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1 Introduction

Downside risk of financial assets plays an important role and gives rise to concern

for investors and risk managers. For example, in the banking industry the popularity of

regulating the downside risk, measured by Value-at-Risk (VaR), has emerged through the

regulatory accords such as Basel II and III. The unfolding of the recent financial crisis

further raises the necessity of assessing the risks of potential extreme losses. From a risk

management viewpoint, this calls for a comprehensive understanding of tail risk amongst

regulators. From a corporate finance viewpoint, by managing tail risk, firms can attract

long-term investors that are risk averse; thus, enhancing their access to capital markets.

This paper analyzes downside tail risk in stock returns across firms. First, we test the

tail shape equivalence hypothesis. That is, we test whether the tail shapes in the down-

side tail distribution are cross-sectionally homogeneous. Second, we provide empirical

evidence that when homogeneity of the tail shape holds across stock returns, the cross-

sectional heterogeneity in downside tail risk is determined by differences in the scale.

Lastly, we analyze potential firm-level determinants of downside tail risk.

In classic asset pricing theory, stock returns are assumed to follow a Gaussian distribu-

tion. Recent empirical literature shows that when modeling the distribution of financial

asset returns, particularly that of equity returns, the Gaussian distribution underesti-

mates the probability of extreme losses. Instead, there is large consensus that the tail

distribution of asset returns is heavy-tailed, see, e.g., Mandelbrot (1963) and Jansen and

De Vries (1991). Heavy-tails refer to the fact that the tail region of the distribution

function exhibits a power law decay, as opposed to the exponential decay of the Gaus-

sian distribution. Mathematically, denote the return of a financial asset by R, with the

distribution function F (x) = Pr(R ≤ x). The distribution function F is heavy-tailed if

its left tail can be approximated by a power law as

F (−x) = Pr(R ≤ −x) ∼ Ax−α, as x → ∞, (1.1)

where α is the tail shape parameter, commonly referred to as the tail index, and A indi-

2



cates the scale of the distribution. In contrast to the Gaussian distribution, heterogeneity

in the downside tail risk of a heavy-tailed distribution is manifest via differences in the

tail shape and scale of the distribution. Note that in the Gaussian setup, tail risk is

driven entirely by the variance.

The VaR measures the magnitude of an extreme event at a given tail probability

within a fixed time period. Define, V aR(p) as the VaR of R with tail probability p as

Pr(R > V aR(p)) = p. In the heavy-tailed framework, V aR(p) is jointly determined by

the tail index and scale as follows,

V aR(p) ≈
(
A

p

) 1
α

. (1.2)

Under the safety-first preference, Moore et al. (2012) show that if investors are suffi-

ciently risk averse, that is, they guard amply enough against large, low probability high

losses, the tail indices among different stock returns in a common market must be equiv-

alent. This is called the tail index equivalence hypothesis. The intuition behind the tail

index equivalence is as follows. For an extremely low probability level p, the asset with

the lower tail index will always have a higher VaR. In addition, the VaRs corresponding to

different tail indices are diverse when the probability level p tends to zero. Consequently,

the differences in VaRs cannot be compensated by heterogeneity in expected returns.

Therefore, if the admissible probability level of failure of investors is sufficiently low, tail

index equivalence must hold. If tail index equivalence holds, the expected return in the

safety-first pricing model of Arzac and Bawa (1977) can compensate for heterogeneity in

the scale parameter.

Prior theoretical literature typically assumed the tail index equivalence hypothesis

without justification, see, e.g. Hyung and de Vries (2005), Hyung and de Vries (2007),

Ibragimov and Walden (2008) and Zhou (2010). For the most part, robust empirical test-

ing of tail index equivalence has been lacking in the literature. Weak empirical evidence

of tail index equivalence can be found in Jansen and De Vries (1991). However, their

test bears two immediate drawbacks. First, they test the null hypothesis that the tail

indices of two assets, α1 and α2, are jointly equal to a hypothetical value α, whereas in
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application the null hypothesis to be tested is usually H0 : α1 = α2. Second, they impose

a maintained assumption that stock returns are cross-sectionally independent. This is

not plausible when conducting the test for stocks traded in same market. A decade later,

Jondeau and Rockinger (2003), using likelihood ratio tests, provide empirical evidence

of tail index equivalence for stock returns in a common geographical location using data

from 20 countries. Although, their tests allow for dependence across time, they as well

do not take into account the possible cross-sectional dependence across stock returns. On

the contrary, the cross-sectional dependence across stock returns is a consequence of well

known asset pricing models, such as the Capital Asset Pricing Model (CAPM) and Arbi-

trage Pricing Model (APT). The dependence in these models stems from common factors

such as the market factor. Therefore, we construct testing procedures to accommodate

this dependence feature.

We allow for tail dependence across stock returns by imposing a multivariate Extreme

Value Theory (EVT) setup and construct two empirical tests: the Minmax and Bench-

mark statistical tests. To show the power of our testing procedures, we run extensive

simulations. Then we apply both tests to a collection of 230 US non-financial firms from

January 2000 to the end of 2011. We do not reject the tail index equivalence hypothesis

from 2008 to 2011. In the periods where tail index equivalence holds, we apply a similar

set of empirical tests to test for tail risk equivalence. This is equivalent to a joint test of

tail index and scale homogeneity. Both tests reject tail risk equivalence over this period.

This result provides weak evidence of tail scale heterogeneity.

To further detect tail scale heterogeneity, we analyze whether the tail scales are differ-

entiated across firms with different firm-level characteristics. If heterogeneity in tail risk

tail scale is solely due to estimation error, then we should not find any relation between

the tail scale and firm-level characteristics. Through a series of cross-sectional regres-

sions, we find that the book-to-market ratio, bid-ask spread and market beta are positive

and significantly related to the scale parameter, while size and leverage are negative and

significantly related to the scale. Hence, heterogeneity in the scale parameter is explained

by firm-level characteristics. We thus confirm that the tail scale is cross-sectionally het-
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erogeneous. In addition, we also highlight the potential drivers of downside tail risk.

These findings are comparable to the literature on the firm-level drivers of cross-

sectional expected stock returns. The general intuition is that investors are compensated

for higher risk taking with a premium in the expected returns . For our selection of

the potential cross-sectional drivers of tail risk we refer to the following literature: Banz

(1981), Fama and French (1992), Bhandari (1988), Basu (1977), Datar et al. (1998) and

Amihud and Mendelson (1986).

The rest of the paper is organized as follows. In Section 2, we establish statistical

methods to test tail index equivalence under dependency. A simulation study shows the

performance of our testing procedure. We apply these two tests to 230 equities traded

in US market in Section 3. In Section 4, we establish statistical methods on testing tail

risk equivalence. In Section 5, we further analyze the drivers of tail risk at the firm level

for those periods in which we fail to reject the tail index equivalence hypothesis. Section

6 concludes.

2 Statistical Tests: Tail Index Equivalence

2.1 The setup of the tests

We construct two statistical tests to determine whether the tail indices of different

stock return series are equivalent under cross-sectional dependence. A first attempt on

testing such a hypothesis has been conducted under a bivariate setup in Jansen and de

Vries (1991) by assuming independence across stock returns. We begin by reviewing their

procedure.

First, the tail indices of loss returns of stocks are estimated by the so-called Hill

estimator as follows. Denote the return series of two stocks as Ri,t, i = 1, 2 and t =

1, 2, · · · , n. Denote the loss return as Xi,t = −Ri,t. By ranking all {Xi,t}nt=1 as Xi,(n) ≥

Xi,(n−1) ≥ · · · ≥ Xi,(1), the tail index αi for stock return i is estimated by

1

α̂i

=
1

k

k∑

j=1

logXi,(n−j+1) − logXi,(n−k),
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where k := k(n) is an intermediate sequence such that k → ∞ and k/n → 0 as n → ∞.

This estimator is proposed in ? who also shows the asymptotic normality of the estimator:

under mild conditions that regulates the speed of k tending to infinity, as n → ∞,

√
k

(
α̂i

αi

− 1

)
d→ N(0, 1),

where N(0, 1) refers to a standard normally distributed random variable. Later ? shows

that the Hill estimator retains its properties for stationary data.

Next, in Jansen and de Vries (1991) test the null hypothesis H0 : α1 = α2 = α for

some given α. By assuming that the two stock return series are independent, the two

estimators α̂1 and α̂2 are independent. Hence, under the null that α1 = α2 = α,

k1

(
α̂1

α
− 1

)2

+ k2

(
α̂2

α
− 1

)2
d→ χ2(2),

where ki refers to the number of high order statistics used in estimation for αi, and χ2(2)

refers to a random variable following the χ2 distribution with degree of freedom 2.

The Jansen and de Vries test bears two immediate drawbacks. First, a hypothetical

value of α in the null hypothesis has to be specified ex ante, whereas in an application

a more suitable null hypothesis to be tested is H0 : α1 = α2. Second, the maintained

assumption that stock returns are independent is not plausible when conducting the test

for stocks traded in same market over the same time period. The first drawback can be

overcome by considering alternative testing statistics, while the second drawback calls for

modeling the dependence structure.

We employ multivariate EVT to model the dependence structure across stock returns.

Suppose (X1,t, X2,t), t = 1, 2, · · · , n are observations from a bivariate distribution, indi-

cated by random vector (X1, X2). The EVT model in a bivariate setup is as follows. For

any (x1, x2) ∈ [0, 1]× [0, 1]/{(0, 0)},

lim
p→0

1

p
Pr(X1 > V aR1(px1), X2 > V aR2(px2)) = R(x1, x2),
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where V aRi(p) refers to the VaR of Xi with tail probability p and R(x1, x2) is a positive

function defined on [0, 1]× [0, 1]/{(0, 0)}. Such a model only imposes an assumption on

the tail dependence between X1 and X2 without restricting the dependence at moderate

level. This is sufficient for our purpose. We remark that all existing asset pricing models

such as CAPM or other factor models satisfy such a dependence assumption provided

that the pricing factors are heavy-tailed.

The following Proposition provides the joint limit distribution of the two Hill estimates

α̂1 and α̂2, which is the theoretical foundation for constructing a valid test. The proof is

postponed to the appendix.

Proposition 2.1 Under a proper second order condition and choice of k sequence such

that as n → ∞,
√
k

(
α̂i

αi

− 1

)
d→ N(0, 1),

we have that,

√
k




α̂1

α1
− 1

α̂2

α2
− 1


 d→ N







0

0


 ,




1 R(1, 1)

R(1, 1) 1





 .

Here R(1, 1) is a usual tail dependence measure lying between 0 and 1, sometimes de-

noted by τ in literature (see De Jonghe (2010)). Multivariate EVT provides a consistent

estimator for the correlation coefficient τ = R(1, 1) as follows.

τ̂ =
1

k

n∑

t=1

1
X1,t>X1,(n−k) and X2,t>X2,(n−k)

.

With the estimated covariance matrix, it is possible to simulate the joint limit distribution

of the two Hill estimators.

Since we tend to compare the tail indices among a group of stocks, we extend the above

result to a broader context as follows. Denote the loss return for stock i and the market

as Xi,t = −Ri,t, i = 1, 2, · · · , d and XM,t = −RM,t, respectively, where t = 1, 2, · · · , n.

Denote their tail indices as α1, · · · , αd, αM , with corresponding Hill estimators indicated

by α̂1, · · · , α̂d, α̂M . Similar to the bivariate case, one can prove that with proper second
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order condition and choice of the k sequence, as n → ∞,

√
k

(
α̂1

α1

− 1, · · · , α̂d

αd

− 1,
α̂M

αM

− 1

)T
d→ N(0T ,Σ),

where 0 is a (d + 1) × 1 vector with zero component, and Σ = (τi,j)(d+1)×(d+1) with τi,j

indicating the R(1, 1) measure between stock i and j, i, j = 1, · · · , d,M .

We first construct a test for the null hypothesis H0 : α1 = α2 = · · · = αd. Consider

the following test statistic

T1 =
max1≤i≤d α̂i −min1≤i≤d α̂i

ᾱ
, where ᾱ =

1

d

d∑

i=1

α̂i.

Under the null hypothesis that α1 = · · · = αd, from the joint limit distribution of the Hill

estimates, it follows that as n → ∞,
√
kT1 converges a limit distribution as maxdi=1 Ni −

mind
i=1 Ni, where (N1, · · · , Nd)

T follows a d−dimensional normal distribution with mean

zero and covariance matrix Σ1, which is a submatrix of Σ consisting of the first d rows

and d columns.

Given the estimates of each bivariate τi,j, we can simulate the random vector (N1, · · · , Nd)
T

and consequently obtain the simulated limit distribution of
√
kT1. The null hypothesis

is rejected when a high value of T1 is observed. More specifically, if
√
kT1 is above a

certain threshold determined from the simulated limit distribution. For details on a fast

simulation procedure for the limit distribution, see Appendix 7.2. Since the test is based

on comparing the minimum and the maximum of the estimated tail indices, we call this

the Minmax Tail Shape test.

Next, we construct a test on the null hypothesis H0 : α1 = α2 = · · · = αd = αM .

This, of course, can be accomplished via the Minmax Tail Shape test by regarding the

market return as the (d + 1)−th stock. Nevertheless, we can treat the market return as

a specific benchmark and construct a different test. Consider the following test statistic

T2 =
d∑

i=1

(
α̂i

α̂M

− 1

)2

.
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Similar to the discussion for the first test, under the null hypothesis that α1 = · · · = αd =

αM , from the joint limit distribution of the Hill estimators, it follows that as n → ∞,
√
kT2 converges to a limit distribution as

d∑
i=1

(Ni−NM)2, where (N1, · · · , Nd, NM)T follows

a d−dimensional normal distribution with mean zero and covariance matrix Σ. Similarly,

we reject the null if
√
kT2 is above a certain threshold determined from the simulated

limit distribution. Since this test compares the estimated tail indices of the stocks to

that of the benchmark, we call it the Benchmark Tail Shape test.

2.2 Simulations

Before applying the statistical tests to real data, we run a series of simulations to

verify the performance of the testing procedures. We simulate data from two different

samples and present the test results regarding each sample.

We use the Student-t distribution in all simulations1. We simulate data with a built-in

dependence structure in two different ways:

Sample 1. In the first sample, we simulate random vectors (Y1,t, ..., Yd,t) with common

marginal tail index and differentiated scales.

1. Generate (d+1)n independent and identically distributed (i.i.d.) random variables

{Xi,t}, i = 1, . . . , d + 1, t = 1, . . . , n. Each Xi,t follows the standard Student-t

distribution with degrees of freedom α.

2. We use {Xd+1,t}, t = 1, ..., n as a common factor to generate a dependence structure

as follows:

Yi,t =





λXd+1,t + (1− λ)Xi,t, i = 1, . . . , d/2, t = 1, . . . , n,

λXd+1,t + (1− λ) ∗ 2Xi,t, i = d/2 + 1, . . . , d, t = 1, . . . , n,

where λ ∈ [0, 1] determines the degree of dependence across the observations2.

1The Student-t distribution falls into the class of heavy-tailed distributions. Furthermore, the tail
index associated with a given Student-t distribution is equal to its corresponding degree of freedom.

2A non-zero value of λ creates tail dependence between two vectors of observations (Yi,t, Yj,t). The
tail dependence measure, τ , is an increasing function of λ, for any given α. When λ = 0 we have τ = 0.
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Then, all {Y1,t, ..., Yd,t} share the same tail index α and are dependent for λ > 0. Note

that their scales are cross-sectionally different. For instance, the ratio of the scale of Y1,t

to that of Yd/2+1,t is
λα+(1−λ)α

λα+[2(1−λ)]α
.

Sample 2. In the second sample, we simulate random vectors (Z1,t, ..., Zd,t) with

differentiated tail indices.

1. Generate dn
2

i.i.d. random variables {Xi,t}, i = 1, ..., d/2, t = 1, ..., n. Each Xi,t

follows the standard Student-t distribution with a degree of freedom α1.

2. Generate (d
2
+1)n i.i.d. random variables {Xi,t}, i = d/2+1, . . . , d+1, t = 1, . . . , n.

Each Xi,t follows the standard Student-t distribution with a degree of freedom α2.

3. We again use {Xd+1,t}, t = 1, ..., n as a common factor to generate a dependence

structure as follows.

Zi,t = λXd+1,t + (1− λ)Xi,t, i = 1, . . . , d, t = 1, . . . , n,

where λ ∈ [0, 1].

When α1 > α2 and λ > 0, {Z1,t, ..., Zd,t} have the same tail index α2, but different scales
3.

When α1 < α2, {Z1,t, ..., Zd,t} have different tail indices. The tail index of {Zj,t} is α1 for

j = 1, . . . , d/2 and α2 for j = d/2 + 1, . . . , d.

Both samples are generated with dimension d = 100 and number of observations

n = 1000. Then we apply the Minmax Tail Shape and Benchmark Tail Shape tests

outlined in Subsection 2.1 to the simulated observations. In the case of the Benchmark

Tail Shape test, the variable X101,t is taken as the “benchmark” with tail index αM .

For each simulated data set, we run 11 different simulations with different degrees of

dependence, e.g. λ = 0, 0.05, . . . , 0.45, 0.5.

For each fixed value of λ, we generate 1000 simulations. In each simulation, we

calculate a test statistic and corresponding p-value, pvalj, j = 1, ..., 1000. The p-value

3Zhou (2010) shows that in a linear combination of two heavy-tailed random variables, the heavier-
tailed random variable (the lower tail index) determines the first-order tail index of the linear combina-
tion.
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is determined by comparing the test statistic with the simulated limit distribution from

Appendix 7.2. Then, we calculate the percentage of simulations in which the p-value falls

below the 5% level in each of the two tests by

φ =

(
1

1000

1000∑

j=1

1pvalj≤0.05

)
· 100%.

An acceptable test should produce φ = 5% if the null hypothesis is valid. If the null

hypothesis is not valid, a high value of φ shows a high power of the test.

Table 1 reports the percentage of simulations in which the p-value falls below the 5%

level. We first use two values of the tail index, α = 3 and 4, to generate data as in Sample

1. For this sample, the null hypothesis holds. We observe that both tests are valid as

the φ values are around 5%. Nevertheless, with a moderate tail dependence, i.e. a high

value of λ, both of the Minmax Tail Shape and Benchmark Tail Shape tests reject the

null hypothesis in less than 5% of the simulations. This indicates that both tests do not

tend to have a high probability of type I error. For low λ, i.e. low tail dependence, the

Minmax Tail Shape test performs better, because the Benchmark Tail Shape test rejects

in more than 5% of the simulations.

Then, we generate data as in Sample 2 using the following pairings: {α1, α2} =

{3, 4}, {4, 3}. For the pair {α1, α2} = {3, 4}, the null hypothesis does not hold. In the

simulation, both tests show some power in rejecting the false null hypothesis, though not

at a high level. As the dependence level increases, i.e. λ increases, the power declines,

especially in the case of the Benchmark Tail Shape test. This can be explained by the fact

that if all simulated data load heavily on the common factor, the theoretical differences

in the tail indices, stemming from the idiosyncratic factor, is diminished. For the pair

{α1, α2} = {4, 3}, the null hypothesis on tail index equivalence holds. In this case, the

Benchmark Tail Shape test performs well by reporting a percentage of rejection close to

5%. On the other hand, the Minmax Tail Shape test tends to over reject the true null

hypothesis. This problem is particularly severe for a low λ value. This is due to the fact

that a low loading on the common factor is not sufficient for generating data that reflect
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the theoretical equivalence of the tail indices.

An important factor contributing to the apparent low power in rejecting a false hy-

pothesis is the small difference between α1 and α2 above. To enlarge the difference, we

also generate data from Sample 2 with {α1, α2} = {3, 5} and {5, 3}. The general feature

of the performance of the two tests remains, but the performance is improved. For the

case that {α1, α2} = {3, 5}, the rejection power increases considerably for both tests. For

the case that {α1, α2} = {5, 3}, at least for the Benchmark Tail Shape test, the precision

of the type I error is improves as the numbers get closer to 5%.

In summary, as in the case for most statistical tests, a local alternative destroys the

power of a test. But when the tail index differences increase, the power property improves.

From an economic point of view, the low power in the case that the tail indices are close

is much less of a concern. In such a case, the properties of the two equity returns will be

also similar as to make an arbitrage unprofitable.

3 Testing the tail index equivalence

3.1 Data and Methodology

In this section we apply the statistical tests described in Section 2 to test for tail

index equivalence among equities traded on a common market. We use daily equity

return data of non-financial US companies listed on both the NYSE and the NASDAQ

from 2000 to 2011. We split our sample into 9 overlapping periods with 4 years of

data in each period (i.e. 2000-2003, 2001-2004, . . . , 2008-2011). We select stocks that

are traded with sufficient regularity as follows. Each stock selected must have non-zero

returns on at least 80% of the trading days in each period, and were traded throughout

the entire 11 year period. In this way, each stock, in each period, has a sufficient number

of observations for the tail index estimation. Furthermore, the selected firms must have

available firm-level accounting data as described in Section 5.2. This selection procedure

results in 273 stocks. For the case of the Benchmark test, we use the returns from the
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S&P 500 index as the market return4.

For each of the 9 periods we estimate both the tail index and the scale parameter for

each selected stock and the S&P 500 index. The summary statistics of the two parameters

for each period can be found in the first five columns of Table 2 and Table 3. We observe

that there is a huge dispersion in the scale parameter for each period. However, the

inter-period tail index estimates are roughly between 2 and 4. Notice that the dispersion

in the tail index estimates shrinks for the period of 2005-2008. Furthermore, columns 6,

7 of Table 2 report the τ̂ tail dependence estimates. The estimate is the average of the

estimated τ value across all pairs, whereas τ̂M is the average of the estimated τ between

equities and the market return. These results indicates that we cannot ignore the cross-

sectional dependence when testing the tail index equivalence hypothesis across equities.

Moreover, we observe that the tail dependence is initially low, but increases starting in the

2005-2008 period. From our simulation results in the previous subsection, our statistical

tests can be applied to such a data set with a moderate level of tail dependence.

A technical issue that arises in the estimation procedure regards the choice of the

intermediate sequence, k, for the Hill estimator. The theoretical conditions on k are not

relevant for a finite sample analysis. Instead of taking an arbitrary k, a usual procedure

is to calculate the tail index for different k values and draw a line plot of the estimates

against the k values. With a low k value, the estimator exhibits a large variance, while

for a high k value, since the estimation uses too many observations from the moderate

level, it exhibits a bias. Therefore, k is chosen by picking the first stable part of the line

plot starting from low k, which balances the trade-off between the variance and the bias.

The estimates then follow from such a choice of k. Because k is chosen from a stable

part of the line plot, a small variation of the k value does not change the estimated value.

Thus, the estimates are not sensitive to the exact k value. Following such a procedure,

we keep the percentage of (tail) observations used in the estimation constant at a level

of 3.5% for each sample, i.e. k/n = 3.5%5.

4The return series for the 230 stocks and the market return from the S&P 500 index are collected
from the CRSP data source from January 2000 to December 2011.

5Plots are available upon request.
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From these estimates we apply the statistical testing procedures from Section 2.1 to

test whether the tail indices are jointly equivalent in the cross-section, i.e.

H1
0 : α1 = · · · = αd(= αM).

3.2 Results

The results of both tests for each period are reported in the last two columns of Table

2. Both tests reject the null hypothesis of tail index equivalence for the first 4 periods

(i.e. 2000-2003, . . . , 2003-2006). However, the null hypothesis is not rejected at the 95%

confidence level for the last 3 periods (i.e. 2006-2009, . . . , 2008-2011). For the periods

2004-2007 and 2005-2008, the Minmax Tail Shape test rejects the null hypothesis while

the Benchmark Tail Shape test fails to reject the null hypothesis at the 95% confidence

level. Note that the p value of the Minmax Tail Shape test in the period 2005-2008 is

close to 5%. From these results, we conclude that the tail indices are cross-sectionally

heterogeneous for the period starting from 2000 and ending in 2004. On the contrary,

the tail indices are cross-sectionally equivalent for the period from 2008 to the end of

2011. The overlapping nature of the tests makes it difficult however to determine when

the actual break date occurs.

To detect the break, we take a more granular approach by testing the tail index

equivalence hypothesis using a one-month rolling window. In doing so, we are able to

examine more precisely when tail index equivalence holds and when it fails. Figure 1

shows the results of the one month rolling window analysis over the entire sample period.

The plots indicate the p-values of the two tests. From the Benchmark Tail Shape test,

we see that we do not reject tail index equivalence for all dates after September 2008 at

the 95% confidence level. The Minmax Tail Shape test provides a similar pattern.

The analysis is consistent with the theoretical prediction of Moore et al. (2012) that

tail index equivalence should hold when investors have a strong downside risk concern,

e.g. they hold a sufficiently low admissible probability of failure. The initiation of the

financial crisis increased investor awareness of downside risk. Before the crisis a poten-
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tial high admissible probability level permitted heterogeneity in the tail indices among

stocks traded in a common market. Investor passiveness towards downside risk preceding

the crisis, coupled with models that underestimated the probability of extreme down-

side returns (e.g. Gaussian distribution assumption), potentially created an environment

where the downside risk of stocks were mis-priced in the market. On the contrary, after

the financial crisis hit, investors became increasingly aware of the downside risk inherent

in their portfolios and began to hold a lower admissible probability of failure to guard

against it. This leads to the homogeneity in the tail indices.

When the tail index equivalence hypothesis holds, the downside tail risk of equity

returns are characterized by the scale parameter of the tail distribution. In the remainder

of the paper we focus on the periods where tail index equivalence is not rejected and

analyze cross-sectional downside tail risk heterogeneity via the scale parameter.

4 Statistical Tests: Tail Risk Equivalence

When the tail index equivalence hypothesis holds, the theoretical model in Moore

et al. (2012) describes how downside risk can be priced by safety-first investors. More

specifically, investors are compensated with higher expected return for holding assets with

higher downside risk, e.g. assets with a larger scale parameter. Given the heterogeneity

in expected returns, heterogeneity in the scale parameters should be allowed. In this

section, we provide evidence on scale heterogeneity by testing for tail scale equivalence

for the periods where tail index equivalence. This is equivalent to testing for tail risk

equivalence.

4.1 The setup of the tests

We construct statistical test on whether the tail indices and scales of different stock

return series are jointly equivalent. The null hypothesis is that H0 : α1 = α2 = · · · =

αd and A1 = A2 = · · · = Ad.

We recall the notion that the loss return are Xi,t = −Ri,t, i = 1, ..., d and t = 1, ..., n.
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Under the null hypothesis, from (1.2), we get that V aR1(p)
V aR2(p)

→ 1 as p → 0. This is the

theoretical relation we aim to test. An estimator for V aRi(p) at the p = k
n
level is the

(k+1)-th high order statistic Xi,(n−k). Due to the cross-sectional dependence across stock

returns, the order statistics are also dependent.

We continue with the setup on the dependence issue as in (3.1). The following Propo-

sition provides the joint limit distribution of the d+ 1 order statistics.

Proposition 4.1 With proper choice of k sequence such that as n → ∞,

√
k

(
Xi,(n−k)

V aRi(k/n)
− 1

)
d→ N

(
0,

1

α2
i

)
,

for all i = 1, ..., d,M , we have that,

√
k

(
X1,(n−k)

V aR1(k/n)
− 1, · · · , Xd,(n−k)

V aRd(k/n)
− 1,

XM,(n−k)

V aRM(k/n)
− 1

)T
d→ N(0T ,BΣB),

where 0 is a (d + 1) × 1 vector with zero component, B = diag {1/α1, · · · , 1/αd, 1/αM}

and Σ = (τi,j)(d+1)×(d+1) with τi,j indicating the R(1, 1) measure between stock i and j,

i, j = 1, · · · , d,M .

From Proposition 4.1, the construction of the tests is analogous to the tests of tail index

equivalence.

We first construct a Minmax Tail Risk test. We use ᾱ = 1
d

∑d
i=1 α̂i as an estimator

for the equivalent marginal tail index. Then, consider the following test statistic

T1 = ᾱ
max1≤i≤d Xi,(n−k) −min1≤i≤d Xi,(n−k)

X̄(n−k)

,

where X̄(n−k) =
1
d

∑d
i=1 Xi,(n−k). Under the null hypothesis, from the joint limit distri-

bution of the order statistics, we get that as n → ∞,
√
kT1 converges to a limit distri-

bution as maxdi=1 Ni −mind
i=1 Ni. Here (N1, · · · , Nd)

T is a random vector that follows a

d−dimensional normal distribution with mean zero and covariance matrix Σ1, which is a

submatrix of Σ consisting of the first d rows and d columns.

To test the hypothesis including the market return, we construct a Benchmark Tail
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Risk test statistic as,

T2 = α2
M

d∑

i=1

(
Xi,(n−k)

XM,(n−k)

− 1

)2

.

Similar to the discussion for the first test, under the null hypothesis, it follows that as

n → ∞, kT2 converges to a limit distribution as
d∑

i=1

(Ni − NM)2. The random vector

(N1, · · · , Nd, NM)T follows a (d + 1)−dimensional normal distribution with mean zero

and covariance matrix Σ.

The limit distribution of the two tests are exactly the same as those testing whether

the tail indices are equivalent. Thus, the simulation methods on the limit distributions

are also identified.

4.2 Results

We apply both the Minmax Tail Risk and the Benchmark Tail Risk tests to test

the tail risk equivalence hypothesis. The results of both tests are given in the last two

columns in Table 3. Under both testing procedures we reject the null hypothesis of joint

equivalence of both the tail index and the scale parameter, and therefore tail risk, at the

95% confidence level in the last four periods (2005-2008, . . . , 2008-2011). We therefore

conclude that the downside tail risks across stocks are heterogeneous in each period. By

showing that downside tail risk of stocks have significant cross-sectional variation, coupled

with the result of tail index equivalence in the last four periods, we provide evidence in

support of cross-sectional heterogeneity in the scale parameter. We are aware of the fact

that the evidence of tail scale heterogeneity is weak, because the conclusion is drawn from

combining observations from two interrelated tests.

5 Determinants of Downside Tail Risk

5.1 Potential Determinants

In this section, we provide alternative evidence for the tail scale heterogeneity by in-

vestigating the cross-sectional determinants of the scale parameter from firm-level char-
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acteristics. If heterogeneity in the scale is due to estimation error, then variation in the

scale parameter estimates should not be explained by difference in firm characteristics.

On the other hand, if cross-sectional variation in the scales can be explained by varia-

tion in the firm characteristics then the heterogeneity cannot be attributed to estimation

error.

We analyze the heterogeneity of downside tail risk in the four periods, 2005-2008,...,2008-

2011, by identifying cross-sectional determinants of the scale parameter from firm-level

characteristics. Since Moore et al. (2012) show that the scales should be priced in the

expected returns when the tail index hypothesis holds, we conjecture that the potential

determinants of the scale parameter should be similar to those of expected returns in

the prevailing literature. Because expected returns have to compensate for scale het-

erogeneity, the chosen firm-level characteristics are the known drivers of cross-sectional

variation in expected stock returns. These include size, book-to-market equity, leverage,

earnings-to-price, share turnover and the bid-ask spread in addition to the market beta

backed out from the CAPM model.

5.2 Data and Methodology

We collect annual firm-level accounting data for the same 230 non-financial firms used

in Section 3.1 from the COMPUSTAT data source for the years 2004,...,2007. The sample

periods are chosen to pre-date by one year the periods where we find evidence of tail index

equivalenceBy taking firm-level characteristics from the year preceding the sample period

of the scale estimates, we aim to analyze forward-looking drivers of tail risk.. For each

year in the sample period, we calculate firm characteristics for each firm. The size of a

firm is calculated as the logarithm of its year-end market capitalization. The book-to-

market ratio is calculated by taking the logarithm of the ratio of year-end book value

of equity and the year-end market value of equity. This identification is often related to

the growth potential of a firm. A firm with a high book-to-market ratio is a “growth

stock”, whereas a firm with a low book-to-market equity ratio is a “value stock”. Firm

leverage is calculated as long-term outstanding debt divided by year-end value of book
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equity. The earnings-to-price ratio is calculated by the earnings per share divided by the

share’s year-end closing price. It is often referred to as the “earnings yield”. A higher

earnings-to-price ratio translates to a higher earnings yield. The variable that proxies

for share liquidity is calculated as the logarithm of the ratio of total volume of common

shares traded in the year and by the total number of common shares outstanding. The

proxy for investor asymmetric information is calculated as the difference in the highest

annual closing price and the lowest annual closing price of the stock divided by the average

annual closing price of the stock. We refer to this variable as the bid-ask spread. The

higher the bid-ask spread the greater the level of asymmetric information or uncertainty

regarding the firm’s stock value. Finally, the market beta is taken from the following

estimate

βi =
Cov{Ri, Rm}

σ2
m

where Ri and Rm are daily return series of the firm’s stock and the market portfolio

during the year and σm is the variance on the market return during the same year.

For each period consisting of 4 years, we match the estimated scale parameters with

the annual accounting data recorded at the end of the year preceding the beginning of

the period (e.g. the scale parameter estimated over the 2005-2008 period is matched

with accounting data for 2004). The selection of the 230 firms used in Section 3.1 was

conditioned ex-ante on having available firm characteristics with no missing observations

over the period of analysis. Furthermore, because the fiscal year end date of firms may

not always align with the calendar year end date, we only select firms with equivalent

fiscal and calendar year end dates.

To analyze the potential firm level determinants that drive the differences in the

scale parameter, we run 4 separate cross-sectional regressions. An estimate of the scale

parameter directly follows from an estimate of the tail index as Â = k
n
X α̂

n,n−k, where

k = k(n) is the same intermediate sequence used in the estimation of the tail index. Hall

(1982) shows that the scale parameter is consistent and asymptotically normal distributed

as,
√
k(log

n

k
)−1(

Â

A
− 1) ∼ N (0, 1). (5.1)
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Since we are under the assumption of tail index equivalence, we estimate the scale

parameter by using the sample mean tail index, α as

Âi =
k

n
Xα

i,n,n−k.

In taking the mean tail index we focus specifically on the scale parameter. Notice that

equation (5.1) is equivalent to

√
k(log

n

k
)−1(log Â− logA) ∼ N (0, 1).

Since the logarithm of the scale is normally distributed with a known variance, it is

convenient to use it directly in the regression against the firm characteristics as follows,

log Âi = β0 +
m∑

j=1

(βjΓ
j
i ) + ǫi, i = 1, ..., d (5.2)

where Γj
i are the firm characteristics from the accounting data6.

5.3 Results

Table 4 reports the descriptive statistics of the firm characteristics for the year 2007

and Figure 2 illustrates a series of scatter plots of the scale parameter estimates from the

2008-2011 period against the firm level characteristics from 20077. Table 5 reports the

regression results. We find the size of the firm, measured by market capitalization, has a

significantly negative relation to the scale parameter. Therefore firm downside tail risk is

significantly lower for large firms. Intuitively, smaller firms are less able to diversify risks

relative to their larger counterparts. This leaves them more susceptible to idiosyncratic

shocks and less able to withstand large aggregate shocks.

The book-to-market ratio has a significant positive relation to the scale parameter

6In the regression for each window, we further eliminate any firm with negative book-to-market ratio.
The negative book-to-market ratio of a firm presents problems in terms of lack of economic interpretation.
In the case of the book-to-market ratio, a negative value also presents problems by not permitting a log
transformation.

7Descriptive statistics and scatter plots for the remaining periods are available upon request.
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over each of the 4 periods. It is significant at the 99% confidence level for the 2005-2008

period and then declines in significance over the remaining three periods (95% in 2006-

2009 and 90% in 2007-2010 and 2008-2011). This result implies that “growth” stocks have

higher downside tail risk than “value” stocks. Firms are able to deliver higher growth by

undertaking riskier projects with higher expected return. These firms would thus bear

greater downside tail risk potential than “value” firms that are involved in safer projects.

Higher leverage is found in the regressions to be positive and significant in relation

to the scale parameter in 3 of 4 periods. For the period encompassing 2006-2009 and

2007-2010 it is significant at the 99% confidence level and it is significant at the 95%

confidence level for the 2008-2011 period. Firms that fund their business activities with

greater amounts of debt are likely to have more volatile returns. One simple explanation

follows from the fact that leverage has an amplifying effect on the risk in equity return

compared to that in the return on average assets (RoAA) by

Ri = RoAA · (Leverage+ 1).

Given the level of downside risk in RoAA, firms that have higher leverage will have more

extreme downside losses.

Asymmetric information regarding investor perception of a firm’s stock, captured by

the bid-ask spread, is positively and significantly related to the scale parameter in each

of the four regression periods at the 99% confidence level. A greater bid-ask spread

corresponds to greater uncertainty regarding the future value of the firm. Firms with

higher uncertainty are more sensitive to new information regarding the firm’s future.

Adjustments to a firm’s value based on the arrival of new information will come in the

form of sharper price corrections. Hence, firms with higher bid-ask spreads have a greater

chance of experiencing large negative (or positive) idiosyncratic shocks.

Lastly, the coefficient on the estimated market beta is positive and significant (at

the 99% confidence level) in only the 2008-2011 period. This can be explained by the
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single-factor model. Suppose the return of a stock follows

Ri = βiRM + ǫi,

where ǫi is an idiosyncratic factor with scale Aǫi , AM is the scale parameters of the market

factor. Assume that the idiosyncratic and market factor share a common tail index α,

we get that the scale parameter of the stock return is

Ai = βα
i AM + Aǫi ,

This equation shows a positive relation between the market beta and the scale parameter.

To conclude, the heterogeneity in the scale parameter is explained by the firm-level

characteristics. From the regression results, we find that book-to-market ratio, bid-ask

spread, and the market beta are positive and significantly related to the scale parameter,

while size and leverage are negative and significantly related to the scale. These results

provide alternative evidence for tail scale heterogeneity.

6 Conclusion

This paper analyzes cross-sectional differences in tail risk across equity returns and

further identifies drivers of these tail risks. If stock returns are assumed to follow a heavy-

tailed distribution, then the downside tail risk is determined by two parameters: the tail

index and scale. In the case of Gaussian distribution, this would only be one parameter

(variance). Moore et al. (2012) show that if large downside losses are of sufficient concern

to investors then the downside tail distribution of asset returns will share a homogeneous

tail index. This is referred to as the “tail index equivalence hypothesis”. We empirically

test this hypothesis by implementing two novel testing procedures, the Minmax Tail

Shape and Benchmark Tail Shape tests, over a sample of 273 US non-financial firms. We

do not reject tail index equivalence between the years 2008 and 2011. During this period,

the heterogeneity in downside tail risk is attributed to the scale of the tail distribution.
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The cross-sectional drivers of tail risk are the following firm-level characteristics: the size,

book-to-market ratio, leverage, bid-ask spread and market beta. Since expected returns

have to compensate for the variation in tail scale, the same factors are found to explain

the scale as in the case of expected returns.

Identification of the firm level drivers of downside tail risk help investors evaluate

potential tail risks when holding equities from different firms. Based on the evaluation

of firm-level characteristics, investors can construct a portfolio of equities which accom-

modates both their desired return and downside risk appetite. From a corporate finance

viewpoint, our result allows firm managers to better control their downside tail risk in

order to attract long-term risk averse investors.
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7 Appendix

7.1 Proof of Proposition 2.1

We begin by reviewing Proposition 7.2.3 in De Haan and Ferreira (2006). All the

other referenced theorems or examples used in this proof are also from this book. Under

the bivariate EVT setup, denote F1 and F2 as the marginal distribution of (X1, X2) and

Ui =
(

1
1−Fi

)←
as the marginal quantile function for i = 1, 2. Then, with proper conditions

on the k series, under a proper Skorokhod construction, there exists a Gaussian process

W (x, y) on [0, T ]× [0, T ] for any finite T , such that

sup
0≤x,y≤T

|
√
k

(
1

k

n∑

t=1

11−F1(X1,t)≤kx/n or 1−F2(X2,t)≤ky/n

− n

k

{
1− F

(
U1

( n

kx

)
, U2

(
n

ky

))}
−W (x, y)| → 0. units(7.1)

holds almost surely. Here, the process W (x, y) is a mean zero process with covariance

structure

Cov(W (x1, y1),W (x2, y2)) = x1∧x2+ y1∧ y2−R(x1, y1)−R(x2, y2)+R(x1∨x2, y1∨ y2).

By taking y = 0 in (7.1), we get that

sup
0≤x,y≤T

∣∣∣∣∣
√
k

(
1

k

n∑

t=1

11−F1(X1,t)≤kx/n − x

)
−W (x, 0)

∣∣∣∣∣→ 0.

almost surely. Comparing this expression with the proof of Theorem 5.1.2 and 5.1.4, we

observe that the process W (x, 0) is a standard Brownian motion that is used to construct

the limit process of the tail empirical process. Thus from Example 5.1.5, we get that

√
k

(
1

α̂1

− 1

α1

)
P→ 1

α1

(∫ 1

0

W (u, 0)
du

u
−W (1, 0)

)
.
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This is equivalent to

√
k

(
α̂1

α1

− 1

)
P→ −

(∫ 1

0

W (u, 0)
du

u
−W (1, 0)

)
=: N1.

Similarly, we get that

√
k

(
α̂2

α2

− 1

)
P→ −

(∫ 1

0

W (0, v)
dv

v
−W (0, 1)

)
=: N2.

Since W is a bivariate Gaussian process, we get that (N1, N2) follows a bivariate normal

distribution, with mean zero, and marginal variance 1. The last step is to calculate their

covariance. The calculation is as follows

Cov(N1, N2) = Cov

(∫ 1

0

W (u, 0)
du

u
−W (1, 0),

∫ 1

0

W (0, v)
dv

v
−W (0, 1)

)

=

∫ 1

0

∫ 1

0

R(u, v)
du

u

dv

v
−
∫ 1

0

R(1, v)
dv

v
−
∫ 1

0

R(u, 1)
du

u
+R(1, 1)

=

∫

0≤u≤v≤1

R(u, v)
du

u

dv

v
−
∫ 1

0

R(u, 1)
du

u

+

∫

0≤v≤u≤1

R(u, v)
du

u

dv

v
−
∫ 1

0

R(1, v)
dv

v

+R(1, 1)

=: I1 + I2 +R(1, 1).

Due to the homogeneity of the R function, we have that

∫

0≤u≤v≤1

R(u, v)
du

u

dv

v
=

∫ 1

0

dv

∫ v

0

R(u/v, 1)
du

u

=

∫ 1

0

dv

∫ 1

0

R(u, 1)
du

u

=

∫ 1

0

R(u, 1)
du

u
.

Hence I1 = 0. Symmetrically, we get that I2 = 0. Thus Cov(N1, N2) = R(1, 1).�
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7.2 Simulation of the limit distribution

The test procedures, described in Subsection 3.1, require simulated observations from

the limit distribution of the test statistics. That is based on simulating a multivariate

normal distributed random vector (N1, · · · , Nd, NM)T with mean zero and covariance Σ

which consists of all bivariate τ measure between each pair of stocks. A conventional

procedure would be a two-step approach: first estimate the covariance matrix; second

employ a proper simulation technique to simulate a multivariate normal distribution with

the estimated covariance matrix. Instead of using such a two-step approach, we provide

a fast simulation procedure in one step without pre-estimating the covariances. This

procedure is feasible thanks to the structure of the covariance matrix to be estimated.

Recall that the estimator for τi,j for i, j = 1, 2, · · · , d,M is given as

τ̂i,j =
1

k

n∑

t=1

1
Xi,t>Xi,(n−k) and Xj,t>Xj,(n−k)

=
1

k

(
1Xi,1>Xi,(n−k)

, · · · , 1Xi,n>Xi,(n−k)

)(
1Xj,1>Xj,(n−k)

, · · · , 1Xj,n>Xj,(n−k)

)T
.

Notice that this expression is also valid in the case that i = j, as in this case τ̂i,i = 1 = τi,i.

By writing each element in the estimator of Σ as the expression above, we get that

Σ̂ =
1

k
ITn×(d+1)In×(d+1),

where In×(d+1) = (It,i)t=1,··· ,n;i=1,··· ,d,M with It,i = 1Xi,t>Xi,(n−k)
is an indicator matrix indi-

cating whether the i-th stock on day t is having a loss exceeding a threshold corresponding

to the i-th shock, indicated by Xi,(n−k).

With expressing the estimator of the covariance matrix Σ̂ as a matrix product, we

have the following simulation procedure for the random vector (N1, · · · , Nd, NM)T . First,

simulate n independently and identically standard normally distributed random variables

(G1, · · · , Gn)
T . Subsequently, calculate

(N1, · · · , Nd, NM)T =
1√
k
(G1, · · · , Gn) · In×(d+1).
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It is obvious that the simulated (d+1)−dimensional random vector follows a multivariate

normal distribution with mean zero and covariance matrix Σ̂. By repeating the above

procedure, we obtain a simulated sample of the random vector (N1, · · · , Nd, NM)T with

the desired distribution. After this, it is straightforward to obtain simulated random

variables following the limit distributions of the test statistics.
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8 Tables and Figures

Table 1: Test Results on Tail Index Equivalence Hypothesis

λ 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Sample 1

α = 3

Minmax 3.6 2.8 2.6 3.1 2.9 4.5 3.6 3.8 4.5 3.0 4.7

Benchmark 5.3 6.1 6.0 5.2 6.0 5.4 4.2 3.8 2.5 2.0 1.0

α = 4

Minmax 2.7 2.7 1.0 1.9 2.6 2.1 2.7 2.9 3.3 2.5 2.5

Benchmark 5.0 6.2 5.0 6.0 5.6 4.2 3.6 3.7 2.6 2.1 0.8

Sample 2

α1 = 3, α2 = 4

Minmax 14.4 14.6 14.3 13.3 14.5 15.5 13.7 12.6 10.1 7.1 5.0

Benchmark 16.0 18.4 18.2 15.9 12.4 10.1 9.3 6.8 3.1 1.1 1.3

α1 = 4, α2 = 3

Minmax 13.7 17.0 14.6 14.8 15.1 13.9 12.6 9.1 6.8 3.3 1.5

Benchmark 4.3 4.0 3.3 2.8 3.8 1.7 2.4 1.7 1.2 0.7 0.5

α1 = 3, α2 = 5

Minmax 42.0 40.2 43.1 41.5 44.4 42.7 46.2 38.1 35.1 26.0 16.2

Benchmark 33.7 35.6 31.4 32.5 27.1 24.3 19.9 14.3 10.8 6.9 3.6

α1 = 5, α2 = 3

Minmax 40.2 39.9 41.5 39.0 34.5 35.1 26.6 17.3 9.9 6.2 3.3

Benchmark 5.0 5.6 5.7 5.9 6.0 4.3 4.2 2.2 2.1 1.7 0.6

Note: This table reports the percentage of simulations in which the p-value falls below the 5% level,
under the null hypothesis of tail index equivalence. The data are generated as in Sample 1 and Sample
2 in Subsection 2.2. For each given λ and sample setup, we simulate 1000 samples with each sample
consisting of 1000 observations. The parameter λ indicates the tail dependence between the simulated
observations. λ = 0 corresponds to tail independence, while the increase of λ corresponds to an increase
in tail dependence.
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Table 2: Summary statistics of the tail index and test on equivalence

MIN MEAN MAX STD α̂m τ̂ τ̂m φ̂m φ̂b

00-03 1.39 3.01 5.20 0.62 4.56 0.09 0.15 0.00 0.00

01-04 1.55 2.95 5.08 0.60 4.26 0.10 0.17 0.00 0.00

02-05 1.62 2.94 5.00 0.59 4.01 0.10 0.19 0.00 0.00

03-06 1.36 3.04 5.16 0.66 4.46 0.085 0.15 0.00 0.00

04-07 1.28 3.02 4.77 0.63 3.28 0.11 0.20 0.01 0.17

05-08 1.36 2.38 4.41 0.51 1.90 0.26 0.40 0.04 0.43

06-09 1.38 2.69 4.18 0.52 2.38 0.26 0.42 0.41 0.66

07-10 1.56 2.78 4.36 0.56 2.52 0.26 0.41 0.11 0.56

08-11 1.81 2.86 4.50 0.53 2.50 0.27 0.43 0.42 0.60

Note: This table reports a summary of statistics of the tail indexes of stock returns for each rolling
window. The dataset consists of 273 US equities and the benchmark S&P 500 Composite Index, with
daily returns from 01.01 2000 to 31.12.2011. α̂M is the tail index estimate for S&P 500 Index. τ̂ is the
average value of tail dependence estimates across all pairs of equities, whereas τ̂M is the average value
of tail dependence estimates between equities and S&P 500 Index. The φ̂m and φ̂b columns report the
p-values based on the test statistics in Subsection 2.1 for testing the tail index equivalence. The m and
b indicate the Minmax Tail Shape and Benchmark Tail Shape tests respectively.

31



Table 3: Summary statistics of the scale parameter and test on equivalence

MIN MEAN MAX STD Âm φ̂m φ̂b

00-03 0.18 33.24 2230.53 160.53 2.49 0.00 0.00

01-04 0.19 14.10 437.13 41.51 1.36 0.00 0.00

02-05 0.21 7.90 254.12 24.83 0.67 0.00 0.00

03-06 0.14 6.04 406.16 28.02 0.16 0.00 0.00

04-07 0.09 4.88 154.96 14.63 0.11 0.00 0.00

05-08 0.15 3.42 66.10 7.09 0.18 0.00 0.00

06-09 0.19 10.15 299.63 26.72 0.48 0.00 0.00

07-10 0.25 15.15 702.06 56.22 0.62 0.00 0.00

08-11 0.23 20.27 997.94 72.33 0.68 0.00 0.00

Note: This table presents a summary statistics of the scale parameter for each rolling window. The
dataset consists of 273 US equities and the benchmark S&P 500 Composite Index, with daily returns
from 01.01 2000 to 31.12.2011. ÂM is the scale parameter estimate for S&P 500 Index. The φ̂m and
φ̂b columns report the p-values based on the test statistics in Subsection 4.1 for testing the tail risk
equivalence. The m and b indicate the Minmax Tail Risk and Benchmark Tail Risk tests respectively.
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Figure 1: p - values: Four-year rolling window analysis

Note: The figure plots the p-values for both Minmax and Benchmark tests for each rolling window.
The dataset consists of 273 US equities and the benchmark S&P 500 Composite Index with daily returns
from 01.01 2000 to 31.12.2011. We move the four-year rolling window monthly.
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Table 4: Descriptive Statistics: Firm Characteristics, 2007

Variable MEAN STD MIN MAX

Market Cap (log) 7.192 1.863 2.766 13.131
Book-to-Market Equity (log) -0.932 0.825 -6.354 0.888
Leverage 0.177 0.163 0 0.718
Earnings-to-Price 0.038 0.082 -0.698 0.147
Share Turnover (log) 7.54 0.702 5.213 9.111
Bid-Ask Spread 0.533 0.24 0.116 1.925
Market Beta 0.958 0.395 -0.296 2.283

Note: The table reports the summary statistics of the firm characteristics: Market Capitalization (log),
Book-to-Market Equity (log), Leverage, Bid-Ask Spread, Market Beta, Share Turnover (log), Earnings-
to-Price Ratio in the end of 2007.
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Figure 2: Scatter Plots: Scale (2009-2011) vs. Firm Characteristics (2007)

Note: The figure presents the scatter plots of the scale (log), estimated from the daily returns in the
period 2008-2011, against the firm characteristics calculated from 2007 year end data: Market Capi-
talization (log), Book-to-Market Equity (log), Leverage, Bid-Ask Spread, Market Beta, Share Turnover
(log), Earnings-to-Price Ratio.
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Table 5: The Determinants of Downside Tail Risk

(1) (2) (3) (4)
2004 2005 2006 2007

Size -0.131∗∗∗ -0.158∗∗∗ -0.196∗∗∗ -0.174∗∗∗

(-5.68) (-5.27) (-6.18) (-6.13)

BE/ME 0.136∗∗∗ 0.133∗∗ 0.134∗ 0.102∗

(3.03) (2.45) (1.88) (1.76)

Leverage 0.314 1.057∗∗∗ 1.386∗∗∗ 0.643∗∗

(1.21) (3.22) (4.58) (2.38)

E/P 0.498 0.435 0.230 -1.328∗

(0.94) (0.75) (0.23) (-1.71)

Turnover 0.0105 0.105 0.178∗∗ 0.0648
(0.22) (1.56) (2.48) (1.01)

BidAsk 1.108∗∗∗ 0.994∗∗∗ 0.863∗∗∗ 1.103∗∗∗

(6.80) (4.87) (3.38) (4.26)

Beta 0.0245 0.0566 0.0730 0.510∗∗∗

(0.34) (0.55) (0.85) (3.52)

Constant 0.563 0.712 0.650 1.134∗∗

(1.56) (1.57) (1.31) (2.40)
Observations 217 219 222 225
R2 0.444 0.348 0.372 0.455

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The above table lists the results of four regressions over four sample periods. The dependent
variable is the logarithm of the scale parameter is estimated over a four year window, e.g. 2005-2008,
2006-2009, 2007-2010, and 2008-2011. The dependent variables are taken as year-end data for the years
preceding the estimation of the dependent variable, e.g. 2004, 2005, 2006, and 2007. These are measured
as follows: Size is the logarithm value of market capitalization (ME), BE/ME is the logarithm value of
the book-to-market equity, Leverage is the debt-to-equity ratio, and E/P is the earnings-to-price ratio.
Turnover is the share turnover and BidAsk is the bid-ask difference. Beta is the market beta estimated
from CAPM model.
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