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Abstract

This paper studies the problem of identifying and estimating the normal-form payoff pa-

rameters of a simultaneous, discrete game of complete information where the equilibrium

concept employed is correlated equilibrium rather than Nash equilibrium. We show that

once we extend the equilibrium concept from Nash equilibrium to the correlated equi-

librium, the identification and estimation of game-theoretic econometric models become

simpler, since this extension avoids the usual requirement of computing all equilibria of

games. To deal with the presence of multiple equilibria, unlike most other work on empir-

ical games, we make use of the moment inequality restrictions induced by the underlying

game-theoretic econometric models without making equilibrium selection assumptions.

The resulting identified features of the model are sets of parameters such that the choice

probabilities predicted by the econometric model are consistent with the empirical choice

probabilities estimated from the data. The importance sampling technique is used to

reduce computational burden and overcome the non-smoothness problems. We also show

that the model selection tests for moment inequality models can be used to test equilib-

rium concepts such as correlated equilibrium versus Nash equilibrium.
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1 Introduction

Game theory is one of the cornerstones of modern economic theory, and much progress

has been made in clarifying the nature of strategic interaction in economic models. It is

the benchmark theoretical model for analyzing strategic interactions among a handful of

players. Given the importance of gaming in economic theory, the empirical analysis of

games has been the focus of a recent literature in econometrics and industrial organization.

Econometrically, a discrete game-theoretic econometric model is a generalization of a

standard discrete choice model, such as the conditional logit or multinomial probit model.

An agent’s utility is often assumed to be a linear function of covariates and a random

preference shock. However, unlike a discrete choice model, utility is also allowed to depend

on the actions of other agents. Such modeling strategy was first suggested by the seminal

work of Bresnahan and Reiss (1990, 1991).

Although there are numerous studies on both methodology and empirical applications

of game-theoretic econometric models, the most widely studies is the class of incomplete

information static games and dynamic games1. The complete information games received

fewer studies due to its computational complexity, since it involves multidimensional in-

tegrals, moreover, complete information assumption will generally induce the presence of

multiple equilibria Morris and Shihn (2003). Dealing with multiple equilibria is a difficult

task because a particular realization of observables and a particular value of the payoff pa-

rameter vector may be consistent with difference outcomes of the model. For the presence

of multidimensional integrals, Bajari, Hong, and Ryan (2010) and Ciliberto and Tamer

(2009) provide simulation-based estimators for the static complete information game. For

the presence of multiple equilibria, there are three main different approaches adopted

by the existing research. The first one is that introducing a specific equilibrium selec-

1Studies of incomplete information static games include Sweeting (2005), Seim (2006), Aradillas-Lopez
(2007, 2010) and Bajari, Hong, Krainer, and Nekipelov (2010), while the studies of dynamic game in-
cludes Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-Dengler (2008) among others.
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tion mechanism to determine which equilibrium will be played among several equilibria,

Bajari, Hong, and Ryan (2010) and Jia (2008) use such approach to studies empirical

static games. While a specific equilibrium selection mechanism can provide enough in-

formation for identifying the underlying game, in general, we have limited knowledge

about the equilibrium selection mechanism, and any misspecificaiton about it will lead

inconsistent estimation. The second approach which first used by Bresnahan and Reiss

(1990) is that transforming the outcome variable of the game from action profile to some

other variable, which satisfies that, even if there are multiple equilibria in the game, it

does a unique prediction of this particular variable, such as the number of entrants in the

market used by Bresnahan and Reiss (1990). This is a useful method as long as we can

find such a particular variable. The last approach proposed by Tamer (2003) is that doing

inference of the empirical games without making any assumption about the equilibrium

selection mechanism, the cost is that in general, one can only achieve the partial iden-

tification of the model, Berry and Tamer (2007) and Ciliberto and Tamer (2009) based

on this method formally study the empirical static games. Although these approaches

can handle the inference in the presence of multiple equilibria, a common practical issue

is that all of them require the computation all the Nash equilibria of underlying game,

which may result in heavy computational burden if not impossible when dealing with

large games2.

Here, we depart from the common used equilibrium concept – Nash equilibrium, and

assume that the outcome of the game is generated by a more broad rational rule – cor-

related equilibrium which proposed by Aumann (1974, 1987). A most interesting fea-

ture of this extension of equilibrium concept is that the identification and estimation of

empirical games become simpler, even if it spreads the corresponding equilibrium set3.

2Mckelvey and Mclennan (1996) analyze the computational method for computing the Nash equilib-
rium set for general game and point the difficulty associated with this issue.

3Chwe (2007) also study the identification of games based on correlated equilibrium in a no random-
ness environment.
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The advantages of correlated equilibrium in the context of identification comes from its

convexity, that is, any aggregation of correlated equilibria is also a correlated equilibria

which is not true for Nash equilibrium. We also adopt the partial identification approach

to deal with the presence of multiple equilibria following Berry and Tamer (2007) and

Ciliberto and Tamer (2009), where the identified set is characterized by moment inequal-

ity restrictions. But our approach does not require the computation of all the equilibria

(either correlated or Nash), but only needs to compute some ”extreme” equilibria, which

can be obtained from simple linear programming. This does not mean that computing

the whole set of correlated equilibria is simple4, the key feature is that it does not need

the whole set of equilibria. The importance sampling technique is used to approximate

the multi-dimensional integrals. Given the existing research on empirical games based

on Nash equilibrium, and the results established in this paper based on correlated equi-

librium, we also provide a test framework for testing equilibrium concepts based on the

moment inequality model selection test developed by Shi (2010). The nested relation-

ship between Nash equilibrium and correlated equilibrium makes this test similar to the

famous Hausman test (Hausman, 1978).

The paper is organized as follows. In section 2 we outline the general discrete

simultaneous-move game with complete information to be estimated and formulate its

equilibrium conditions based on correlated equilibrium, several important properties of

correlated equilibrium are also presented. In section 3 we discuss the problem of partial

identification of the model. Section 4 describes the procedure for estimating the identified

set which formulated in section 3, which also includes the important issues about impor-

tance sampling approximation of the multiple integrals and the computation of ”extreme”

correlated equilibrium. Section 5 introducing a test procedure for testing correlated equi-

librium versus Nash equilibrium. A simple Monte Carlo experiment is conducted in section

4Papadimitriou and Roughgarden (2008) develop a polynomial-time algorithm for finding correlated
equilibria and also have a discussion about the difficulty in computing the whole set of correlated equi-
libria.
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6. Section 7 simply concludes the paper.

2 The Model

There are T independent repetitions of a simultaneous-move (normal form) discrete game

of complete information. In each game there are i = 1, ..., N players. In each repetition

of these games, each player i chooses a action ai from the finite set of actions Ai simulta-

neously. Define A = ×iAi and let a = (a1, ..., aN) denote a generic element of A. Player

i’s von Neumann-Morgenstern (vNM) utility is a mapping ui : A
N → R, where R is the

real line. We will sometimes drop the subscript t for simplicity when no ambiguity would

arise.

Following Bresnahan and Reiss (1990, 1991), assume that the vNM utility of player i

can be written as:

ui(a, xi, ǫi; θ1) = Πi(xi, a; θ1) + ǫi(a) (1)

where a ∈ AN . In Equation (1), player i’s vNM utility from outcome a is the sum of two

terms. The first term Πi(xi, a; θ1) is a function which depends on action profile (outcome)

a, the vector of actions taken by all of the players, x, the players’ characteristics and some

other variables which influence utility, and parameters θ1, covariates x are observed by the

econometrician. The second term ǫi(a), is a random preference shock which reflects the

information about utility that is common knowledge to the players (since we study the

game with complete information) but not observed by the econometrician. Unlike most

other study on empirical games, here the preference shocks depend on the entire vector of

actions a, not just the actions taken by player i. As argued by Bajari, Hong, and Ryan

(2010), this is a more general setting. For example, in a simple entry game, the unobserved

information about one player’s payoff to the econometrician may not only vary across his

own actions but also across the actions of other players. Let ǫi denote the vector of
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the individual shocks ǫi(a) and ǫ denote the vector of all preference shocks, ǫi(a) are

assumed to be independent with a density gi(ǫi(a)|θ2) and joint distribution g(ǫ|θ2) =
∏

i

∏

a∈A

gi(ǫi(a)|θ2), where θ2 denotes parameters of the distribution.

Given these T independent repetitions of the game with the above structure, the

researcher can observe covariates xt and the action profile aot chosen by all players in

each repetition these games. Unlike most other studies of empirical games, here we as-

sume that all players choose their action according to the correlated equilibrium rather

than Nash equilibrium, the studies of empirical games based on Nash equilibrium in-

clude Bajari, Hong, and Ryan (2010) and Ciliberto and Tamer (2009) among others. As

a generalization of Nash equilibrium, Aumann (1974, 1987) provided a simple rationale

for equilibrium – correlated equilibrium, which is formulated in a manner that does away

with the dichotomy usually perceived between the ”Bayesian” and the ”game-theoretic”

view of the world. The most notable feature of the correlated equilibrium is that it does

not require explicit randomization on the part of the players. Formally, given the game

structure defined above, and let (Ω, π) be a probability space, Pi be a partition of Ω,

i = 1, ..., N , and let

Qi = {qi : Ω → A|qi is Pi measurable} (2)

where the partition can be expressed as Pi = {Pi(ω)}ω∈Ω, and Pi(ω) is the element of

the partition containing ω. Then the original definition of correlated equilibrium can be

stated as:

Definition 2.1 (Correlated Equilibrium) The collection (Ω, π, {P}Ni=1, {qi}Ni=1) is a

correlated equilibrium if ∀i,

∑

ω

ui(q−i(ω), qi(ω))π(ω) ≥
∑

ω

ui(q−i(ω), τi(ω))π(ω), ∀τi ∈ Qi (3)

where for each i, qi is constant on each member of Pi.
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The intuition is that given the information received through ω, players maximize their

expected utility, and (3) are sufficient conditions for the utility maximization. The for-

mulation of a correlated equilibrium in Definition 2.1 leads itself to a broad range of

interpretations (e.g. sunspot equilibria), but from a computational point of view there

is a more natural formulation which is known as canonical correlated equilibrium, where

the state space is identified with the space of pure strategies, that is Ω = A = ×Ai, and

π is a distribution on A.

Definition 2.2 (Canonical Correlated Equilibrium) If the draw of π, ai is viewed

as the ”recommended” strategy and if this is the optimal choice for i–so that for each ai,

∑

a−i ui(a
′
i, a−i)π(a−i|ai) is maximized by a′i = ai, that is

∑

a−i

ui(a−i, ai)π(a−i|ai) ≥
∑

a−i

ui(a−i, a
′
i)π(a−i|ai), ∀a′i ∈ Ai (4)

then π is called a canonical correlated equilibrium.

The canonical correlated equilibrium can be summarized as follows. A point a in A is

drawn according to the distribution π. Player i is informed of the ith component of a, ai

with the expectation that i will choose this action. Given π, player i can calculate the

conditional distribution over A−i and the conditional expected payoff from each choice

a′i :
∑

a−i
ui(a−i, a

′
i)π(a−i|ai). The inequality (4) asserts that if i is told ai, this is in fact a

best choice for i. Clearly, the formulation (4) is more tractable than (3), and the following

theorem states the strategic equivalence between the correlated equilibrium and canonical

correlated equilibrium.

Theorem 1 Let (Ω, π, {P}Ni=1, {qi}Ni=1) be a correlated equilibrium. Then there is a canon-

ical correlated equilibrium π∗ yielding the same distribution on actions and the same ex-

pected payoff to each player.
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Proof. See Bergin (2005).

Based this strategic equivalence, we will use canonical correlated equilibrium instead

of the correlated equilibrium formulated in Definition 2.1 and refer it as correlated equi-

librium. Also, based on Theorem 2.1, one can show the following useful properties:

Proposition 2.1 The set of Nash equilibrium payoffs is a subset of the set of correlated

equilibrium payoffs.

Proposition 2.2 The set of correlated equilibrium payoffs is a convex set.

Proposition 2.1 means that Nash equilibrium is the degenerated correlated equilibrium,

since the mixed strategy used by players is independent over set Ai, while correlated

equilibrium is the general distribution over the set A = ×iAi. The convexity will facilitate

the computation of correlated equilibrium, since any convex combination of correlated

equilibria is a correlated equilibrium, we will make use of these useful properties in the

identification and estimation sections. Here we illustrate these properties through a simple

2× 2 chicken game.

Example 2.1 (Chicken Game) Consider the following chicken game, each with two

actions: A1 = A2 = {stop, go}. The payoff matrix is:

S G

S (4, 4) (1, 5)

G (5, 1) (0, 0)

The following five distributions over A = {(S, S), (S,G), (G, S), (G,G)} all are the corre-
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lated equilibria of this game:

π1 = (0, 1, 0, 0)

π2 = (0, 0, 1, 0)

π3 = (1
4
, 1
4
, 1
4
, 1
4
)

π4 = (0, 1
2
, 1
2
, 0)

π5 = (1
3
, 1
3
, 1
3
, 0)

where π1 and π2 both are pure strategy equilibria, while π3 is a mixed strategy equilibrium

corresponding to both players playing the mixed strategy {1/2, 1/2}. The last two correlated

equilibria are the correlated equilibria which do not enter the set of Nash equilibrium.

Actually, by the convexity of correlated equilibrium, we know that this chicken game has

infinite correlated equilibria, the set of all the correlated equilibria is shown in figure (1),

which is a polytope with five vertices. Calvo-Armengol (2006) studies the property of sets

of all the correlated equilibria and Nash equilibria and the relationship between them in

general 2× 2 games.

The nested relationship between correlated equilibrium and Nash equilibrium makes

our test of equilibrium concepts similar to the famous Hausman test (Hausman, 1978).

If the equilibrium of the underlying game is generated by Nash equilibrium, but the

researcher estimates the game based on correlated equilibrium, then the estimates is

consistent but not efficient, while the equilibrium is generated by correlated equilibrium,

but the researcher estimates the game based on Nash equilibrium, then the estimates is

inconsistent.

Given the structure of the discrete normal form game discussed above, assume the

outcome of such games are generated by correlated equilibrium, which is any solution for
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Figure 1: Correlated Equilibrium Set in the Chicken Game

the distribution π over action profile set A that satisfies:

∑

a−i

ui(a−i, ai, xi, ǫi; θ1)π(a−i|ai) ≥
∑

a−i

ui(a−i, a
′
i, xi, ǫi; θ1)π(a−i|ai), ∀a′i ∈ Ai, i = 1, ..., N

(5)

Our task is to estimate and draw an inference about the parameters of payoff functions,

θ1, and the parameters of the distribution of random preference shocks, θ2, with the obser-

vation of the outcome ao, some exogenous covariates which affect the payoffs, x. Note that

the actual payoff levels are unobserved, i.e., they are latent variables. Before discussing

the identification issues, we introduce several notations. For any distribution which satis-

fies the equilibrium condition (5), e.g. the correlated equilibrium of the underlying game,

let

Sπ(u(x, ǫ; θ1)) (6)
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denote the collection of them, this will be the set of all the correlated equilibria, where

u(x, ǫ; θ1) means that we can compute this set as long as we know the payoff functions

of each player. Let π(u(x, ǫ; θ1)) denote the generic elements of the set Sπ(u(x, ǫ; θ1)), for

purposes of exposition, we will sometimes simply refer it as π, and π ∈ Sπ(u(x, ǫ; θ1)). Note

that the correlated equilibrium relies on the exogenous covariates x, random preference

shock ǫ, and structural parameter θ1.

3 Identification

The general idea of the identification of game-theoretic econometric models is that

matching the choice probabilities predicted by the model and the empirical choice

probabilities estimated from the data, see Bajari, Hong, Krainer, and Nekipelov (2010),

Bajari, Hong, and Ryan (2010) and Ciliberto and Tamer (2009). As usual, the empirical

choice probabilities can be obtained from the data nonparametrically, but obtaining the

choice probabilities predicted by the game where the equilibrium concept employed is

correlated equilibrium is not practical without additional information on the equilibrium

selection mechanism, this is due to the presence of multiple equilibria, dealing with mul-

tiple equilibria complicates the identification problem. Unlike Bajari, Hong, and Ryan

(2010) which introduce a explicit equilibrium selection mechanism to achieve the point

identification of structural parameters, here we identify the game without making any

assumption on the equilibrium selection mechanism following the method proposed by

Ciliberto and Tamer (2009) which study the same problem but use Nash equilibrium as

the equilibrium concept, the reason is that we do not have enough information to specify

any equilibrium selection mechanism Berry and Tamer (2007).

First enumerate the elements of A from a = {1, ...,#A}. A is the set of pure strategy

profiles and a ∈ A. Given a correlated equilibrium π ∈ Sπ(u(x, ǫ; θ1)) is a distribution

11



over A, we have

π = (π(1), ..., π(a), ..., π(#A))′ (7)

and
#A
∑

a=1

π(a) = 1;0 ≤ π(a) ≤ 1;∀a ∈ A (8)

Let Y be the set of potentially observable outcomes, since we assume that the observable

outcome of the game is the equilibrium actions chosen by all the players, then Y = A. Let

Pr(y = a|x; θ) denote the the probability that action profile a be the equilibrium action

profile predicted by the model, where θ = (θ1, θ2), and Pr(y = a|x) be the empirical choice

probability identified from the data which does not rely on the model, thus, does not rely

on the parameters.

We introduce following assumptions:

Assumption 1 (Compactness of Parameter Space) The parameter space Θ is com-

pact.

Assumption 2 (Scale and Location Normalizations) The payoffs of one action for

each player are fixed at a known constant.

Assumption 3 (Regularity Conditions of Random Shocks) The joint distribution

of ǫ = (ǫi(a)), G(ǫ|θ2) is independent, independent of x, and known to all agents

and the econometrician, and let g(ǫ|θ2) be the corresponding density.

Assumption 4 (Identification of Pr(y|x)) The econometrician observes data that

identify Pr(y = a|x), ∀a ∈ A.

Assumption 1 is critical for the construction the large sample property of our estima-

tor. The restriction in Assumption 2 is similar to the argument that we can normalize

the mean utility from the outside good equal to a constant, usually zero, in a standard
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discrete choice model. One can clearly find that from the equilibrium condition (5) that

adding a constant to all deterministic payoffs does not perturb the set of equilibria, so

a location normalization is necessary. A scale normalization is also necessary, as multi-

plying all deterministic payoffs by a positive constant does not alter the equilibrium, and

this restriction is subsumed in the Assumption 3, where we assume that the researcher

know the joint distribution of random preference shocks, identification in this game with

unspecified distribution is complicated if not impossible. Finally, Assumption 4 requires

that researchers can identify the empirical choice probability from data, clearly, this is

necessary since we match this probability with the choice probability predicted by the

model to identify the model.

As discussed before, the set of correlated equilibrium, Sπ(u(θ, x, ǫ)) may be a non-

singleton set, and usually, it is a set with infinite elements. If Sπ(u(θ, x, ǫ)) is non-

singleton, in order to derive the choice probability predicted by the model, Pr(y = a|x; θ),

we need to introduce an equilibrium selection mechanism:

ψ(·|x, ǫ) : Sπ(u(x, ǫ; θ1)) → [0, 1]d[Sπ(u(x,ǫ;θ1))] (9)

such that

ψ(·|x, ǫ) ≥ 0 (10)

∑

π∈Sπ(u(x,ǫ;θ1))

ψ(π|x, ǫ) = 1 (11)

where d[Sπ(u(x, ǫ; θ1))] is the dimension of Sπ(u(x, ǫ; θ1)). This equilibrium selection

mechanism specifies the probability, ψ(π|x, ǫ), that any correlated equilibrium π ∈

Sπ(u(x, ǫ; θ1)) be the actual equilibrium. Since the d[Sπ(u(x, ǫ; θ1))] can be infinite, we

should use a continuos distribution to express this equilibrium selection mechanism, but

for purposes of exposition, we use the discrete distribution.

Given the equilibrium selection mechanism (9), the choice probability implied by the
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model can be written as:

Pr(y = a|x; θ) =
∫




∑

π∈Sπ(u(x,ǫ;θ1))

ψ(π|x, ǫ)π(a)



 dG(ǫ|θ2) (12)

where π(a) is the probability of action profile a associated with a correlated equilibrium

π, and ψ(π|x, ǫ) is the probability that π be the final equilibrium, thus ψ(π|x, ǫ)π(a)

is the probability that action profile a be the final equilibrium action profile associ-

ated with a correlated equilibrium π. Clearly, action profile a also can be chosen with

other correlated equilibrium rather than π, thus the summation of these probability,
∑

π∈Sπ(u(x,ǫ;θ1))
ψ(π|x, ǫ)π(a), is the probability that action profile a be the final equilib-

rium action profile. Based on the choice probability implied by the model (12), the sharp

identified set for parameter θ = (θ1, θ2) is defined as:

Definition 3.1 (Sharp Identified Set) The sharp identified set for the parameter vec-

tor θ ∈ Θ is given by:

ΘI =







∃ψ, ∀a ∈ Y

θ ∈ Θ : such that: E[Pr(y = a|x)] = E[Pr(y = a|x; θ)]

= E





∫



∑

π∈Sπ(u(x,ǫ;θ1))

ψ(π|x, ǫ)π(a)



 dG(ǫ|θ2)











(13)

Inference on the set ΘI based on (13) is not practically feasible since one needs to

deal with infinite dimensional nuisance parameters ψ(·|x, ǫ), this is due to the presence

of multiple equilibria, and note that the equilibrium selection mechanism also depends

on the unobserved random preference shock ǫ. We may specify a parametric equi-

librium selection mechanism as that it is characterized by finite parameters, such as

Bajari, Hong, and Ryan (2010), which estimate a normal form game based on Nash equi-

librium. The problem is that we do not have enough information to specify a particular
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equilibrium selection mechanism, and any misspecifiction of this mechanism will induce

the inconsistent estimation. One may also try to use refined equilibrium concept, such as

perfect correlated equilibrium (Dhillon and Mertens, 1996) or maximum entropy corre-

lated equilibrium (Ortiz, Schapire, and Kakade, 2007), the problem is that even based on

such refined equilibrium, one also can not guarantee the uniqueness of equilibrium. In the

spirite of Ciliberto and Tamer (2009), here we leave the equilibrium selection mechanism

unspecified but exploiting the fact that the equilibrium selection mechanism ψ(π|x, ǫ) is

a probability and hence bounded between zero and one to derive a outer identified set for

the model.

Since the equilibrium selection mechanism ψ(π|x, ǫ) is a probability distribution, then

0 ≤ ψ(π|x, ǫ) ≤ 1, ∀π ∈ Sπ(u(x, ǫ; θ1)) (14)

Based on this natural property of probability, we can derive an outer identified set for

the parameter θ. Formally, let Ha
1 (θ,X) denote the lower bound of the choice probability

of action profile a implied by the model, Pr(y = a|x; θ), and Ha
2 (θ,X) the upper bound,

then:

Ha
1 (θ,X) = min

∫



∑

π∈Sπ(u(x,ǫ;θ1))

ψ(π|x, ǫ)π(a)



 dG(ǫ|θ2) (15)

Ha
2 (θ,X) = max

∫



∑

π∈Sπ(u(x,ǫ;θ1))

ψ(π|x, ǫ)π(a)



 dG(ǫ|θ2) (16)

Given the exogenous covariates, X , and payoff parameter θ1, we collect the value of

random preference shocks ǫ such that the game admits π as unique equilibrium into the

set Rπ
1 (θ1, X), and collect other value of random preference shocks that the game admits
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multiple equilibria into the set Rπ
2 (θ1, X). Thus we have:

Ha
1 (θ,X)

= min

∫



∑

π∈Sπ(u(x,ǫ;θ1))

ψ(π|x, ǫ)π(a)



 dG(ǫ|θ2) (17)

=

∫

Rπ

1
(θ,X)

π(a)dG(ǫ|θ2)

︸ ︷︷ ︸

(1)

+

∫

Rπ

2
(θ,X)

min{π(a) : π ∈ Sπ(u(x, ǫ; θ1))}dG(ǫ|θ2)

︸ ︷︷ ︸

(2)

where part (1) means that when the game admits π as the unique equilibrium, then

the choice probability of a implied by the model, Pr(y = a|x; θ), is the probability of a

associated with the unique correlated equilibrium π, that is π(a). As long as the game

admits unique equilibrium, the action profile a will appear as the equilibrium action profile

with probability π(a), thus it enters the lower bound Ha
1 (θ,X). Part (2) in (17) means

that when the game has multiple equilibria, we select one particular equilibrium from

these equilibria as the final equilibria, which is the one that puts the lowest probability

for action profile a. Clearly, the true equilibrium selection mechanism may put a lower

probability for this particular equilibrium, but select this equilibrium with probability one

do achieve the lower bound of Pr(y = a|x; θ) given the information on hand. Similarly,

the upper bound Ha
2 (θ,X) can be derived as:

Ha
2 (θ,X)

= max

∫



∑

π∈Sπ(u(x,ǫ;θ1))

ψ(π|x, ǫ)π(a)



 dG(ǫ|θ2) (18)

=

∫

Rπ

1
(θ,X)

π(a)dG(ǫ|θ2)

︸ ︷︷ ︸

(1)

+

∫

Rπ

2
(θ,X)

max{π(a) : π ∈ Sπ(u(x, ǫ; θ1))}dG(ǫ|θ2)

︸ ︷︷ ︸

(2)

The meaning for the first part is same as (17), the probability associated with the unique
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equilibrium also enters the upper bound. When the game admits multiple equilibria, to

derive the upper bound of choice probability, we select another particular equilibrium

form these equilibria, that is the one puts the highest probability for the action profile a.

Although the true equilibrium selection mechanism may selects this equilibrium with a

lower probability, this selection does achieve the upper bound of Pr(y = a|x; θ), since any

other selection will select this particular equilibrium with probability no more than one.

Based on the lower bound and upper bound of the choice probability implied by the

model, we have:

Ha
1 (θ,X) ≤ Pr(y = a|x; θ) ≤ Ha

2 (θ,X) (19)

And when θ ∈ ΘI

E[Pr(y = a|x)] = E[Pr(y = a|x; θ)] (20)

Thus we can define the outer identified set for the model parameter θ as:

Definition 3.2 (Outer Identified Region) The outer identified set for model param-

eter θ = (θ1, θ2) ∈ Θ is

ΘO =







∀a ∈ Y

θ ∈ Θ : such that:

E[Ha
1 (θ,X)] ≤ E[Pr(y = a|x)] ≤ E[Ha

2 (θ,X)]







(21)

By introducing the following notations:

H1(θ,X) = (H1
1 (θ,X), ..., Ha

1 (θ,X), ..., H#A
1 (θ,X))′

H2(θ,X) = (H1
2 (θ,X), ..., Ha

2 (θ,X), ..., H#A
2 (θ,X))′

and

Pr (y|x) = (Pr(y = 1|x), ...,Pr(y = a|x), ...,Pr(y = #A|x))′
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Conditions for the outer identified set can be stated as:

E[H1(θ,X)] ≤ E[Pr(y|x)] ≤ E[H2(θ,X)] (22)

Actually, the outer identified set ΘO is broader than the sharp identified set ΘI . Given that

we do not have enough information about the equilibrium selection mechanism, the outer

identified set ΘO is the most thing we can learn about parameter θ from the underlying

game and observation. In general, the set is not a singleton, as it is characterized by the

moment inequality restrictions, and such model is called partial identified econometric

models, corresponding to usual point identified case.

4 Estimation

The estimation problem is based on the moment inequality model

E[H1(θ,X)] ≤ E[Pr (y|x)] ≤ E[H2(θ,X)] (23)

We follow Chernozhukov, Hong, and Tamer (2007) which provide a general framework

for moment inequality models to build consistent estimator for the outer identified set

ΘO. Since the upper and lower bounds in the moment conditions (23) contain the multi-

dimensional integrations, we first provide a simulation procedure to approximate these

integrations. Due to the discreteness problem associated with the simple monte Carlo

integration, in the spirit of Ackerberg (2009) and Bajari, Hong, and Ryan (2010), we

make use of the importance sampling monte Carlo integration instead5.

5McFadden (1989) noted the ability to use importance sampling to smooth simulations which is
extended by Ackerberg (2009).
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4.1 Importance Sampling Approximation

Importance sampling is most noted for its ability to reduce simulation er-

ror and computational burden, and was first used in game-theoretic models by

Bajari, Hong, and Ryan (2010). First note that the correlated equilibrium depends on

the parameter θ1 only through the payoff function u, that is:

Ha
1 (θ,X)

=

∫

Rπ

1
(θ,X)

π(a|u)dG(ǫ|θ2) +
∫

Rπ

2
(θ,X)

min{π(a|u) : π ∈ Sπ(u(x, ǫ; θ1))}dG(ǫ|θ2)

Ha
2 (θ,X)

=

∫

Rπ

1
(θ,X)

π(a|u)dG(ǫ|θ2) +
∫

Rπ

2
(θ,X)

max{π(a|u) : π ∈ Sπ(u(x, ǫ; θ1))}dG(ǫ|θ2)

where π(a|u) and the set of correlated equilibria Sπ(u(x, ǫ; θ1)) both determined by the

payoff level u, and associated with θ1 only through u. Based on this property, we can

change variable of integration in and from ǫ to u. Let h(u|X, θ) denote the density of u,

conditional on x and θ. Based on the utility function ui(a, xi, ǫi; θ1) = Πi(xi, a; θ1) + ǫi(a)

and the density for ǫ, g(ǫ|θ2), h(u|X, θ) can be derived as:

h(u|X, θ) =
∏

i

∏

a∈A

g(ui(a)−Πi(xi, a; θ1)|θ2) (24)
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Then Ha
1 (θ,X) and Ha

2 (θ,X) can be converted as

Ha
1 (θ,X)

=

∫

Rπ

1
(θ,X)

π(a|u)dG(ǫ|θ2) +
∫

Rπ

2
(θ,X)

min{π(a|u) : π ∈ Sπ(u(x, ǫ; θ1))}dG(ǫ|θ2) (25)

=

∫

R′

1

π(a|u)h(u|X, θ)du+
∫

R′

2

min{π(a|u) : π ∈ Sπ(u)}h(u|X, θ)du

Ha
2 (θ,X)

=

∫

Rπ

1
(θ,X)

π(a|u)dG(ǫ|θ2) +
∫

Rπ

2
(θ,X)

max{π(a|u) : π ∈ Sπ(u(x, ǫ; θ1))}dG(ǫ|θ2) (26)

=

∫

R′

1

π(a|u)h(u|X, θ)du+
∫

R′

2

max{π(a|u) : π ∈ Sπ(u)}h(u|X, θ)du

where R′
1 is collection of u such that the game admits unique equilibrium, and R′

2 is the

collection of u that the game admits multiple equilibria. By introducing a importance

density q(u), rewrite (25) and (26) as:

Ha
1 (θ,X)

=

∫

R′

1

π(a|u)h(u|X, θ)
q(u)

q(u)du+

∫

R′

2

min{π(a|u) : π ∈ Sπ(u)}
h(u|X, θ)
q(u)

q(u)du (27)

and

Ha
2 (θ,X)

=

∫

R′

1

π(a|u)h(u|X, θ)
q(u)

q(u)du+

∫

R′

2

max{π(a|u) : π ∈ Sπ(u)}
h(u|X, θ)
q(u)

q(u)du (28)

We can then simulate Ha
1 (θ,X) and Ha

2 (θ,X) by drawing random variables
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(u1, ..., uns, ..., uNS) from the importance density q(u), note that here uns is a vector,

it contains the utility for all the players of the underlying game. Based on these simu-

lated utility values, the importance sampling simulators for Ha
1 (θ,X) and Ha

2 (θ,X) are

H̃a
1 (θ,X) and H̃a

2 (θ,X), respectively.

H̃a
1 (θ,X) = 1

NS

∑

ns

I(uns ∈ R′
1)π(a|uns)h(u

ns|X,θ)
q(uns)

+

1
NS

∑

ns

I(uns ∈ R′
2)min{π(a|uns) : π ∈ Sπ(u

ns)}h(uns|X,θ)
q(uns)

(29)

H̃a
2 (θ,X) = 1

NS

∑

ns

I(uns ∈ R′
1)π(a|uns)h(u

ns|X,θ)
q(uns)

+

1
NS

∑

ns

I(uns ∈ R′
2)max{π(a|uns) : π ∈ Sπ(u

ns)}h(uns|X,θ)
q(uns)

(30)

From the theory of importance sampling, H̃a
1 (θ,X) and H̃a

2 (θ,X) are unbiased simulators

for Ha
1 (θ,X) and Ha

2 (θ,X), respectively. The most important property of these simulator

is that they will generally be continuous in the parameter θ since it only depends on θ

through h(u|x, θ) which is continuos in θ given that g(ǫ|θ2) is continuous.

Although the theory of importance sampling proves that are smooth and unbiased

simulator for any choice of the importance density q(u) which has sufficiently large sup-

port. However, as noted by Bajari, Hong, and Ryan (2010), as a practical matter, it is

important to make sure that the tails of the importance density are not too thin in a

neighborhood of the parameter which optimizes the objective function in our estimation

procedure. We suggest to use some pre-estimated θ̊ to construct the importance density

q(u) = h(u|X, θ̊) (31)

where can be obtained from the estimates of the game with incomplete information

which is studied in Bajari, Hong, Krainer, and Nekipelov (2010), or through the gen-

eralized maximum entropy estimator for the static games of complete information
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(Golan, Karp, and Perloff, 2000). Note that these two studies on empirical games both

are based on the Nash equilibrium.

4.2 Estimation

Given the simulators obtained from the importance sampling, H̃a
1 (θ,X) and H̃a

2 (θ,X),

for Ha
1 (θ,X) and Ha

2 (θ,X), respectively, introducing following notations:

H̃1(θ,X) = (H̃1
1 (θ,X), ..., H̃a

1 (θ,X), ..., H̃#A
1 (θ,X))′

H̃2(θ,X) = (H̃1
2 (θ,X), ..., H̃a

2 (θ,X), ..., H̃#A
2 (θ,X))′

From (23) we get the following simulated moment inequality restrictions:

E[H̃1(θ,Xt)] ≤ E[Pr(y|xt)] ≤ E[H̃2(θ,Xt)] (32)

According to Chernozhukov, Hong, and Tamer (2007), our inferential procedures uses the

objective function6:

min
θ∈Θ

Q(θ) ≡
∫ ∥

∥
∥(Pr(y|x)− H̃1(θ,X))−

∥
∥
∥

2

+
∥
∥
∥(Pr(y|x)− H̃2(θ,X))+

∥
∥
∥

2

dFx (33)

this criterion function (32), that is if Pr(y|x) < H̃1(θ,X), then
∥
∥
∥(Pr(y|x)− H̃1(θ,X))−

∥
∥
∥

2

is strictly positive, and if Pr(y|x) > H̃2 (θ,X), then
∥
∥
∥(Pr(y|x)− H̃2(θ,X))+

∥
∥
∥

2

is strictly positive. It is easy to see that Q(θ) ≥ 0 for all

θ ∈ Θ and that Q(θ) = 0 if and only if θ ∈ ΘO.

To estimate the outer identified set ΘO, we need to take a sample analog of Q(θ). First

6Let ‖ x ‖+=‖ (x)+ ‖ and ‖ x ‖−=‖ (x)− ‖, where (x)+ := max(x, 0), (x)− := max(−x, 0) and ‖ · ‖
is the Euclidian norm.
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replace Pr(y|x) with a
√
T consistent estimator PT (X)7. The sample analog for Q(θ) is

QT (θ) =
1

T 2

T∑

t=1

[∥
∥
∥((PT (Xt)− H̃1(θ,Xt))−

∥
∥
∥

2

+
∥
∥
∥PT (Xt)− H̃2(θ,Xt))+

∥
∥
∥

2
]

(34)

Our estimation for ΘO is any solution that minimizing (34), which can be obtained from:

Θ̂O = {θ ∈ Θ : TQT (θ) ≤ vT } (35)

where vT → ∞ and vT
T

→ 0, Chernozhukov, Hong, and Tamer (2007) propose a resam-

pling method to get suitable vT .

Theorem 2 Let Assumption 3 hold. Suppose that the regular conditions of the Theorem

3.1 in hold. Then we have that Θ̂O is a Hausdorff consistent estimator for ΘO, that is

dH(Θ̂O,ΘO) = 0 with probability one.

The proof of Theorem is the same as the Theorem 3.1 in

Chernozhukov, Hong, and Tamer (2007). To conduct inference about the above

moment inequalities model, we use the methodology of Chernozhukov, Hong, and Tamer

(2007) and Ciliberto and Tamer (2009). We conduct a set CT for a prespecified α ∈ (0, 1)

such that

lim
T→∞

(θO ∈ CT ) ≥ α for any θO ∈ ΘO (36)

Which can be constructed as follows, Let

CT (c) =
{

θ ∈ Θ : T
(

QT (θ)−min
z
QT (z)

)

≤ c
}

(37)

Then do the following loop:

7The convergence rate of nonparametric estimates for PT (X) is slower than
√
T when there are

continuos variables in x, a useful method is to discretize all the variables in x and use the nonparametric
frequency estimation.
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1. compute a initial estimate for ΘO as CT (c0), for example CT (c0) = CT (0), then

subsampling the statistics T (QT (θ)−minz QT (z)) for θ ∈ CT (0) and obtain the

estimate of its α-quantile, c1(θ0).

2. Update c through c1 = supθ0∈CT (c0) c1(θ0) and formulate CT (c1) as step 1.

3. Let c0 = c1 then obtain c2.

Then CT (c2) will be our confidence region for Θ̂O. See Chernozhukov, Hong, and Tamer

(2007) and Ciliberto and Tamer (2009) for more on this. Such confidence region does

not only have the desired coverage property, but will also be consistent in the sense of

Theorem .

4.3 Computation of the Equilibria

The simulated lower and upper bounds, Ha
1 (θ,X) and H̃a

2 (θ,X), e.g., (29) and (30),

contain the following equilibrium computation:

I(u ∈ R′
1)π(a|u) (38)

I(u ∈ R′
2)min{π(a|u) : π ∈ Sπ(u)} (39)

and

I(u ∈ R′
2)max{π(a|u) : π ∈ Sπ(u)} (40)

where u is a vector which contains the utility levels of all the players for each action

profile. We first discuss the computation of (39) and (40), where the corresponding game

admits multiple equilibria. First note that if we can identify the regions R′
1 and R′

2, then

we only need to compute

min
π

{π(a|u) : π ∈ Sπ(u)} (41)
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where the solution is the correlated equilibrium that puts the lowest probability for action

profile a, and

max
π

{π(a|u) : π ∈ Sπ(u)} (42)

where the solution is the correlated equilibrium that puts the highest probability for

action profile a. Both of them can be obtained through simple linear programming. For

min{π(a|u) : π ∈ Sπ(u)}, it can be obtained from

min
π

π(k)

s.t.







∑

a−i

ui(a−i, ai)π(a−i, ai) ≥
∑

a−i

ui(a−i, ãi)π(a−i, ai), ∀i, ai and ãi 6= ai

∑

a∈A

π(a) = 1, π(a) ≥ 0

(43)

and max{π(a|u) : π ∈ Sπ(u)} can be obtained from

max
π

π(a)

s.t.







∑

a−i

ui(a−i, ai)π(a−i, ai) ≥
∑

a−i

ui(a−i, ãi)π(a−i, ai), ∀i, ai and ãi 6= ai

∑

a∈A

π(a) = 1, π(a) ≥ 0

(44)

While the game only admits unique equilibrium, then the solution for the system of linear

inequalities:

∑

a−i

ui(a−i, ai)π(a−i, ai) ≥
∑

a−i

ui(a−i, ãi)π(a−i, ai), ∀i, ai and ãi 6= ai

∑

a∈A

π(a) = 1, π(a) ≥ 0
(45)

is unique, thus either linear programming (43) or (44) both can provide this unique equi-

librium, which means that in practice, we do not need to identify the regions based on

whether there are multiple equilibria, the only computation we need to do is linear pro-
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gramming (43) or (44). Clearly, the computation of equilibria in our procedure is very

simple, it only needs linear programming! While most other studies which focus on the

empirical complete information games based on Nash equilibrium, need to compute all the

Nash equilibrium of underlying games, for the general game, this will induce a heavy com-

putational burden. See for example, Berry and Tamer (2007), Bajari, Hong, and Ryan

(2010) and Ciliberto and Tamer (2009).

5 Test of Equilibrium Concepts

In this paper, we based on the correlated equilibrium study the identification and esti-

mation of empirical static complete information game, where the multiple equilibria is

an important issue to deal with. Actually, not only the equilibrium of a given game can

be multiple, but also the equilibrium concept. Such as pure strategy Nash equilibrium,

mixed strategy equilibrium, correlated equilibrium, evolutionary equilibrium and so on,

besides the theoretical research, it is an interesting problem that testing which equilib-

rium concept is the most consistent with the real data. Given that there are existing

research based on Nash equilibrium, and we study the same issue based on correlated

equilibrium, we can conduct a formal test for the equilibrium concepts: Nash equilibrium

versus correlated equilibrium.

Formally, Let CE denote the complete information static game based correlated equi-

librium, and NE denote the same game based on Nash equilibrium. Since both of the

two models can be characterized by moment inequality restrictions, then

CE =
⋃

θ∈Θ

CEθ; NE =
⋃

β∈B

NEβ (46)

where

CEθ = {CE : ECEmj(Xi, θ) ≥ 0, j ∈ JCE} (47)
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NEβ = {NE : ENEgj(Xi, β) ≥ 0, j ∈ JNE} (48)

where {Xi ∈ X}ni=1 is the sample generated from distribution µ, mj(Xi, θ) and gj(Xi, β)

are moment functions characterized by finite dimensional parameter θ and β, respec-

tively. Then ECEmj(Xi, θ) ≥ 0 is equivalent to the moment inequalities (22), while

ENEgj(Xi, β) ≥ 0 can be explained as the moment conditions in Ciliberto and Tamer

(2009)8.

Given the above structure of the two models, we want to test the two distribution

CE and NE , which is closer to the true distribution µ. Since both of the two models

are defined in terms of moment inequality restrictions, we can make use of the test for

moment inequality models developed in Shi (2010). Consider the null hypothesis:

H0 : d(CE , µ) = d(NE, µ) (49)

where

d(CE , µ) = inf
CE∈CE

d(CE, µ); d(NE, µ) = inf
NE∈NE

d(NE, µ) (50)

The distance d(P, µ) is defined as the Kullback-Leibler divergence measure:

d(P, µ) =

∫

pµ log pµdµ (51)

where pµ is the density of P with respect to µ. To construct the test statistics, For a data

distribution µ, define the Lagrange multipliers:

γ∗µ(θ) = argmin
γ

exp(γ′m(Xi, θ)) (52)

λ∗µ(β) = argmin
λ

exp(λ′g(Xi, β)) (53)

8The moment conditions in Ciliberto and Tamer (2009) are based on the pure strategy Nash equi-
librium, to obtain the moment conditions for Nash equilibrium, one needs to extend that result.
Berry and Tamer (2007) briefly discussed the problem that arise when allowing for mixed strategies.
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and criterion functions:

Mµ(γ, θ) = Eµ exp(γ
′m(Xi, θ)) (54)

Gµ(λ, β) = Eµ exp(λ
′g(Xi, β)) (55)

Shi (2010) prove that the null hypothesis (49) can be stated as:

H0 : max
θ∈Θ

Mµ(γ
∗
µ(θ), θ) = max

β∈B
Gµ(λ

∗
µ(β), β) (56)

The sample analog of Mµ(γ
∗
µ(θ), θ) and Gµ(λ

∗
µ(β), β) are:

M̂n(γ, θ) =
1

n

n∑

i=1

exp(γ′m(Xi, θ)); Ĝn(λ, β) =
1

n

n∑

i=1

exp(λ′g(Xi, β)) (57)

where

γ̂n(θ) = argmin
γ

M̂n(γ, θ), λ̂n(β) = argmin
λ

Ĝn(λ, β)

Θ̂n = argmax
θ∈Θ

M̂n(γ̂n(θ), θ) B̂n = argmax
β∈B

Ĝn(λ̂n(β), β)
(58)

Then we can based on the quasi-likelihood ratio statistics

QLRn = max
θ∈Θ

M̂n(γ̂n(θ), θ)−max
β∈B

Ĝn(λ̂n(β), β) (59)

to test the null hypothesis (56).

With several regular conditions, Shi (2010) prove that under H0:

QLRn
d
 N(0, ̟2

n) (60)

where ̟2
n = Eµ[exp(γ

∗
µ(θ

∗)′m(Xi, θ
∗)) − exp(λ∗n(β

∗)′g(Xi, β
∗))]2, θ∗ ∈

argmaxθ∈Θ Mµ(γ
∗
µ(θ), θ), β

∗ ∈ argmaxβ∈B Gµ(λ
∗
µ(β), β). While in practice, ̟2

n can
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be replaced with its sample analog ˆ̟ 2
n:

ˆ̟ 2
n = sup

θ∈Θ̂n,β∈B̂n

1

n

∑

µ

[exp(γ̂n(θ)
′m(Xi, θ))− exp(λ̂n(β)

′g(Xi, β))]
2 (61)

Then the test criterion is

Test of Correlated Equilibrium versus Nash Equilibrium Let bn be a sequence of

positive numbers such that b−1
n + n−1bn → 0. Given the nominal size α and the

(1− α/2) quantile of the standard normal distribution, zα/2.

(1) If n ˆ̟ 2
n > bn and n

1

2QLRn/ ˆ̟ n > zα/2, then reject the null H0 and accept correlated

equilibrium as the equilibrium concept.

(2) If n ˆ̟ 2
n > bn and n

1

2QLRn/ ˆ̟ n < −zα/2, then reject the null H0 and accept Nash

equilibrium as the equilibrium concept.

(3) If ˆ̟ 2
n and n

1

2QLRn/ ˆ̟ n do not satisfy the condition in (1) and (2), then accept the

null H0.

This test criterion is based on the nested model selection test of Shi (2010). Re-

member the Proposition 2.1, which states that Nash equilibrium is a subset of correlated

equilibrium, which means that we have NE ⊂ CE but not CE ⊂ NE . An interesting case

is that if the test suggest us to accept the null hypothesis, which means that correlated

equilibrium and Nash equilibrium do the same explanation for the real data, then all the

correlated equilibrium of the underlying game are all the Nash equilibrium, according to

Proposition 2.2, we can find that, in this case, the underlying game has unique correlated

equilibrium, and thus, has unique Nash equilibrium. Finally, the property of nest between

correlated equilibrium and Nash equilibrium means that based on correlated equilibrium

to estimate empirical games is robust, while when the true equilibrium concept is Nash

equilibrium, it is inefficient, while the true equilibrium concept is correlated equilibrium,
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except the special case that the game only admits unique equilibrium, based on Nash

equilibrium to estimate the game will get the inconsistent estimation. This is similar to

the choice between fixed effect and random effect in panel data models.

6 Monte Carlo Simulation

To demonstrate the performance of our estimates in finite samples, we conduct a Monte

Carlo experiment using a simple 2 × 2 game. In each of the T repetitions of the

simultaneous-move game with complete information, each has the following structure:

0 1

0 (0, 0) (0, ǫ2(0, 1))

1 (ǫ1(1, 0), 0) (θ1 + ǫ1(1, 1), θ2 + ǫ2(1, 1))

Which can be explained as a static entry game, the action set of each player is Ai = {0, 1},

where 0 means no entry and 1 means entry. The utility function for player i is defined as:

ui(a, ǫi(a); θ) = I(ai = 1)(θ1a−i + ǫi(a)) (62)

As a simple experiment, we have not included any exogenous covariates x here. And

according the location and scale normalization, we set the utility of no entry as 0 and

the variance of the random preference shock as 1. Then we only need to estimate the

strategic effect parameters θ1 and θ2.

All random preference shocks ǫ1t(1, 0), ǫ2t(0, 1), ǫ1t(1, 1) and ǫ2t(1, 1) are independently

drawn from standard normal distribution. The parameter space Θ is set to Θ = [−5, 5]2,

and there true values are:

θ1 = −0.5; θ2 = −1 (63)
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Which means that the entry of player i will decrease the payoff of player j given the entry

of player j. Given these random shocks and parameters, we generate the outcome of

each game, e.g., the observed action profiles, by a simple maximum entropy equilibrium

selection mechanism:

max
π

−
∑

a∈A

π(a) ln π(a)

s.t.







∑

a−i

ui(a−i, ai)π(a−i, ai) ≥
∑

a−i

ui(a−i, ãi)π(a−i, ai), ∀i, ai and ãi 6= ai

∑

a∈A

π(a) = 1, π(a) ≥ 0

(64)

Obviously, this maximum entropy equilibrium selection mechanism will generate a most

dispersive correlated equilibrium π∗ among all correlated equilibria. According to π∗, we

use a simple random sampling to determine which action profile will be played. Based on

the maximum entropy equilibrium selection mechanism, under the sample size 500, the

E[Pr(yt)] is:

E[Pr(yt)] = (0.291058, 0.274005, 0.35475, 0.080187) (65)

Note that although we set the true value for parameters as θ1 = −0.5 and θ2 = −1,

but only if we know the equilibrium selection mechanism, the point identification can be

achieved, and thus we can compare our estimates with the true value of parameters. In

practice, usually, we’ve no information about the equilibrium selection mechanism, thus

there may a lot of values of the parameter that can generate the data we observed. We

use the following procedure to do the set estimation (35), first, based on the simulated

annealing algorithm to find the optimal solution of the minimization of (34), denote it

as θ̃; then in the parameter space Θ choosing rich directions9 to the grid search until it

condition (35)

9In this experiment, we choose 402 directions, which are randomly chosen according to a uniform
distribution over [0, 2π].
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Table 1: The Results of Monte Carlo Simulation
Initial Value for Set estimation Interval Estimates

T = 500
θ1 −0.5677 [−2.3142, 0.9580]
θ2 −1.0273 [−2.8319, 0.4027]

T = 1000
θ1 −0.5659 [−2.2794, 0.9370]
θ2 −1.0267 [−2.8184, 0.3816]

Monte Carlo Times: 1000
Importance Sampling Times: 999

We generate 1000 samples of size T = 500, 1000 to assess the finite sample properties

of our estimator, first use importance sampling simulator get simulated bounds of choice

probability, then based on the above numerical procedure find the final estimates. The

interval estimates are reported in Table 1, and the whole set estimators for T = 500 and

1000 are reported in Figure 1 and 2, both are compact sets in R2 space. We also report

the comparison between the two different sample size in Figure 3, where red denotes the

for T = 500 and blue for T = 1000. Since we lack the information of the true range of the

outer identified set, we can not say much about the performance of our estimator, while

we conclude that the true value of the parameter lies in our estimated set. Moreover,

from Figure 3 we can find that when the sample size increase, the range of Θ̂O decrease,

which is similar to the convergence in the point identified case.

7 Conclusion

In this paper, we propose a framework for identifying and estimating the normal-form

payoff parameters of a simultaneous, discrete game of complete information where the

equilibrium concept employed is correlated equilibrium. Comparing with the existing

studies based on Nash equilibrium, this extension of the equilibrium concepts simplifies

the identification and estimation of game-theoretic econometric models, since our ap-
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Figure 2: The Set Estimate of Θ̂O when T = 500
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Figure 3: The Set Estimate of Θ̂O when T = 1000
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Figure 4: The Comparison of Θ̂O between Different Sample Size

proach does not require the computation of the whole set of equilibria, it only needs some

”extreme” equilibria which can be obtained through linear programming. To deal with

the presence of multiple equilibria, we make use of the moment inequality restrictions in-

duced by the underlying game-theoretic econometric models without making equilibrium

selection assumptions, which avoids the misspecification of equilibrium selection mecha-

nisms, and leads to a partial identified model. Given the outer identified set characterized

by moment restrictions, the set estimator developed by Chernozhukov, Hong, and Tamer

(2007) is used to obtain its estimates. The importance sampling technique is used to

reduce computational burden and overcome the non-smoothness problems. We also show

that the model selection tests for moment inequality models developed by Shi (2010) can

be used to test equilibrium concepts such as correlated equilibrium versus Nash equilib-

rium. The most limitation of our estimation is that it relies on the known distribution

of random preference shocks which is rarely known to researchers, working with the un-

known distribution is an important topic for future research. Another possible extension
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is that updating our estimator to the one based on conditional moment restriction.
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