Preinerstorfer, David and Pötscher, Benedikt M. (2013): On Size and Power of Heteroscedasticity and Autocorrelation Robust Tests.
Preview |
PDF
MPRA_paper_45675.pdf Download (859kB) | Preview |
Abstract
Testing restrictions on regression coefficients in linear models often requires correcting the conventional F-test for potential heteroscedasticity or autocorrelation amongst the disturbances, leading to so-called heteroskedasticity and autocorrelation robust test procedures. These procedures have been developed with the purpose of attenuating size distortions and power deficiencies present for the uncorrected F-test. We develop a general theory to establish positive as well as negative finite-sample results concerning the size and power properties of a large class of heteroskedasticity and autocorrelation robust tests. Using these results we show that nonparametrically as well as parametrically corrected F-type tests in time series regression models with stationary disturbances have either size equal to one or nuisance-infimal power equal to zero under very weak assumptions on the covariance model and under generic conditions on the design matrix. In addition we suggest an adjustment procedure based on artificial regressors. This adjustment resolves the problem in many cases in that the so-adjusted tests do not suffer from size distortions. At the same time their power function is bounded away from zero. As a second application we discuss the case of heteroscedastic disturbances.
Item Type: | MPRA Paper |
---|---|
Original Title: | On Size and Power of Heteroscedasticity and Autocorrelation Robust Tests |
English Title: | On Size and Power of Heteroscedasticity and Autocorrelation Robust Tests |
Language: | English |
Keywords: | Size distortion, power deficiency, invariance, robustness, autocorrelation, heteroscedasticity, HAC, fixed-bandwidth, long-run-variance, feasible GLS |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C20 - General |
Item ID: | 45675 |
Depositing User: | Benedikt Poetscher |
Date Deposited: | 30 Mar 2013 16:47 |
Last Modified: | 29 Sep 2019 21:07 |
References: | Anderson, T. W. (1971). The statistical analysis of time series. Wiley Series in Probability and Mathematical Statistics, Wiley New York. Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59 817-858. Andrews, D. W. K. and Monahan, J. C. (1992). An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator. Econometrica, 60 953-966. Bakirov, N. and Székely, G. (2005). Student's t-test for gaussian scale mixtures. Zapiski Nauchnyh Seminarov POMI, 328 5-19. Banerjee, A. N. and Magnus, J. R. (2000). On the sensitivity of the usual t- and F-tests to covariance misspecification. Journal of Econometrics, 95 157 -176. Bartlett, M. S. (1950). Periodogram analysis and continuous spectra. Biometrika, 37 1-16. Berk, K. N. (1974). Consistent autoregressive spectral estimates. Annals of Statistics, 2 489-502. Cribari-Neto, F. (2004). Asymptotic inference under heteroskedasticity of unknown form. Computational Statistics and Data Analysis, 45 215 -233. Deistler, M. and Pötscher, B. M. (1984). The behaviour of the likelihood function for ARMA models. Advances in Applied Probability, 16 843-866. den Haan, W. J. and Levin, A. T. (1997). A practitioner's guide to robust covariance matrix estimation. In Robust Inference (G. Maddala and C. Rao, eds.), vol. 15 of Handbook of Statistics. Elsevier, 299 -342. Dufour, J.-M. (1997). Some impossibility theorems in econometrics with applications to structural and dynamic models. Econometrica, 65 1365-1387. Dufour, J.-M. (2003). Identification, weak instruments, and statistical inference in econometrics. Canadian Journal of Economics/Revue canadienne d'économique, 36 767-808. Eicker, F. (1963). Asymptotic normality and consistency of the least squares estimators for families of linear regressions. Ann. Math. Statist., 34 447-456. Eicker, F. (1967). Limit theorems for regressions with unequal and dependent errors. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66). Univ. California Press, Berkeley, Calif., Vol. I: Statistics, pp. 59-82. Flegal, J. M. and Jones, G. L. (2010). Batch means and spectral variance estimators in Markov chain Monte Carlo. Ann. Statist., 38 1034-1070. Grenander, U. and Rosenblatt, M. (1957). Statistical analysis of stationary time series. John Wiley & Sons, New York. Hannan, E. (1970). Multiple time series. Wiley Series in Probability and Mathematical Statistics, Wiley New York. Hannan, E. J. (1957). The variance of the mean of a stationary process. Journal of the Royal Statistical Society. Series B, 19 282-285. Hansen, B. E. (1992). Consistent covariance matrix estimation for dependent heterogeneous processes. Econometrica, 60 967-972. Heidelberger, P. and Welch, P. D. (1981). A spectral method for confidence interval generation and run length control in simulations. Commun. ACM, 24 233-245. Ibragimov, R. and Müller, U. K. (2010). t-statistic based correlation and heterogeneity robust inference. Journal of Business and Economic Statistics, 28 453-468. Jansson, M. (2002). Consistent covariance matrix estimation for linear processes. Econometric Theory, 18 1449-1459. Jansson, M. (2004). The error in rejection probability of simple autocorrelation robust tests. Econometrica, 72 937-946. Jowett, G. H. (1955). The comparison of means of sets of observations from sections of independent stochastic series. Journal of the Royal Statistical Society. Series B, 17 208-227. Keener, R. W., Kmenta, J. and Weber, N. C. (1991). Estimation of the covariance matrix of the least-squares regression coefficients when the disturbance covariance matrix is of unknown form. Econometric Theory, 7 22-45. Kelejian, H. H. and Prucha, I. R. (2007). HAC estimation in a spatial framework. Journal of Econometrics, 140 131 -154. Kelejian, H. H. and Prucha, I. R. (2010). Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. Journal of Econometrics, 157 53-67. Kiefer, N. M. and Vogelsang, T. J. (2002a). Heteroskedasticity-autocorrelation robust standard errors using the Bartlett kernel without truncation. Econometrica, 70 2093-2095. Kiefer, N. M. and Vogelsang, T. J. (2002b). Heteroskedasticity-autocorrelation robust testing using bandwidth equal to sample size. Econometric Theory, 18 1350-1366. Kiefer, N. M. and Vogelsang, T. J. (2005). A new asymptotic theory for heteroskedasticity-autocorrelation robust tests. Econometric Theory, 21 1130-1164. Kiefer, N. M., Vogelsang, T. J. and Bunzel, H. (2000). Simple robust testing of regression hypotheses. Econometrica, 68 695-714. Krämer, W. (1989). On the robustness of the F-test to autocorrelation among disturbances. Economics Letters, 30 37 -40. Krämer, W. (2003). The robustness of the F-test to spatial autocorrelation among regression disturbances. Statistica (Bologna), 63 435-440 (2004). Krämer, W., Kiviet, J. and Breitung, J. (1990). The null distribution of the F-test in the linear regression model with autocorrelated disturbances. Statistica (Bologna), 50 503-509. Krämer, W. and Hanck, C. (2009). More on the F-test under nonspherical disturbances. In Statistical Inference, Econometric Analysis and Matrix Algebra (B. Schipp and W. Krämer, eds.). Physica-Verlag HD, 179-184. Lehmann, E. L. and Romano, J. P. (2005). Testing statistical hypotheses. 3rd ed. Springer Texts in Statistics, Springer, New York. Long, J. S. and Ervin, L. H. (2000). Using heteroscedasticity consistent standard errors in the linear regression model. The American Statistician, 54 217-224. Magee, L. (1989). An Edgeworth test size correction for the linear model with AR(1) errors. Econometrica, 57 661-674. Martellosio, F. (2010). Power properties of invariant tests for spatial autocorrelation in linear regression. Econometric Theory, 26 152-186. Neave, H. R. (1970). An improved formula for the asymptotic variance of spectrum estimates. The Annals of Mathematical Statistics, 41 70-77. Newey, W. K. and West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55 703-708. Newey, W. K. and West, K. D. (1994). Automatic lag selection in covariance matrix estimation. The Review of Economic Studies, 61 631-653. Park, R. E. and Mitchell, B. M. (1980). Estimating the autocorrelated error model with trended data. Journal of Econometrics, 13 185-201. Perron, P. and Ren, L. (2011). On the irrelevance of impossibility theorems: the case of the long-run variance. J. Time Ser. Econom., 3 Art. 1, 34. Phillips, P. C. (2005). HAC estimation by automated regression. Econometric Theory, 21 116-142. Phillips, P. C., Sun, Y. and Jin, S. (2006). Spectral density estimation and robust hypothesis testing using steep origin kernels without truncation. International Economic Review, 47 837-894. Phillips, P. C., Sun, Y. and Jin, S. (2007). Long run variance estimation and robust regression testing using sharp origin kernels with no truncation. Journal of Statistical Planning and Inference, 137 985-1023. Politis, D. (2011). Higher-order accurate, positive semidefinite estimation of large-sample covariance and spectral density matrices. Econometric Theory, 27 703-744. Preinerstorfer, D. (2013). On size and power of heteroscedasticity and autocorrelation robust tests: Further results. Working Paper, Department of Statistics, University of Vienna. In preparation. Preinerstorfer, D. and Pötscher, B. M. (2013). On the power of invariant tests for hypotheses on a covariance matrix. Working Paper, Department of Statistics, University of Vienna. In preparation. Pötscher, B. M. (2002). Lower risk bounds and properties of confidence sets for ill-posed estimation problems with applications to spectral density and persistence estimation, unit roots, and estimation of long memory parameters. Econometrica, 70 1035-1065. Robinson, G. (1979). Conditional properties of statistical procedures. Annals of Statistics, 7 742-755. Sun, Y. (2012). Heteroskedasticity and autocorrelation robust F test using orthonormal series variance estimators. Working Paper, Department of Economics, UC San Diego. Sun, Y. and Kaplan, D. M. (2012). Fixed-smoothing asymptotics and accurate F approximation using vector autoregressive covariance matrix estimators. Working Paper, Department of Economics, UC San Diego. Sun, Y., Phillips, P. C. and Jin, S. (2011). Power maximization and size control in heteroskedasticity and autocorrelation robust tests with exponentiated kernels. Econometric Theory, 27 1320-1368. Sun, Y., Phillips, P. C. B. and Jin, S. (2008). Optimal bandwidth selection in heteroskedasticity- autocorrelation robust testing. Econometrica, 76 175-194. Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70 1055-1096. Velasco, C. and Robinson, P. M. (2001). Edgeworth expansions for spectral density estimates and studentized sample mean. Econometric Theory, 17 497-539. Vogelsang, T. J. (2012). Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects. Journal of Econometrics, 166 303 -319. White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48 817-838. Zhang, X. and Shao, X. (2013). Fixed-smoothing asymptotics for time series. Ann. Statist., forthcoming. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/45675 |
Available Versions of this Item
- On Size and Power of Heteroscedasticity and Autocorrelation Robust Tests. (deposited 30 Mar 2013 16:47) [Currently Displayed]