lipschitz condition at S = 0 (because J ′′(0) = ∞).

Lemma A.5 The HJB equation has a unique candidate solution K in a neighborhood of S =

0 with the boundary condition (K(0),K ′(0),K ′′(0)) = (h(K ′(0)),K ′(0),∞) for any K ′(0) ∈
(

κ
κ+1 , B

)

, where

B =

{

1, if ah <
1
2σ

2,
r

r+ah− 1
2
σ2 , if ah ≥ 1

2σ
2.

30Although conditions in part (i) of Lemma A.4 are given as weak inequalities, we show later that they are

actually strict. Intuitively, the cost of future incentives is strictly positive because the IC constraint binds with

strictly positive probability in equilibrium.
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Proof Use a change of variable: define x ≡ K ′(S) and interpret both S and K as functions of

x. Since dS
dx

= 1
K′′(S) and dK

dx
= dK

dS
dS
dx

= x
K′′(S) , we have the differential equation system

dS

dx
=

1

2σ−2 (r(K − S + log(−V (0))− log(x)− 1) + x (r + ah))
−

1

x
,

dK

dx
=

x

2σ−2 (r(K − S + log(−V (0))− log(x)− 1) + x (r + ah))
− 1.

The solution exists and is unique in a neighborhood of (x, S,K) = (K ′(0), 0, h(K ′(0))) because

the local Lipschitz condition is satisfied. When x is close to K ′(0), S and K both strictly

increase in x because

dS

dx

∣

∣

∣

∣

x=K′(0)

= 0,

dK

dx

∣

∣

∣

∣

x=K′(0)

= x
dS

dx

∣

∣

∣

∣

x=K′(0)

= 0,

d2S

dx2

∣

∣

∣

∣

x=K′(0)

=
2σ−2

(

r
x
− r − ah

)

K ′(0)2
+

1

x2
=

2σ−2
(

r
K′(0) − r − ah +

1
2σ

2
)

K ′(0)2
> 0,

d2K

dx2

∣

∣

∣

∣

x=K′(0)

=
dS

dx

∣

∣

∣

∣

x=K′(0)

+ x
d2S

dx2

∣

∣

∣

∣

x=K′(0)

> 0.

Because the IC constraint is slack at S = 0 and K′K′′

K′+K′′ = x

x 1
K′′+1

= x
xS′(x)+1 is a continuous

function of x, the IC constraint remains slack in a neighborhood of x = K ′(0). �

We can now move on to studying global properties of candidate solutions to the HJB

equation. For a given candidate solution K, define

S̄ ≡ min
S

{

S > 0 : K ′(S) = 1 or K ′′(S) = 0 or K ′′(S) = ∞
}

,

with min ∅ = ∞.

The next three lemmas are auxiliary and will be used later.

Lemma A.6 If S̄ <∞ and K ′′(S̄) = 0, then K ′(S̄) < 1.

Proof By contradiction, suppose K ′′(S̄) = 0 and K ′(S̄) = 1. Then the function K(·) that

satisfies K(S) = K(S̄) + S − S̄ for all S solves the HJB equation. This violates the condition

that K ′′(0) = ∞. �

Lemma A.7 If K is a candidate solution with S̄ <∞ and K ′′(S̄) = ∞, then r(−1− û(S̄)) +
1
2σ

2 − ah < 0.

Proof By contradiction, suppose r(−1− û(S̄))+ 1
2σ

2−ah ≥ 0. The HJB equation at S = S̄ is

rK(S̄) = r(S̄ − log(−V (0))− log(−û(S̄))) +K ′(S̄)

(

r(−1− û(S̄)) +
1

2
σ2 − ah

)

.
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Because r(−1− û(S̄)) + 1
2σ

2 − ah ≥ 0 and K ′(S̄) > K ′(0),

rK(S̄) ≥ r(S̄ − log(−V (0))− log(−û(S̄))) +K ′(0)

(

r(−1− û(S̄)) +
1

2
σ2 − ah

)

≥ rS̄ +min
û
r(− log(−V (0))− log(−û)) +K ′(0)

(

r(−1− û) +
1

2
σ2 − ah

)

= rS̄ + rK(0),

where the equality follows from the HJB equation at S = 0. This contradicts the fact that

K ′(S) < 1 for all S ∈ [0, S̄]. �

Lemma A.8 If K is a candidate solution with S̄ = ∞, then limS→∞K ′(S) = 1.

Proof Suppose by contradiction G ≡ limS→∞K ′(S) 6= 1. Since K ′(S) < 1 for all S, G < 1.

Then

0 > rK(S)− r(K(0) +GS)

= min
û,Ŷ

{

r(S − log(−V (0))− log(−û)) +K ′(S)

(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+
1

2
K ′′(S)(Ŷ − σ)2

}

− r(K(0) +GS)

≥ r(1−G)S +min
û
r(− log(−V (0))− log(−û)) +K ′(S) (r(−1− û)− ah)− rK(0)

→ ∞, as S → ∞.

This is a contradiction. �

We now move on to two key lemmas of this proof.

Lemma A.9 There exists a unique K ′(0) ∈ ( κ
κ+1 , B) such that the candidate solution K sat-

isfies S̄ = ∞.

Proof Existence: Suppose by contradiction that all candidate solutions have S̄ < ∞. The

rest of the proof proceeds in several steps.

(i) The solution curves starting with different K ′(0) are ordered: higher K ′(0) leads to per-

manently higher solution curves. Suppose there are two curves K1 and K2 with ini-

tial conditions K1(0) < K2(0) and K ′
1(0) < K ′

2(0), then K ′
1(S) < K ′

2(S) for all S ∈

[0,min{S̄1, S̄2}]. If not, define S ≡ min{S : K ′
1(S) = K ′

2(S)}. Because K ′
1(S) < K ′

2(S)

for all S ≤ S, K1(S) < K2(S). Hence the HJB equation and K ′
1(S) = K ′

2(S) imply

that K ′′
1 (S) < K ′′

2 (S), which means that K ′
1(S) > K ′

2(S) when S − S > 0 is small. This

contradicts the definition of S.
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(ii) Define

U ≡ {K ′(0) : S̄ <∞, either K ′(S̄) = 1 or K ′′(S̄) = ∞},

L ≡ {K ′(0) : S̄ <∞,K ′′(S̄) = 0}.

It follows from Lemma A.6 that U ∩ L = ∅. We show below that both U and L are

nonempty and open, which generates a contradiction because ( κ
κ+1 , B) = U ∪ L is a

connected set.

(iii) U is open. Take a K ′(0) ∈ U . We will show that there exists a δ > 0 such that if

|K ′
1(0) −K ′(0)| ≤ δ, then K ′

1(0) ∈ U . Since K ′(0) ∈ U , S̄ < ∞. Two cases need to be

considered: K ′(S̄) = 1, and K ′′(S̄) = ∞. In the first case, because K ′′(S̄) > 0, there

exists a small ǫ > 0 such that K ′(S̄ + ǫ) > 1. Because the solution of a differential

equation depends continuously on its initial condition, there exists a small δ > 0, such if

|K ′
1(0)−K ′(0)| ≤ δ, then

K ′
1(S̄ + ǫ) > 1, (43)

sup
S∈[0,S̄+ǫ]

∣

∣

∣

∣

1

K ′′
1 (S)

∣

∣

∣

∣

< ∞. (44)

Inequality (43) implies S̄1 < S̄+ǫ. It follows from (44) that K ′′
1 (S̄1) > 0, hence K ′

1(0) /∈ L.

Thus, K ′
1(0) ∈ U .

In the second case, recall that the HJB equation is solved by a change of variable whenever

K ′′(S) = ∞. Then

dS

dx

∣

∣

∣

∣

x=K′(S̄)

= 0,
d2S

dx2

∣

∣

∣

∣

x=K′(S̄)

=
2σ−2

(

r(−1− û)− ah +
1
2σ

2
)

x2
< 0,

where the inequality follows from Lemma A.7. Hence there exists a small ǫ > 0 such that
dS
dx
|x=K′(S̄)+ǫ < 0. Because the solution of a differential equation depends continuously on

its initial condition, there exists a small δ > 0 such that if |K ′
1(0)−K ′(0)| ≤ δ, then

dS1
dx

∣

∣

∣

∣

x=K′(S̄)+ǫ

< 0, (45)

sup
S∈[0,S1(K′(S̄)+ǫ)]

∣

∣

∣

∣

1

K ′′
1 (S)

∣

∣

∣

∣

= sup
x∈[K′

1(0),K
′(S̄)+ǫ]

∣

∣

∣

∣

dS1
dx

∣

∣

∣

∣

<∞. (46)

Inequality (45) implies S̄1 < S1(K
′(S̄) + ǫ). It follows from (46) that K ′′

1 (S̄1) > 0, hence

K ′
1(0) /∈ L. Thus, K ′

1(0) ∈ U .

(iv) L is open. Recall from Lemma A.6 that if K ′(0) ∈ L, then K ′′(S̄) = 0 and K ′(S̄) < 1.

Differentiating the HJB equation and applying the Envelope theorem yield

0 = r +K ′′
(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+
1

2
K ′′′(σ − Ŷ )2 − rK ′.
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Hence K ′′(S̄) = 0 and K ′(S̄) < 1 imply

1

2
K ′′′(S̄)(σ − Ŷ )2 = r(K ′ − 1)−K ′′

(

r(−1− û) +
1

2
Ŷ 2 − ah

)

< 0.

Therefore K ′′′(S̄) < 0 and there exists a small ǫ > 0 such that K ′′(S̄ + ǫ) < 0.

Pick a small ǫ1 > 0, such that K ′(ǫ1) satisfies r(−1 + 1
K′(ǫ1)

) + 1
2σ

2 − ah > 0. Recall

that the HJB equation is solved in a neighborhood of S = 0 by a change of variable.

For convenience, we denote the solution for an initial condition K ′
1(0) by S1(x) when

x ∈ [K ′(0),K ′(ǫ1)]. Because the solution of a differential equation depends continuously

on its initial condition, there exists a small δ > 0, such that if |K ′
1(0)−K ′(0)| ≤ δ, then

K ′′
1 (S̄ + ǫ) < 0, (47)

sup
S∈[0,S̄+ǫ]

∣

∣K ′
1(S)

∣

∣ < 1, (48)

sup
S∈[S1(K′(ǫ1)),S̄+ǫ]

∣

∣K ′′
1 (S)

∣

∣ < ∞. (49)

Inequality (47) implies S̄1 < S̄ + ǫ. If S̄1 ∈ (0, S1(K
′(ǫ1))] (i.e., K ′

1(S̄1) ≤ K ′(ǫ1)),

because r(−1 + 1
K′

1(S̄1)
) + 1

2σ
2 − ah > 0, Lemma A.7 implies that K ′′

1 (S̄1) < ∞. If S̄1 ∈

[S1(K
′(ǫ1)), S̄ + ǫ], (49) implies that K ′′

1 (S̄1) <∞. It follows from (48) and K ′′
1 (S̄1) <∞

that K ′
1(0) /∈ U . Hence K ′

1(0) ∈ L if |K ′
1(0)−K ′(0)| ≤ δ.

(v) L 6= ∅. We will show that κ
κ+1 ∈ L. By contradiction, suppose κ

κ+1 ∈ U . That is, if

K ′(0) = κ
κ+1 , then either K ′(S̄) = 1 or K ′′(S̄) = ∞. The HJB equations for JFI and K

imply that if JFI(S) + log(−VFI(0)) ≥ K(S) + log(−V (0)) and J ′
FI(S) = K ′(S), then

J ′′
FI(S) ≥ K ′′(S). Hence, the same argument as in part (i) shows that J ′

FI(S) ≥ K ′(S)

for all S ≤ S̄. It follows from J ′
FI(S) < 1, ∀S that K ′(S̄) < 1 and K ′′(S̄) = ∞. A

contradiction arises as follows.

rJFI(S̄) + r log(−VFI(0))

= min
û,Ŷ

r(S̄ − log(−û)) + J ′
FI(S̄)

(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+
1

2
J ′′
FI(S̄)(Ŷ − σ)2

< min
û
r(S̄ − log(−û)) + J ′

FI(S̄)

(

r(−1− û) +
1

2
σ2 − ah

)

≤ r(S̄ − log(−û(S̄))) + J ′
FI(S̄)

(

r(−1− û(S̄)) +
1

2
σ2 − ah

)

,

where û(S̄) = −(K ′(S̄))−1 is the optimal û at S̄ for K(S̄). Because J ′
FI(S̄) ≥ K ′(S̄) and

r(−1− û(S̄)) + 1
2σ

2 − ah < 0 (shown by Lemma A.7),

r(S̄ − log(−û(S̄))) + J ′
FI(S̄)

(

r(−1− û(S̄)) +
1

2
σ2 − ah

)

≤ r(S̄ − log(−û(S̄))) +K ′(S̄)

(

r(−1− û(S̄)) +
1

2
σ2 − ah

)

= rK(S̄) + r log(−V (0)),
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which is a contradiction as JFI(0) + log(−VFI(0)) = K(0) + log(−V (0)) and J ′
FI(S) ≥

K ′(S) imply JFI(S̄) + log(−VFI(0)) ≥ K(S̄) + log(−V (0)).

(vi) U 6= ∅. First, suppose ah <
1
2σ

2. If 1 − K ′(0) > 0 is sufficiently small, then K(·) will

reach K ′ = 1. Second, suppose ah ≥ 1
2σ

2. If K ′(0) = B, then we show that dS
dx
|x=B+ǫ < 0

for small ǫ > 0. To prove this, note that, similar to the proof in Lemma A.5,

dS

dx

∣

∣

∣

∣

x=K′(0)

= 0 =
dK

dx

∣

∣

∣

∣

x=K′(0)

,

d2S

dx2

∣

∣

∣

∣

x=K′(0)

=
2σ−2

(

r
K′(0) − r − ah +

1
2σ

2
)

K ′(0)2
= 0,

d2K

dx2

∣

∣

∣

∣

x=K′(0)

=
dS

dx

∣

∣

∣

∣

x=K′(0)

+ x
d2S

dx2

∣

∣

∣

∣

x=K′(0)

= 0.

The Taylor expansion of 2σ−2 (r(K − S + log(−V (0))− log(x)− 1) + x (r + ah)) is

K ′(0) + 2σ−2

(

r

(

dK

dx
−
dS

dx
−

1

x

)

+ (r + ah)

)

(x−K ′(0))

+2σ−2r

(

d2K

dx2
−
d2S

dx2
+

1

x2

)

(x−K ′(0))2 + o((x−K ′(0))2)

= x+
2σ−2r

(K ′(0))2
(x−K ′(0))2 + o((x−K ′(0))2) > x,

where the inequality holds when x−K ′(0) > 0 is small, since 2σ−2r
(K′(0))2

> 0. Therefore,

dS

dx

∣

∣

∣

∣

x=B+ǫ

=
1

2σ−2 (r(K − S + log(−V (0))− log(x)− 1) + x (r + ah))
−

1

x
< 0,

for small ǫ > 0. Because the solution of a differential equation depends continuously

on its initial condition, there exists a small δ > 0, such that if the initial condition

K ′
1(0) ∈ (B − δ, B), then

dS1
dx

∣

∣

∣

∣

x=B+ǫ

< 0, (50)

sup
S∈[0,S1(B+ǫ)]

∣

∣

∣

∣

1

K ′′
1 (S)

∣

∣

∣

∣

= sup
x∈[K′

1(0),B+ǫ]

∣

∣

∣

∣

dS1
dx

∣

∣

∣

∣

<∞. (51)

It follows from dS1
dx

|x=K′
1(0)

> 0 and (50) that dS1
dx

= 0 for some Ŝ ∈ (0, S1(B+ǫ)). Because
dS1
dx

= 1
K′′

1 (S)
, we know that K ′′

1 (Ŝ) = ∞. Hence S̄1 ≤ Ŝ must be finite. It follows from

(51) that K ′′
1 (S̄1) > 0, hence K ′

1(0) /∈ L and K ′
1(0) ∈ U .
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Uniqueness: By contradiction, suppose there are two initial conditions K ′
1(0) < K ′

2(0) with

S̄1 = S̄2 = ∞. Subtracting one HJB equation from the other yields

r(K2(S)−K1(S))

= min
û,Ŷ

{

−r log(−û) +K ′
2(S)

(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+
1

2
K ′′

2 (S)(Ŷ − σ)2
}

−min
û,Ŷ

{

−r log(−û) +K ′
1(S)

(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+
1

2
K ′′

1 (S)(Ŷ − σ)2
}

.

The left-hand side is positive at S = 0 and is strictly increasing with S, as shown in part (i) of

the proof of existence. Lemma A.8 implies that limS→∞K ′
1(S) = limS→∞K ′

2(S) = 1. For any

ǫ > 0, there exists a large S such that 0 < K ′′
1 (S) +K ′′

2 (S) < ǫ. Therefore, the right-hand side

can be made as small as needed if S is large. This is a contradiction. �

Lemma A.10 The candidate solution K with S̄ = ∞ is the true cost function J .

Proof Because the technique of using the HJB equation to verify the optimality of K is

standard, we omit the details of the steps involved. We verify two things:

(i) The cost of any IC contract is weakly higher than K(S).

(ii) There exists an IC contract whose cost equals K(S).

To see (i), pick an IC contract starting at S0 = S ≥ 0 and consider the stochastic process

{St; t ≥ 0} in this contract. Define

Mt ≡

∫ t

0
(cs − ys)re

−rsds+ e−rtK(St). (52)

The HJB equation implies that Mt is a submartingale (i.e., it has a nonnegative drift), hence

K(S) =M0 ≤ E [M∞] = E

[
∫ ∞

0
(cs − ys)re

−rsds

]

. (53)

To see (ii), construct a stochastic process {St; t ≥ 0} using S0 = S and the policy functions

implied by the HJB equation for K. Denote the contract generated by {St; t ≥ 0} and the

policy functions as σ∗. Then Mt defined in (52) is a martingale, and the inequality in (53) is

replaced with an equality. This shows that the cost of σ∗ is K(S). �

Proof of Proposition 4

We will show the existence of a unique S∗ > 0 such that

σJ ′J ′′

J ′ + J ′′











> β, if S < S∗,

= β, if S = S∗,

< β, if S > S∗.
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By Lemma A.1, this will show that the IC constraint is slack if and only if St < S∗.

Existence of S∗: We have shown in the proof of Lemma A.5 that σJ ′(S)J ′′(S)
J ′(S)+J ′′(S) > β when S is

small. If S∗ does not exist, then σJ ′(S)J ′′(S)
J ′(S)+J ′′(S) > β for all S. This implies that

σJ ′′(S) >
σJ ′(S)J ′′(S)

J ′(S) + J ′′(S)
≥ β, for all S,

which contradicts the fact that J ′(S) < 1 for all S.

Uniqueness of S∗: It is sufficient to show that if σJ ′(S∗)J ′′(S∗)
J ′(S∗)+J ′′(S∗) = β for some S∗, then

σJ ′(S)J ′′(S)
J ′(S)+J ′′(S) > β for S < S∗.

First, we show that if σJ ′J ′′

J ′+J ′′ ≥ β, then

rJ ′ + ah
J ′J ′′

J ′ + J ′′ < r. (54)

If ah ≤ 0, then (54) is obvious because J ′ < 1. When ah > 0, by contradiction, suppose that
σJ ′J ′′

J ′+J ′′ ≥ β and rJ ′ + ah
J ′J ′′

J ′+J ′′ ≥ r at some Ŝ. Starting from Ŝ, solve the differential equation

rJ = r(S − log(−V (0)) + log(J ′)) + J ′ (−r − ah) + r +
σ2

2

J ′J ′′

J ′ + J ′′ . (55)

Differentiating with respect to S in the above yields

σ2

2

d
(

J ′J ′′

J ′+J ′′

)

dS
= rJ ′ − r

(

1 +
J ′′

J ′

)

+ J ′′ (r + ah)

=
J ′ + J ′′

J ′

(

rJ ′ + ah
J ′J ′′

J ′ + J ′′ − r

)

≥ 0. (56)

Hence either
d
(

J′J′′

J′+J′′

)

dS
> 0, or

d
(

J′J′′

J′+J′′

)

dS
= 0. In the latter case, rJ ′ + ah

J ′J ′′

J ′+J ′′ − r = 0 and it

follows from J ′′ > 0 that
d2

(

J′J′′

J′+J′′

)

dS2 > 0. In both cases, there exists a small ǫ > 0 such that
J ′J ′′

J ′+J ′′ is strictly increasing in [Ŝ, Ŝ + ǫ]. Hence the solution J to (55) does satisfy the HJB

equation on [Ŝ, Ŝ + ǫ] and the IC constraint is slack. If we extend the solution beyond Ŝ + ǫ,
J ′J ′′

J ′+J ′′ is always strictly increasing, because J ′ is increasing and ah is positive in (56). Hence,

J ′′ >
J ′J ′′

J ′ + J ′′ >
J ′(Ŝ)J ′′(Ŝ)

J ′(Ŝ) + J ′′(Ŝ)
, for all S > Ŝ,

contradicting the fact that J ′(S) < 1 for all S.

Second, we show that σJ ′(S)J ′′(S)
J ′(S)+J ′′(S) > β for all S < S∗. Solve the differential equation (55)

backward on [0, S∗]. Equations (54) and (56) show that J ′(S)J ′′(S)
J ′(S)+J ′′(S) is strictly decreasing in S.

Hence the solution J to (55) does satisfy the HJB equation and the IC constraint is slack.
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This completes the proof of the second statement in Proposition 4. To prove the first

statement, we now show that both the drift and the volatility of compensation are zero when

S ≤ S∗.

It follows from û = u(c)
−W

and S = log(V (y)
W

) that

c = − log(−û)− log(−W ) = − log(−û) + S + y − log(−V (0)).

If S ≤ S∗, then −û = (J ′)−1, and c = log(J ′) + S + y− log(−V (0)). According to Ito’s lemma,

the drift of compensation is

J ′′

J ′

(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+ r(−1− û) +
1

2
Ŷ 2 +

1

2

J ′′′J ′ − J ′′2

J ′2 (Ŷ − σ)2

=
J ′′

J ′

(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+ r(−1− û) +
1

2
Ŷ 2 +

1

2

J ′′′

J ′ (Ŷ − σ)2 −
1

2

J ′′2

J ′2 (Ŷ − σ)2

=
J ′′

J ′

(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+ r(−1 +
1

J ′ ) +
1

2

J ′′′

J ′ (Ŷ − σ)2

=

(

J ′′
(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+ r +
1

2
J ′′′(Ŷ − σ)2 − rJ ′

)

J ′−1,

where the second equality follows from Ŷ = σJ ′′

J ′+J ′′ and Ŷ 2 = J ′′2

J ′2 (Ŷ − σ)2. Differentiating the

HJB equation with respect to S and applying the Envelope theorem yield

rJ ′ = r + J ′′
(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+
1

2
J ′′′(Ŷ − σ)2.

Therefore, the drift of compensation is zero. The volatility of compensation is

J ′ + J ′′

J ′ (Ŷ − σ) + σ =
J ′ + J ′′

J ′

(

−
J ′σ

J ′ + J ′′

)

+ σ = 0.

Verification of optimality of high effort

Lemma A.11 Under Assumption 1, it is optimal to implement high effort for all S ≥ 0.

Proof The law of motion for St under low effort is

dSt =

(

r (−1− ûtφ) +
1

2
Ŷ 2
t − al

)

+
(

Ŷt − σ
)

dwal
t .

To show that low effort is suboptimal, we need to verify that

min
û,Ŷ ,

Ŷ ≥−ûβ

r(− log(−û)) + J ′(S)

(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+
1

2
J ′′(S)(Ŷ − σ)2

≤ min
û,Ŷ ,

Ŷ ≤−ûβ

r(− log(−û)) + J ′(S)

(

r(−1− ûφ) +
1

2
Ŷ 2 − al

)

+
1

2
J ′′(S)(Ŷ − σ)2. (57)
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First, if S ≤ S∗, then the IC constraint Ŷ ≥ −ûβ is slack according to Proposition 4.

Inequality (57) is equivalent to

J ′(S)(ah − al) ≥ r log(φ−1),

which follows from J ′(S) ≥ J ′(0) > κ
κ+1 and Assumption 1.

Second, if S > S∗ (i.e., the IC constraint binds), then σJ ′J ′′

J ′+J ′′ ≤ β. We have

min
û,Ŷ ,

Ŷ ≥−ûβ

r(− log(−û)) + J ′
(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+
1

2
J ′′(Ŷ − σ)2

≤

(

r(− log(−û)) + J ′
(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+
1

2
J ′′(Ŷ − σ)2

)∣

∣

∣

∣

û=−1
J′ ,Ŷ= β

J′

=
(

r(− log(−û)) + J ′ (r(−1− û)− ah)
)∣

∣

û=−1
J′

+
1

2J ′2 (J
′β2 + J ′′(σJ ′ − β)2)

≤
(

r(− log(−û)) + J ′ (r(−1− û)− ah)
)∣

∣

û=−1
J′

+
1

2
βσ,

where the last inequality follows from σJ ′ ≥ rσ log(φ−1)
ah−al

≥ rσ(1−φ)
ah−al

= β and

βσJ ′2 − J ′β2 − J ′′(σJ ′ − β)2 = (σJ ′ − β)(J ′β − J ′′(σJ ′ − β))

= (σJ ′ − β)(J ′ + J ′′)

(

β −
σJ ′J ′′

J ′ + J ′′

)

≥ 0.

Furthermore,

(

r(− log(−û)) + J ′ (r(−1− û)− ah)
)∣

∣

û=−1
J′

+
1

2
βσ

≤ min
û
r(− log(−û)) + J ′ (r(−1− ûφ)− ah) + r log(φ−1) +

1

2
βσ

≤ min
û,Ŷ ,

Ŷ ≤−ûβ

r(− log(−û)) + J ′
(

r(−1− ûφ) +
1

2
Ŷ 2 − al

)

+
1

2
J ′′(Ŷ − σ)2

+J ′(−ah + al) + r log(φ−1) +
1

2
βσ

≤ min
û,Ŷ ,

Ŷ ≤−ûβ

r(− log(−û)) + J ′
(

r(−1− ûφ) +
1

2
Ŷ 2 − al

)

+
1

2
J ′′(Ŷ − σ)2,

where the last inequality follows from Assumption 1. Thus (57) is verified. �

Proof of Proposition 5

We start with the following auxiliary lemma:

Lemma A.12 J ′′′(S) < 0 for all S ≥ 0. Further, limS→∞ J ′′(S) = 0.
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Proof When S < S∗, recall that we have shown that J ′(S)J ′′(S)
J ′(S)+J ′′(S) = 1

1
J′(S)

+ 1
J′′(S)

is strictly

decreasing in S in the proof of Proposition 4 . Hence either J ′(S) or J ′′(S) must be strictly

decreasing. Since J ′(S) increases with S, J ′′(S) strictly decreases with S when S < S∗. If

J ′′(S) is not globally decreasing, then there is a S̄ ≥ S∗ at which J ′′′(S̄) = 0. When the IC

constraint binds at S > S∗, we have Ŷ = −ûβ and the HJB equation takes the form of

rJ(S) = rS − r log(−V (0))

+min
û

{

−r log(−û) + J ′(S)

(

r (−1− û) +
1

2
(−ûβ)2 − ah

)

+
1

2
J ′′(S) (−ûβ − σ)2

}

.

The first-order condition for the optimal û is

rc′(û) + J ′′(S)σβ = rJ ′(S) + (J ′(S) + J ′′(S))β2(−û). (58)

Because J ′ increases with S while J ′′ is stationary at S = S̄, equation (58) implies that (−û)

and Ŷ decrease with S, when S is close to S̄. Differentiating the HJB equation yields

0 = r + J ′′
(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+
1

2
J ′′′(σ − Ŷ )2 − rJ ′.

Because the term J ′′
(

r(−1− û) + 1
2 Ŷ

2 − ah

)

− rJ ′ decreases with S ∈ (S̄ − ǫ, S̄ + ǫ) for a

small ǫ, J ′′′(S) < 0 for S ∈ (S̄ − ǫ, S̄) and J ′′′(S) > 0 for S ∈ (S̄, S̄ + ǫ). Because of these two

inequalities, J ′′′ cannot be zero again for any S > S̄. That is, J ′′′ > 0 for all S > S̄. Then J ′′

increases with S and J ′ will reach one eventually, a contradiction. �

Now we can prove the proposition.

First, we show that (−û) and Ŷ decrease with S. If S ≤ S∗, then −û = 1
J ′(S) and Ŷ = σJ ′′

J ′+J ′′

decrease with S, because J ′ increases and J ′′ decreases with S. If S ≥ S∗, then (−û) and

Ŷ decrease with S, because in the first-order condition (58), J ′ increases and J ′′ decreases

with S, and σ > β(−û). Further, because limS→∞ J ′(S) = 1 and limS→∞ J ′′(S) = 0, the

first-order condition (58) approaches condition (33), which means that limS→∞(−û) = ρ and

limS→∞ Ŷ = ρβ.

Second, we show the properties of the drift and the volatility of S. That α(S) = r(−1 −

û)+ 1
2 Ŷ

2−ah and ξ(S) = Ŷ −σ are decreasing in S is because −û and Ŷ decrease with S. That

α(0) > 0 follows from Ŷ (0) = σ, −û(0) = 1
J ′(0) , and J ′(0) < r

r+ah− 1
2
σ2 in Lemma A.9. That

limSt→∞ α(St) = −µ − ah follows from limS→∞(−û) = ρ, limS→∞ Ŷ = ρβ, and the definition

of µ. That limS→∞ ζ(S) = ρβ − σ follows from limS→∞ Ŷ = ρβ. �

Proof of Theorem 2

First, plug optimal policies −ût = ρ and Ŷt = ρβ into (20) to obtain the equilibrium

dynamics of the state variable St in the full-commitment model:

dSt = − (µ+ ah) dt− (σ − ρβ) dwa
t . (59)
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Thus, by assumption we have

µ+ ah > 0. (60)

Second, construct a function f : [J ′(0),∞) → [0,∞) such that f ′(x) > 0 for x > J ′(0),

f ′′(x) is continuous for x ≥ J ′(0), and f(x) = S(x) for x ≈ J ′(0) and f(x) = x for large x. We

can extend the domain of f to (−∞,∞) by defining f(x) ≡ f(2J ′(0)−x) for x < J ′(0). Because

S′(x)|x=J ′(0) = 0, the left derivative and right derivative of f are equal at x = 0. Hence, f is

still continuously differentiable after the extension.

Third, construct a diffusion process for x ∈ (−∞,∞) as follows. Because S is a diffusion

process, so is x = f−1(S) whenever x > J ′(0). The drift ᾱ(x) and volatility ζ̄(x) of x are,

respectively,

ᾱ(x) = (f−1)′(S)α(S) +
1

2
(f−1)′′(S)(ζ(S))2,

ζ̄(x) = (f−1)′(S)ζ(S),

where S = f(x). Symmetrically, if x < J ′(0), then x = 2J ′(0) − f−1(S) is also a diffusion

process.

Fourth, for S to have an invariant distribution it is sufficient to show that x has an invariant

distribution. To show that x has an invariant distribution on (−∞,∞) we verify the sufficient

conditions in Karatzas and Shreve (1991, Exercise 5.40, page 352).

(i) Nondegeneracy. The volatility ζ̄(x) 6= 0 at x > J ′(0) because f ′(x) > 0 for x > J ′(0) and

ζ(S) 6= 0 for S > 0. Although ζ(0) = 0, ζ̄(J ′(0)) 6= 0 because f−1(S) = J ′(S) for S ≈ 0

and

lim
x↓J ′(0)

ζ̄(x) = lim
S↓0

J ′′(S)(Ŷ − σ) = lim
S↓0

J ′′(S)J ′(S)

J ′(S) + J ′′(S)
> 0.

The volatility ζ̄(x) 6= 0 at x < J ′(0) due to symmetry.

(ii) Local integrability. Because ζ(x) is continuous in x and is always nonzero, it is bounded

away from zero. That is, there exists ǫ > 0 such that (ζ(x))2 ≥ ǫ for all x.

(iii) p(−∞) = −∞ and p(∞) = ∞, where the scale function p(x) is defined as

p(x) ≡

∫ x

c

exp

(

−2

∫ ξ

c

ᾱ(θ)

ζ̄(θ)2
dθ

)

dξ,

where c is a fixed number. We will only show p(∞) = ∞ as the proof for p(−∞) = −∞ is

similar. Since f(θ) = θ for large θ, limθ→∞
ᾱ(θ)

ζ̄(θ)2
= limθ→∞

α(θ)
ζ(θ)2

= −µ−ah
σ2 < 0, where the

inequality follows from (60). Therefore, limξ→∞−2
∫ ξ

c
ᾱ(θ)

ζ̄(θ)2
dθ = ∞, and limx→∞ p(x) =

∞.
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(iv) m(−∞,∞) <∞, where the speed measure m is defined as

m(dx) ≡
2dx

p′(x)ζ̄(x)2
.

Because limθ→∞
ᾱ(θ)

ζ̄(θ)2
= −µ−ah

σ2 < 0 and limθ→∞ ζ̄(θ)2 = σ2, there is a large x̄, such that
ᾱ(θ)

ζ̄(θ)2
< −µ−ah

2σ2 and ζ̄(θ)2 > σ2

2 for θ ≥ x̄. Hence, if x ≥ x̄, then

p′(x)ζ̄(x)2 = exp

(

−2

∫ x

c

ᾱ(θ)

ζ̄(θ)2
dθ

)

ζ̄(x)2

≥ exp

(

−2

∫ x̄

c

ᾱ(θ)

ζ̄(θ)2
dθ

)

exp

(

µ+ ah
σ2

(x− x̄)

)

σ2

2
,

which implies that m([x̄,∞)) =
∫∞
x̄

2dx
p′(x)ζ̄(x)

dx is finite. That m((−∞, 2J ′(0) − x̄]) < ∞

follows from symmetry.

�

Proof of Proposition 6

We start with the following auxiliary lemma:

Lemma A.13 Let S1 = 1 − log(1 + 1−e−κ

κ
) and S2 = 2 − log(1 + 1−e−2κ

κ
). For large ah,

r(−1 + 1
J ′
FI

(S1)
) + 1

2σ
2 − ah < −ah

3 and S1 < S2 < S∗.

Proof First, we compute J ′
FI(S1) in the full-information model. From the proof of Proposition

3, we know that ut = κ+1
κ
VFI(mt) and Wt = (1 + 1−e−κ(mt−yt)

κ
)VFI(mt). Therefore, û(St) =

ut

−Wt
= −

κ+1
κ

1+ 1−e−κ(m−y)

κ

. The first-order condition in the HJB equation implies û(S) = − −1
J ′
FI

(S)
,

which together with m− y = 1 at S1 imply that

r

(

−1 +
1

J ′
FI(S1)

)

= r

(

−1 +
κ+1
κ

1 + 1−eκ(y−m)

κ

)

=
re−κ

κ+ 1− e−κ
.

It follows from limah→∞ ahκ = r that

lim
ah→∞

re−κ

κ+1−e−κ

ah
= lim

ah→∞
re−κ

(κ+ 1− e−κ)ah
=

1

2
.

Therefore, r
(

−1 + 1
J ′
FI

(S1)

)

+ 1
2σ

2 − ah < −ah
3 for large ah.

Second, S1 < S2 because limah→∞ S1 − S2 = −1− limκ→0 log(1 +
1−e−κ

κ
) + limκ→0 log(1 +

1−e−2κ

κ
) = −1 + log(32) < 0.

Third, S2 < S∗
FI , where S

∗
FI denotes the smallest S at which the IC constraint is violated in

the full-information model. At S2, m−y = 2. It follows from eκ(−2) > r(1−φ)
ah−al

κ+1
κ

that S2 < S∗
FI

for large ah.
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Fourth, S∗
FI < S∗. We show that J ′(S∗

FI) > J ′
FI(S

∗
FI) and J ′′(S∗

FI) > J ′′
FI(S

∗
FI). An

argument similar to part (i) in the proof of Lemma A.9 shows the former. To see the latter,

suppose by contradiction J ′′(S∗
FI) ≤ J ′′

FI(S
∗
FI). The HJB equation for JFI is

rJFI(S
∗
FI) + r log(−VFI(0)) = r(S∗

FI − log(−û)) + J ′
FI(S

∗
FI)

(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+
1

2
J ′′
FI(S

∗
FI)(Ŷ − σ)2.

Hence J ′(S∗
FI) > J ′

FI(S
∗
FI), J

′′(S∗
FI) ≤ J ′′

FI(S
∗
FI), and r(−1− û) + 1

2 Ŷ
2 − ah < 0 imply that

rJFI(S
∗
FI) + r log(−VFI(0)) = r(S∗

FI − log(−û)) + J ′
FI(S

∗
FI)

(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+
1

2
J ′′
FI(S

∗
FI)(Ŷ − σ)2

> r(S∗
FI − log(−û)) + J ′(S∗

FI)

(

r(−1− û) +
1

2
Ŷ 2 − ah

)

+
1

2
J ′′(S∗

FI)(Ŷ − σ)2

≥ rJ(S∗
FI) + r log(−V (0)),

which contradicts JFI(S) + log(−VFI(0)) ≥ J(S) + log(−V (0)) for all S ≥ 0. That S∗
FI < S∗

follows from

σJ ′(S∗
FI)J

′′(S∗
FI)

J ′(S∗
FI) + J ′′(S∗

FI)
>

σJ ′
FI(S

∗
FI)J

′′
FI(S

∗
FI)

J ′
FI(S

∗
FI) + J ′′

FI(S
∗
FI)

= β.

�

Now we can prove the proposition.

Because the trend of S is negative in [S1,∞), the derivative of the scale function, p′(S), is

strictly increasing in S. Further,

(

log(p′(S))
)′

= −2

(

r(−1 + 1
J ′(S)) +

1
2 Ŷ (S)2 − ah

(Ŷ (S)− σ)2

)

≥ −2

(

r(−1 + 1
J ′
FI

(S1)
) + 1

2σ
2 − ah

(Ŷ (S)− σ)2

)

≥
2ah
3σ2

, for S ≥ S1,

where the first inequality follows from J ′(S) ≥ J ′(S1) > J ′
FI(S1) and the second inequality

follows from r(−1 + 1
J ′
FI

(S1)
) + 1

2σ
2 − ah < −ah

3 , which is shown in Lemma A.13. This implies

that p′(S) ≥ p′(S∗) exp(2ah
3σ2 (S − S∗)) for S ≥ S∗. We have

m[S∗,∞)

m[S1, S2]
=

∫∞
S∗

1
p′(S)(Ŷ (S)−σ)2

dS
∫ S2

S1

1
p′(S)(Ŷ (S)−σ)2

dS
≤

∫∞
S∗

1
p′(S)dS

∫ S2

S1

1
p′(S)dS

,
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which follows from Ŷ (S) > Ŷ (S̃) for all S < S∗ < S̃. This inequality is shown by Ŷ (S) =
J ′′(S)

J ′(S)+J ′′(S) =
J ′(S)J ′′(S)
J ′(S)+J ′′(S)(J

′(S))−1 > β(J ′(S))−1 ≥ β(J ′(S̃))−1 = β(−û(S̃)) = Ŷ (S̃). Further,

∫∞
S∗

1
p′(S)dS

∫ S2

S1

1
p′(S)dS

≤

∫∞
S∗

1
p′(S)dS

(S2 − S1)
1

p′(S∗)

≤

∫∞
S∗

1

exp(
2ah
3σ2 (S−S∗))

dS

S2 − S1
=

1
2ah
3σ2 (S2 − S1)

.

Hence limah→∞ π([S∗,∞)) = limah→∞
m[S∗,∞)
m[0,∞) ≤ limah→∞

m[S∗,∞)
m[S1,S2]

= 0. �

Appendix B: Properties of the cost function JFI and dynamics

of the state variable St in the model with full information

Lemma B.1 In the model with full information,

(i) J ′
FI is everywhere positive and strictly increasing with

J ′
FI(0) =

κ

κ+ 1
and lim

St→∞
J ′
FI(St) = 1.

(ii) J ′′
FI is everywhere positive and strictly decreasing with

J ′′
FI(0) = ∞ and lim

St→∞
J ′′
FI(St) = 0.

(iii) The drift of the state variable, α, is strictly decreasing with

α(0) =
1

2
(κ+ 1)σ2 > 0 and lim

St→∞
α(St) = −ah.

(iv) The volatility of the state variable, ζ, is everywhere negative and strictly decreasing with

ζ(0) = 0 and lim
St→∞

ζ(St) = −σ.

Proof It is useful to derive policies û(St) and Ŷ (St) as functions of mt and yt. From the

proof of Proposition 3, we know that ut =
κ+1
κ
VFI(mt), Yt = −VFI(mt)e

−κ(mt−yt)σ and Wt =

(1 + 1−e−κ(mt−yt)

κ
)VFI(mt). Therefore,

û(St) =
ut

−Wt
= −

κ+1
κ

1 + 1−e−κ(m−y)

κ

,

Ŷ (St) =
Yt

−Wt
=

e−κ(mt−yt)

1 + 1−e−κ(mt−yt)

κ

σ.

This implies that û(St) increases and Ŷ (St) decreases in St. Further, û(0) = −κ+1
κ

, Ŷ (0) = σ,

limSt→∞ û(St) = lim(mt−yt)→∞ û(St) = −1, and limSt→∞ Ŷ (St) = lim(mt−yt)→∞ Ŷ (St) = 0.
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(i) Since J ′
FI(St) = (−û(St))

−1, the property of J ′
FI(St) follows from that of û(St) in the

above.

(ii) It follows from J ′
FI(St) = (−û(St))

−1 = (1+ 1−e−κ(mt−yt)

κ
)/κ+1

κ
and St = mt−yt− log(κ+

1− e−κ(mt−yt)) that

J ′′
FI(St) =

κ

κ+ 1

e−κ(mt−yt)

1− e−κ(mt−yt)κ
κ+1−e−κ(mt−yt)

=
κ

κ+ 1

1

eκ(mt−yt) − κ
κ+1−e−κ(mt−yt)

,

which decreases in mt−yt. If St = 0, then mt−yt = 0 and clearly J ′′
FI(0) = ∞. Moreover,

limSt→∞ J ′′
FI(St) = limmt−yt→∞ J ′′

FI(St) = 0.

(iii) It follows from α(St) = r(−1−û(St))+
1
2(Ŷ (St))

2−ah that α(St) decreases in St. Further,

α(0) = r(−1 +
κ+ 1

κ
) +

1

2
σ2 − ah =

1

2
(κ+ 1)σ2,

lim
St→∞

α(St) = r(−1 + 1) +
1

2
02 − ah = −ah.

(iv) It follows from ζ(St) = Ŷ (St)− σ that ζ(St) decreases in St. Further,

ζ(0) = Ŷ (0)− σ = 0, lim
St→∞

ζ(St) = 0− σ = −σ.

�

Discussion. The quitting constraint is the only friction in the full-information version of

our model. If this friction were absent, the contracting environment would be the so-called

first best: firms would fully insure workers against fluctuations in their productivity by giving

them permanently constant compensation and workers would be committed to never quitting

or shirking. In the first best, Wt is constant, so, as evident from (18), the dynamics of the

state variable St reduce to dSt = −dyt, which means that α(St) = −ah and ζ(St) = −σ at

all St. With the worker’s compensation constant, the firm’s profit simply follows the random

changes in the output produced by the worker. The first-best cost function, denoted as JFB,

therefore satisfies J ′
FB(St) = 1, as a larger drift of the worker’s output process would reduce

the firm’s cost one-to-one.31 Also, since firms are risk-neutral and never run into quitting or

incentive constraints in the first best, they are indifferent to volatility in St. This means that

J ′′
FB(St) = 0 for all St.

32

31Recall from (22) that the first derivative of the cost function represents the impact of the state variable’s

drift on the firm’s total cost. In the first best, the drift of the state variable is the negative of the drift of the

worker’s output.
32Recall again from (22) that the second derivative of the cost function represents the impact of the state

variable’s volatility on the firm’s total cost.
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Lemma B.1 shows that the equilibrium cost function and the dynamics of the state variable

in the model with the quitting constraint converge to the first best when slackness St in the

quitting constraint becomes large. This convergence is intuitive. When St is large, the expected

time until the quitting constraint binds again is large, and so the equilibrium contract (25) is

expected to provide full insurance to the worker far into the future. Since the equilibrium

contract at this point approximates the first-best contract very closely, its cost is close to the

first-best cost function.

On the other extreme, when the quitting constraint binds (i.e., at St = 0), ensuring that it

continues to be satisfied under all realizations of the shock to the worker’s productivity is only

possible if, first, the volatility of St at St = 0 is zero, and, second, the drift of St at St = 0 is

nonnegative. The optimal contract, as we see in Lemma B.1, does induce ζ(0) = 0. Consistently,

J ′′
FI(0) = ∞, which reflects the fact that the firm is infinitely averse to the volatility in St when

the quitting constraint binds, as any nonzero volatility would lead to a violation of the quitting

constraint with probability one immediately after St hits zero.

Note that zero volatility of St means that the volatility of the worker’s continuation value

inside the contract is the same as the volatility of her outside option, which means that locally

at St = 0 the firm cannot provide any insurance to the worker. To avoid violating the quitting

constant, clearly, the drift of St at St = 0 must be nonnegative. A strictly positive drift of

St at St = 0 is beneficial in that it relaxes the quitting constraint, which allows the firm to

provide insurance to the worker as soon as St becomes strictly positive. But positive drift in

St is also costly because in order to obtain it the contract must back-load compensation and

produce a strictly positive drift in the worker’s continuation value Wt. Positive drift in Wt is

costly as it means that intertemporal smoothing of the worker’s consumption is poor. (Recall

that drift of Wt at the first best is zero.) The optimal drift α(0) given in the above lemma

is the outcome of balancing this trade-off. It is strictly positive, so zero is a reflecting rather

than absorbing barrier for the state variable and insurance is provided to the worker. Its size

is limited, however, by the intertemporal inefficiency of excessive compensation back-loading.

Consistently, J ′
FI(0) =

κ
κ+1 < 1 = J ′

FB(0) reflects the fact that positive drift of St has a benefit

in the full-information-limited-enforcement model that it does not have in the first best: it helps

relax the quitting constraint. As a consequence, the firm is less averse to drift in St than it is

at the first best, which means that J ′
FI is everywhere smaller than J ′

FB ≡ 1.
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