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STRATEGIC REAL OPTIONS WITH STOCHASTIC

VOLATILITY IN A DUOPOLY MODEL

BING HUANG, JILING CAO, AND HYUCK CHUNG

Abstract. The investment-timing problem has been considered by many au-
thors under the assumption that the instantaneous volatility of the demand

shock is constant. Recently, Ting et al. [9] carried out an asymptotic approach
in a monopoly model by letting the volatility parameter follow a stochastic pro-
cess. In this paper, we consider a strategic game in which two firms compete
for a new market under an uncertain demand, and extend the analysis of Ting
et al. to duopoly models under different strategic game structures. In partic-
ular, we investigate how the additional uncertainty in the volatility affects the
investment thresholds and payoffs of players. Several numerical examples and

comparison of the results are provided to confirm our analysis.

1. Introduction

In economics and finance, the traditional net present value (NPV) method has
been well established. However, applying the NPV method to cases where an in-
vestment contains a significant share of irreversible costs and/or is tightly bounded
to uncertain factors leads to sub-optimal behaviours. McDonald and Siegel [7] in-
troduced a mathematical model for such cases by adopting the tools used to value
financial options and showed that the option to invest has an intrinsic value that
must be accounted for. Nowadays, the option to invest in a given project is called a
real option. The real option analysis is a great tool for investments that are expen-
sive, long term and affected by multiple risks. For example, Brennan and Schwartz
[1] applied the real option analysis to the mining industry. Since Dixit and Pindyck
provided a systematic treatment of the real option anlysis in [2], many researchers in
applied mathematics, economics and finance have worked in this area. For instance,
Mareguerra et al. [6] used the same framework to investigate how the conclusions
from the monopoly model could be transferred into a competitive environment.
Hsu and Lambrecht [5], and Graham [3] studied the strategic real options and the
effects of private information on the investment time decisions. Recently, Ting et al.
[9] presented an asymptotic analysis on real options under the fast mean-reverting
and the geometric mean-reverting regimes of the stochastic volatility.

The motivation of this paper is to extend the results in [9] to a competitive
environment. Specifically, we use Heston’s stochastic volatility model to build a
duopoly real option model. In our model, the firm who invests first is referred as
the leader and the other is referred as the follower. When we determine the optimal
investment thresholds and the payoff of each firm, we consider both competitive
and non-competitive situations. To this end, we first modify the model in [9] by
adding a demand function of the market, and find that follower’s optimal strategy
is similar to that in the monopoly model. Then, we investigate leader’s optimal
strategy by determining leader’s project value. We consider two situations: The
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first one is that both firms are capable of becoming a leader, and the second one
is that leader and the follower are pre-determined. In the first situation, firms
must compromise the benefits between being the leader and capturing the value of
waiting. In the second situation, the leader can invest in the project without any
strategic consideration, and the follower only has one optimal threshold, whereas
the leader’s optimal threshold varies, depending on the initial level of the stochastic
variable. Nevertheless, these optimal thresholds need to be determined by solving
partial differential equations, due to the assumption on the additional uncertainty
in the volatility.

We organise the paper as follows: In Section 2, we present a modified monopoly
model and its asymptotic solution. In Section 3, we extend the analysis in Section 2
to a duopoly model, and analyse firms’ strategic investment behaviours under com-
petitive and non-competitive situations. In Section 4, we present some numerical
examples to compare our results with the classical results. The conclusion is given
in Section 5. Finally, the derivations of main equations and the proofs of selected
propositions are presented in the appendices.

2. A monopoly model under stochastic volatility

In this section, we first present a basic continuous time model of irreversible
investments, which combines those presented in [6] and [9]. Consider a firm with
the potential to activate a project which produces a unit output flow by incurring
a sunk cost I. Assume that there are no variable costs of the production, and all
the uncertainties of the project are from firm-specific. Thus the monopoly profit
flow of the firm is determined by its demand D and the demand shock Yt. Assume
that Yt follows a diffusion process with a stochastic instantaneous variance St, i.e.,

dYt = αYtdt+
√
StYtdZt,

dSt = k(m− St)dt+ σ
√

StdWt,

where Zt and Wt are two Brownian motions with (dZt, dWt) = ρdt, α is the drift
rate, k is the mean reverting rate, m is the mean reverting level and σ is the so-
called volatility of volatility. The goal of this model is to determine when the firm
pays the sunk cost to activate the project so that its profit is maximized.

Let r and δ denote the risk-free interest rate and the dividend rate, respectively.
By the existence theorem of an equivalent martingale measure, we are able to change
the real probability measure P to a risk-neutral probability measure Q and describe
the processes as

dYt = (r − δ)Ytdt+
√

StYtdZ̃t, (2.1)

dSt = k∗(m∗ − St)dt+ σ
√

StdW̃t, (2.2)

where

k∗ = k + λ and m∗ =
km

k + λ

are the risk-neutral parameters, and the new parameter λ is the premium of volatil-
ity risk, refer to [4]. For the rest of this paper, our analysis will be based on the
risk-neutral probability measure Q.

Let y and s be the values of Yt and St. Assume that D is independent of y and s.
The project value, denoted by V (y, s), can be expressed as the sum of the current
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profit in the time interval [t, t+ dt] and the continuation value, i.e.,

V (y, s) = yDdt+ E

[
V (y + dy, s+ ds|y, s)

1 + rdt

]
. (2.3)

By applying Itô’s lemma, we first obtain

dV =
1

2

∂2V

∂y2
(dYt)

2 +
1

2

∂2V

∂s2
(dSt)

2 +
∂2V

∂y∂s
(dYt, dSt) +

∂V

∂y
dYt +

∂V

∂s
dSt,

which can help us to transform (2.3) into the following PDE

rV =
1

2

[
y2s

∂2V

∂y2
+ sσ2 ∂

2V

∂s2
+ 2ρysσ

∂2V

∂y∂s

]
+ αy

∂V

∂y
+ k∗(m∗ − s)

∂V

∂s
+ yD (2.4)

A meaningful particular solution we find for (2.4) is V p(y) = yD
δ
. Note that this is

also the only particular solution that is independent of the volatility. This is called
the fundamental component of the project value, which is just the expected present
value of revenue stream by keeping the project active forever. Other terms in the
solution are speculative components which can be set to zero by invoking economic
considerations. We denote the option value by F (y, s). For any time t, the firm can
either invest and take the immediate payoff V (y)− I, or wait for an small amount
of time dt and take the continuation value

E

[
F (y + dy, s+ ds|y, s)

1 + rdt

]
.

It follows that F (y, s) satisfies the following Bellman equation,

F (y, s) = max

{
V − I,E

[
F (y + dy, s+ ds|y, s)

1 + rdt

]}
. (2.5)

Let y∗ be the optimal threshold such that the continuation value is equal to the
immediate payoff. Again applying Itô’s lemma, we conclude that before y reaches
y∗, F satisfies the following PDE

rF =
1

2

[
y2s

∂2F

∂y2
+ sσ2 ∂

2F

∂s2
+ 2ρysσ

∂2F

∂y∂s

]
+ αy

∂F

∂y
+ k∗(m∗ − s)

∂F

∂s
(2.6)

with the boundary conditions

F (y∗, s) = V (y∗, s)− I, (2.7)

F (0, s) = V (0, s), (2.8)

∂F

∂y

∣∣∣∣
y=y∗

=
∂V

∂y

∣∣∣∣
y=y∗

, (2.9)

∂F

∂s

∣∣∣∣
y=y∗

=
∂V

∂s

∣∣∣∣
y=y∗

, (2.10)

where (2.7) is the value matching condition, (2.8) says that the value of option
F becomes worthless if the firm does not expirence any demand shock, (2.9) and
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(2.10) are the smooth pasting conditions. Substituting V p into (2.7)−(2.10) gives

F (y∗(s), s) =
y∗D

δ
− I,

F (0, s) = 0,

∂F

∂y

∣∣∣∣
y=y∗

=
D

δ
,

∂F

∂s

∣∣∣∣
y=y∗

= 0.

Let v2 = m∗σ2/2k, ǫ = 1/k∗. Following the asymptotic approach in [8] and [9], we
define the following operators

L0 =
v2s

m∗

∂2

∂s2
+ (m∗ − s)

∂

∂s
,

L1 =
ρv

√
2√

m∗
ys

∂2

∂y∂s
,

L2 =
1

2
sy2

∂2

∂y2
+ (r − δ)y

∂

∂y
− r,

Then, (2.6) can be rewritten as the following compact form,
(
1

ǫ
L0 +

1√
ǫ
L1 + L2

)
F = 0. (2.11)

We expand F (y, s) and y∗(s) as

F (y, s) = F0(y, s) +
√
ǫF1(y, s) + ǫF2(y, s) + · · · , (2.12)

y∗(s) = y∗0(s) +
√
ǫy∗1(s) + ǫy∗2(s) + · · · . (2.13)

Substituting (2.12) and (2.13) into (2.11) and taking terms up to the order
√
ǫ give

1

ǫ
L0F0 +

1√
ǫ
(L0F1 + L1F0) + (L0F2 + L1F1 + L2F0)

+
√
ǫ(L0F3 + L1F2 + L2F1) = 0.

(2.14)

Substituting (2.12) and (2.13) into the boundary conditions (2.7)−(2.10) yields

F0(y
∗(s), s) +

√
ǫ

(
y∗1(s)

∂F0

∂y

∣∣∣∣
y=y∗

0

+ F1(y
∗
0(s), s)

)
=

y∗0(s)D

δ
+
√
ǫ
y∗1(s)D

δ
− I

(2.15)

F0(0, s) +
√
ǫF1(0, s) = 0, (2.16)

∂F0

∂y

∣∣∣∣
y=y∗

0

+
√
ǫ

(
y∗1(s)

∂2F0

∂y2

∣∣∣∣
y=y∗

0

+
∂F1

∂y

∣∣∣∣
y=y∗

0

)
=

D

δ
, (2.17)

∂F0

∂s

∣∣∣∣
y=y∗

0

+
√
ǫ

(
y∗1(s)

∂2F0

∂y∂s

∣∣∣∣
y=y∗

0

+
∂F1

∂y

∣∣∣∣
y=y∗

0

)
= 0. (2.18)

Using the approach similar to that in [9], we derive the following proposition, whose
the proof is provided in Appendix A.
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Proposition 2.1. Under the given assumptions, the payoff of the firm is given

asymptotically by

F (y) ≈





(
1− ρσβ2

1
(β1−1)

k∗(β2−β1)
ℓn
(

y∗

0

y

))(
y∗

0
D

δ
− I
)(

y
y∗

0

)β1

, if y ≤ y∗0 ,

yD
δ

− I, if y ≥ y∗0 ,

(2.19)

where

β1 =
1

2
− r − δ

m∗
+

√(
r − δ

m∗
− 1

2

)2

+
2r

m∗
, (2.20)

β2 =
1

2
− r − δ

m∗
−

√(
r − δ

m∗
− 1

2

)2

+
2r

m∗
, (2.21)

y∗0 =
β1Iδ

(β1 − 1)D
. (2.22)

The optimal threshold y∗ of the firm is given asymptotically by

y∗ ≈ β1Iδ

(β1 − 1)D

(
1 +

ρσβ1

k∗(β2 − β1)

)
. (2.23)

Thus the optimal strategy for the firm is to invest at time T ∗ given by

T ∗ = inf {t ≥ 0 : y ≥ y∗} . (2.24)

3. The duopoly case

In this section, we consider two firms, namely A and B, with potential to enter
the market. The industry output, denoted byQ, can take values 0, 1 or 2, depending
on the number of active firms in the market. If only one firm is active, the firm
earns the monopoly profit flow yD(1). If both A and B are active, they share the
market and each of them earns the duopoly profit flow yD(2). When potential
competitors in the market are allowed, the fear of preemption by a rival reduces
the value of waiting. The problem of determining the optimal stopping time for A
and B in such a case is known as a stochastic duopoly game The firm, who invests
first, is referred as the leader, and the other is referred as the follower. Being the
leader has the advantage of earning the monopoly profit before the follower invests.
When we analyse the strategic structure of our duopoly game, we need to consider
two situations: one is that both A and firm B have the potential to become the
leader, the other is that leader and the follower are pre-determined.

3.1. The leader is not pre-determined. In this case, we first determine fol-
lower’s option value and then the leader’s project value. If A sets its trigger point
in the range where the payoff of being the leader is greater than that of being the
follower, B can invest just before A and becomes the leader. Thus, to prevent from
being preempted by B, A needs to invest just before B. So does B. Eventually,
the optimal investing time for any firm to be the leader is to invest at the shock
level where the leader’s project value is equal to the follower’s option value.
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First, we calculate follower’s option value. This can be done by assuming that
one of the firms has already invested and then applying steps similar to those in
Section 2. Thus, by Proposition 2.1, the follower’s option value, F b(y), is given by

F b(y) =





(
1− ρσβ2

1(β1 − 1)

k∗(β2 − β1)
ℓn

(
yb0
y

))(
yb0D(2)

δ
− I

)(
y

yb0

)β1

, if y ≤ yb0,

yD(2)

δ
− I, if y ≥ yb0,

(3.1)

where β1 and β2 are the same as those in (2.20) and (2.21), and

yb0 =
β1Iδ

(β1 − 1)D(2)
.

The optimal threshold is

yb =
β1Iδ

(β1 − 1)D(2)

(
1 +

ρσβ1

k∗(β2 − β1)

)
, (3.2)

and the corresponding investing time T b is

T b = inf
{
t ≥ 0 : y ≥ yb

}
. (3.3)

Next, we calculate leader’s option value and its optimal investing time. To this
end, we need to find leader’s project value V a. Assume that the follower invests at
time T b. While the follower is waiting, the leader’s project value can be expressed
as the sum of the expected present discounted value of the monopoly future returns
and the expected present discounted value of the duopoly future returns, i.e.,

V a(y) = E

[∫ T b

0

e−rtyD(1)dt

]
+ E

[
e−rT b

] yb0D(2)

δ

when y ≤ yb0. When y ≥ yb0, A and B share the duopoly profit, and thus V a(y) =
yD(2)

δ
. Applying techniques similar to those in Section 2 to these two expectations

leads to the following results, (refer to Appendix B)

V a(y) =





yD(1)
δ

+
(

y

yb
0

)β1
(
1− ρσβ2

1
(β1−1)

k∗(β2−β1)
ℓn
(

yb
0

y

))
yb
0
(D(2)−D(1))

δ
, if y ≤ yb0,

yD(2)
δ

, if y ≥ yb0.

(3.4)

Following the proof of Proposition 4 in [6], we conclude the following proposition.

Proposition 3.1. For the case when both firms can become leader, there exists a

unique point yE ∈ (0, yb) with the following properties:

V a − I < F b for y < yE ,

V a − I = F b for y = yE ,

V a − I > F b for yE < y < yb,

V a − I = F b for y ≥ yb.

In Figure 1, the green dash curve and the blue curve denote F b(y) and V a(y)
for y ≤ yb, respectively. We see that V a(y) is concave over the range y < yb.
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Figure 1. Values of Leader and Follower in Duopoly

3.2. The leader is pre-determined. In this case, the follower only has one strat-
egy, which is to invest at time T b. Before y reaches leader’s first trigger point ya1 ,
the leader’s option value, denoted by F a, satisfies the following PDE

rF a =
1

2

[
y2s

∂2F a

∂y2
+ sσ2 ∂

2F a

∂s2
+ 2ρysσ

∂2F a

∂y∂s

]
+ αy

∂F a

∂y
+ k∗(m∗ − s)

∂F a

∂s
(3.5)

with the boundary conditions

F a(ya1 , s) = V a(ya1 , s)− I, (3.6)

F a(0, s) = 0, (3.7)

∂F a

∂y

∣∣∣∣
y=ya

1

=
∂V a

∂y

∣∣∣∣
y=ya

1

, (3.8)

∂F a

∂s

∣∣∣∣
y=ya

1

=
∂V a

∂s

∣∣∣∣
y=ya

1

. (3.9)

Put

V a
0 (y) =

yD(1)

δ
+Hyβ1 and

√
ǫV a

1 (y) =
2BH

m∗(β2 − β1)
ℓn

(
yb0
y

)
yβ1 .

Then, we can rewrite V a in (3.4) as the following form,

V a(y) =





V a
0 +

√
ǫV a

1 , if y ≤ yb0,

yD(2)

δ
, if y ≥ yb0,

where

B = −ρσm∗

2k∗
β2
1(β1 − 1) and H =

(
1

yb0

)β1 yb0(D(2)−D(1))

δ
.
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Applying techniques similar to those in Section 2 gives

1

2
m∗y2

d2F a
0

dy2
+ (r − δ)y

dF a
0

dy
− rF a

0 = 0

with the boundary conditions

F a
0 (y

a
1,0) = V a

0 (y
a
1,0)− I,

F a
0 (0) = 0,

dF a
0

dy

∣∣∣∣
ya
1,0

=
dV a

0

dy

∣∣∣∣
y=ya

1,0

.

Note that the leader has different strategies corresponding to different shock levels.
For the range of y that includes zero, F a

0 = Jyβ1 , where β1 is given in (2.20) and

J =

(
ya1D(1)

δ
− I

)(
1

ya1,0

)β1

+
yb0
δ
(D(2)−D(1))

(
1

yb0

)β1

, (3.10)

(refer to Appendix A). The first optimal threshold ya1,0 is given by

ya1,0 =
β1Iδ

(β1 − 1)D(1)
. (3.11)

Let F
a

1 = ǫF a
1 . Then F

a

1 satisfies the following equation (refer to Appendix B)

1

2
m∗y2

d2F
a

1

dy2
+ (r − δ)y

dF
a

1

dy
− rF

a

1 = BJyβ1 (3.12)

with the boundary conditions

F
a

1(y
a
1,0) = V

a

1(y
a
1,0), (3.13)

F
a

1(0) = 0. (3.14)

Solving (3.12) gives (refer to Appendix A)

F
a

1(y) =
2BJ

m∗(β2 − β1)
ℓn

(
ya1,0
y

)
yβ1 +

2BH

m∗(β2 − β1)
ℓn

(
yb0
ya1,0

)
yβ1 . (3.15)

Now we determine the correction term ya1,1 for the first investment threshold. Let

V
a

1 = ǫV a
1 . Applying Taylor’s expansion theorem to equation (3.8) yields

ya1 =

(
∂V

a

1

∂y

∣∣∣∣
ya
0

− ∂F
a

1

∂y

∣∣∣∣
ya
0

)/(
∂2F a

0

∂y2

∣∣∣∣
ya
0

− ∂2V a
0

∂y2

∣∣∣∣
ya
0

)
. (3.16)

Substituting V
a

1 and F
a

1 into (3.16) gives

ya1,1 =
ρσβ1y

a
1,0

k∗(β2 − β1)
. (3.17)

We summarize the above results in the following proposition.

Proposition 3.2. Let ya1 = ya1,0 + ya1,1, where ya1,0 and ya1,1 are given in (3.11) and
(3.17) respectively. When y ≤ ya1 , the optimal strategy for the leader is to wait until

y first reaches the trigger level ya1 and invest in the project.
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The optimal trigger level ya1 is in fact the same as that in the monopoly case,
since the fixed priority gives the leader the ability to fully capture the value of
waiting without being preempted by the follower. However, this is only applicable
when the shock level is low, under the assumption that the demand shock cannot
suddenly jump to a high level. If the current shock level y is relatively high, we
have to extend the analysis to a more complicated situation. For a range of y that
includes neither zero nor infinity, the solution of the option value takes the form of

F a
0 (y) = J(1)yβ1 + J(2)yβ2 , (3.18)

where β1 and β2 are the same as those in (2.20) and (2.21) (refer to Appendix
A). We now determine two free boundaries ya2 and ya3 of the problem. When
ya1 ≤ y ≤ yb, there is a boundary point ya2,0 satisfying the boundary conditions,

F a
0 (y

a
2,0) = V a

0 (y
a
2,0)− I, (3.19)

∂F a
0

∂y

∣∣∣∣
y=ya

2,0

=
∂V a

0

∂y

∣∣∣∣
y=ya

2,0

. (3.20)

When y ≥ yb, there is a boundary point ya3 , whose zero-order term ya3,0 satisfies the
following boundary conditions

F a
0 (y

a
3,0) =

ya3,0D(2)

δ
− I, (3.21)

∂F a
0

∂y

∣∣∣∣
y=ya

3,0

=
D(2)

δ
. (3.22)

We can find the correction term F a
1 once ya2,0, y

a
3,0, J(1) and J(2) are determined.

For a range of y that includes neither zero nor infinity, F
a

1 satisfies

1

2
m∗y2

d2F
a

1

dy2
+ (r − δ)y

dF
a

1

dy
− rF

a

1 = B(β1)J(1)y
β1 +B(β2)J(2)y

β2 , (3.23)

(refer to Appendix A). We change the constant B to B(β) = −ρσm∗

2k∗
β2(β − 1),

since it depends on β. The general solution to (3.23) takes the form of

F
a

1(y) = L(1)yβ1 + L(2)yβ2

+
2ℓn(y)

m∗(β1 − β2)
(B
(
β1)J(1)y

β1 +B(β2)J(2)y
β2

)

+
2

m∗(β1 − β2)2
(
B(β1)J(1)y

β1 −B(β2)J(2)y
β2

)
.

(3.24)

We can determine the constants L(1) and L(2) by the following boundary conditions

F
a

1(y
a
2,0) =

2BH

m∗(β2 − β1)
ℓn

(
yb0
ya2,0

)
(ya2,0)

β1

F
a

1(y
a
3,0) = 0.

Again we use (3.16) to determine the trigger point expansions ya2,1 and ya3,1 numer-
ically. The above analysis can be summarized in the following proposition.

Proposition 3.3. Let ya2 = ya2,0+ya2,1, y
a
3 = ya3,0+ya3,1 where ya2,0, y

a
3,0 are solutions

to (3.19)−(3.22), and ya2,1, y
a
3,1 are determined by (3.16). If y ≥ ya1 , the optimal

investing strategy for the leader is to wait if y ∈ [ya2 , Y
a
3 ) and invest otherwise.
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The reason that the leader has to wait at a high demand shock level is that if the
current demand shock is getting too close to follower’s optimal threshold, the leader
may not earn the monopoly profit. Even if the leader can earn the monopoly profit,
the earning period is very short, since the follower will invest soon. Thus, the leader
is recommended to wait until an even higher demand shock level is reached, and
the leader and follower invest simultaneously and enjoy a higher duopoly profit.

4. Numerical examples

Let r = 0.05,m∗ = 0.65, σ = 0.6, k∗ = 10, I = 40, δ = 0.03, D(1) = 1 and
D(2) = 0.5. We first present the graph of the basic model with ρ = 0.

Figure 2. r = 0.05,m∗ = 0.65, σ = 0.6, k∗ = 10, ρ = 0, I =
40, δ = 0.03, D(1) = 1 and D(2) = 0.5.

In Figure 2, the dash curves denote the option values of waiting, meaning that
firms have not invested in the project yet. In the pre-determined leader-follower
case, if y falls in the range [0, ya1 )∩[ya2 , ya3 ), we can see that waiting is more profitable
than investing in the project for the leader. The follower will invest if yb is reached.
While the follower is waiting, its payoff is denoted by the green dash curve. If both
firms invest in the project, they share the market and enjoy the duopoly profit,
which is denoted by the red curve. The result is very similar to that in the classical
model which takes the mean reverting rate m∗ as a constant volatility. However,
the volatility parameter σ of the volatility process St can also affect the result. We
use figure 3 and figure 4 to demonstrate the effects of m∗ and σ.
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Figure 3. Change m∗ = 0.65 to m∗ = 0.35

Figure 4. Change σ = 0.6 to σ = 0.9

In Figure 3, we fix other parameters, but decrease to m∗ = 0.35. Comparing
Figure 3 with Figure 2, we see that the option values of waiting decrease as m∗

decreases. However, there is only a little impact on leader’s project value and the
duopoly profit, since in the option pricing theory, the smaller the volatility is, the
less the call option is worth. In our model, the mean reverting level of the volatility
process is similar to the mean of the volatility, thus the value of waiting decreases
as m∗ decreases. Then firms are recommended to invest earlier in both competitive
and non-competitive situations. In Figure 4, we fix other parameters and increase
σ, and the result appears to be similar to that in Figure 3.
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Figure 5. Change δ = 0.03 to δ = 0.04

Figure 6. Change D(2) = 0.5 to D(2) = 0.7

We also investigate how the drift parameter α of the demand shock would affect
the results. In Figure 5, we increase δ by 0.01, which is the same as decreasing α
by 0.01. Comparing Figure 5 with Figure 2, the overall payoffs of firms decrease
as α decreases. Thus, firms are recommended to delay the investment in both
the competitive and the non-competitive situations. In Figure 6, we increase the
duopoly demand D(2). As expected, follower’s payoff is increased. This makes
being a leader less attractive, and results in a higher equilibrium threshold yE
in the competitive situation. Whereas in the non-competitive situation, the first
investment threshold for the leader stays the same, since changing the duopoly profit
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does not affect leader’s monopoly profit. However, the follower is recommended to
invest earlier, since the duopoly profit is higher. This forces leader’s second trigger
point ya2 to occur earlier, meaning that the leader is less likely to enjoy the monopoly
profit, if the initial demand shock is high. If we let D(2) = D(1), then ya1 and ya2
concide, and follower’s payoff will increase to the same level as leader’s payoff. This
is exactly why we need to modify the monopoly model by adding a simple demand
function to distinguish the payoffs between the leader and the follower.

Figure 7. Change ρ = 0 to ρ = −1

The next important parameter that we must investigate is ρ. We consider two
extreme values ρ = −1 and ρ = 1. Comparing Figure 7 with Figure 2, we see that
not only the investment thresholds but also some of the payoffs increase. Typically,
we see that there is a significant increase in leader’s project values, which results
in an increase in the option values of waiting after ya2 . However, there is no much
difference in the option values of waiting before ya2 . Comparing Figure 8 with
Figure 2, we find the opposite results. Note that the previous results we have on
other parameters when ρ = 0 still hold here, and yet the results are also affected by
ρ. For instance, in Figure 9, the changes of option values as m∗ decreases are not
essentially different from those in Figure 2. But a positive correlation also decreases
the payoffs and suggests firms to invest earlier. From Figure 7 − Figure 9, we see
that when there is correlation between y and s, the investment thresholds do not
lead to optimal results. In fact, we don’t expect F a and F b to be accurate when
the mean reverting rate k∗ is small, since ǫ = 1

k∗
in these asymptotic solutions.

Thus, to make the asymptotic results accurate, we must assume that the volatility
process St is under fast-mean reversion, i.e., the mean reverting rate k∗ is big.
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Figure 8. Change ρ = 0 to ρ = 1

Figure 9. Change m∗ = 0.65, ρ = 0 to m∗ = 0.35, ρ = 1

In Figure 10 and Figure 11, we see neither of them is much different from Figure
2. We refer the reader to [9] for an analysis of the relation between the mean
reverting rate and the optimal investment thresholds.
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Figure 10. Change k∗ = 10, ρ = 0 to k∗ = 50, ρ = 1

Figure 11. Change k∗ = 10, ρ = 0 to k∗ = 50, ρ = −1

5. Concluding remarks and further extensions

In this paper, we investigate a stochastic duopoly game of the investment timing
problem. In our model, we assume that the project value depends on the demand
shock which follows Heston’s model in [4]. We start with a monopoly model, and
then extend it to a duopoly model for the competitive and the non-competitive
situations. Both situations lead to PDEs which need to be solved numerically.
The asymptotic solutions we obtained for real option values or optimal investment
thresholds are made up of the first two terms of asymptotic expansions. We find
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that the first terms of these solutions are the same as the solutions of the classical
real option problem with a constant volatility.

From theoretical results and numerical examples, we conclude the following. The
option values of waiting and the optimal thresholds of firms increase (decrease) as
the mean reverting level m∗ of the volatility process increases. In contrast, we find
that decreasing the drift parameter α will decrease forms’ payoffs but increase the
optimal thresholds for the investment. We have also shown how the demand func-
tion contributes to the difference between being the leader and being the follower
in the model. We find that the positive (resp. negative) correlation between the
demand shock and the volatility decreases (resp. increases) the expected payoffs
and optimal thresholds for the leader and the follower. Finally, the asymptotic
result converges to the classical one with constant volatility as the mean reverting
rate k∗ increases.

There are some other possible research directions that we can consider in the
future. For instance, we can extend our current model from the complete informa-
tion competition to the incomplete information competition and find pure/mixed
strategies for firms. It would be interesting to consider our current model under
other stochastic processes. We can also investigate the situation in which firms
decide to abandon a project. Such a situation has been considered in the classical
real option analysis.

Appendix A

Proof of Proposition 2.1. The asymptotic solution consists of two parts, the
zero order term and the correction term. Taking the 1

ǫ
term from (2.14) and the

corresponding boundary conditions give

L0F0(y, s) = 0, if y ≤ y∗0 , (A.1)

F0(y, s) =
yD

δ
− I, if y ≥ y∗0 , (A.2)

∂F0

∂y
=

D

δ
. (A.3)

Since L0 takes derivatives with respect to s only, (A.1) implies that F0 is indepen-
dent of s when y ≤ y∗0 . (A.2) shows that F0 is also independent of s on the other
side of the y∗0 . F0 being independent of s also implies that y∗0 is independent of y.
Then taking the 1√

ǫ
term from (2.14) and the corresponding boundary conditions

give

L0F1(y, s) = 0, if y ≤ y∗0 , (A.4)

F1(y, s) = 0, if y ≥ y∗0 , (A.5)

y∗1
∂2F0

∂y2

∣∣∣∣
y=y∗

0

+
∂F1

∂y

∣∣∣∣
y=y∗

0

= 0. (A.6)

(A.4) follows from the fact that F0 is independent of s, and it implies that F1 is
also independent of s. From (A.5), we conclude that L1F1 = 0. Thus,

L0F2 + L2F0 = 0, if y ≤ y∗0 , (A.7)

F2(y, s) = 0, if y ≥ y∗0 . (A.8)
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(A.7) is a Poisson equation for F2 with respect to the operator L0. According to
[8], a solution exists if and only if L2F0 is centred with respect to the invariant
distribution of the diffusion whose infinitesimal generator is L0. Thus, 〈L2F0〉 = 0,
where the angled brackets indicate taking the average of the argument with respect
to the invariant distribution of the diffusion whose infinitesimal generator is L0.
Since F0 does not depend on s, the centering condition becomes 〈L2〉F0 = 0, which
is equivalent to

1

2
m∗y2

d2F0

dy2
+ (r − δ)y

dF0

dy
− rF0 = 0. (A.9)

Note that the invariant distribution is in fact a Gamma distribution and hence
〈s〉 = m∗. This ODE is similar to that in the classical real option problem whose
volatility is given by a constant

√
m∗. Following [2], we obtain the zero order term

of the problem as follows:

F0(y) =





(
y∗0D

δ
− I

)(
y
y∗

0

)β1

, if y ≤ y∗0 ,

yD

δ
− I, if y ≥ y∗0 ,

where

y∗0 =
β1Iδ

(β1 − 1)D
and β1 =

1

2
− r − δ

m∗
+

√(
r − δ

m∗
− 1

2

)2

+
2r

m∗
.

Next, we are to find the correction term. Since L1F1 = 0, the order 1 terms of
(2.14) give

L0F2 = −L2F0

= −(L2F0 − 〈L2F0〉)

= −1

2
(s−m∗)y2

d2F0

dy2
, (A.10)

Let c(t, y) be a function independent of s. Let φ(s) be the solution to the Poisson
equation L0(φ) = s−m∗, where φ(s) satisfies (refer to [8])

φ(s) =

∫ ∞

0

E(m∗ − St|S0 = s)dt

=

∫ ∞

0

m∗ − s0e
−t −m∗(1− e−t)dt

=

∫ ∞

0

(m∗ − s)e−tdt

= m∗ − s. (A.11)
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From (A.10) and (A.11), we get

F2(t, y, s) = −1

2
L
−1
0 (s−m∗)y2

d2F0

dy2

= −1

2
(φ(s) + c(t, y))y2

d2F0

dy2

=
1

2
(s−m∗ − c(t, y))y2

d2F0

dy2

=
1

2
(s+ c(t, y))y2

d2F0

dy2
(A.12)

where c(t, y) = −(c(t, y) +m∗) is independent of s. Collecting the order
√
ǫ terms

of (2.14) yields

L0F3 + L1F2 + L2F1 = 0, if y ≤ y∗0 ,

F3(y, s) = 0, if y ≥ y∗0 ,

which lead to a Poisson equation for F3. The corresponding centering condition is

〈L1F2 + L2F1〉 = 0.

since L1 takes derivatives with respect to s, and c(t, y) is independent of s, com-
bining the above equation with (A.12) gives

L2(
√
m∗)F1 = 〈L2F1〉

= −〈L1F2〉

= 〈L1sy
2 d

2F0

dy2
〉

= −ρσm∗

2
√
k

(
2y2

d2F0

dy2
+ y3

d3F0

dy3

)
, (A.13)

Let F 1 =
√
ǫF1. Substituting L2 and F0 into (A.13) gives

1

2
m∗y2

d2F 1

dy2
+ (r − δ)y

dF 1

dy
− rF 1 = BAyβ1 , (A.14)

where

B = −ρσm∗

2k
β2
1(β1 − 1) and A =

(
y∗0D

δ
− I

)(
1

y∗0

)β1

.

The homogeneous equation associated with (A.14) is indentical to (A.9). To solve
(A.14), we only need to find a particular solution by the method of variation of
parameters. Let F 1p(y) = C(y)yβ1 + D(y)yβ2 be a particular solution, where β1

and β2 are the same as those in (2.20) and (2.21), and C(y) andD(y) are parameters
to be determined. Taking the first derivative gives

dF 1p

dy
= β1C(y)yβ1−1 + β2D(y)yβ2−1,

where we make

dC

dy
yβ1 +

dD

dy
yβ2 = 0.
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Taking the second derivative gives

d2F 1p

dy2
= β1(β1 − 1)C(y)yβ1−2 + β2(β2 − 1)D(y)yβ2−2 + β1y

β1−1 dC

dy
+ β2y

β2−1 dD

dy
.

We substitute these equations back to (A.14) and get

dC

dy
yβ1 +

dD

dy
yβ2 = 0,

1

2
m∗

(
β1

dC

dy
yβ1+1 + β2

dD

dy
yβ2+1

)
= BAyβ1 .

Solving this system of equations gives

C(y) =
−2BAℓn(y)

m∗(β2 − β1)
and D(y) =

−2BAyβ1−β2

m∗(β2 − β1)2
.

Thus the general solution is of the form

F 1(y) = C1y
β1 + C2y

β2 + C(y)yβ1 +D(y)yβ2

= C1y
β1 + C2y

β2 − 2BAyβ1

m∗(β2 − β1)

(
ℓn(y) +

1

β2 − β1

)
,

where the constants C1 and C2 are yet to be determined. The boundary conditions
for F 1 requires that at y = 0, F 1(0) = 0. This leads to C2 = 0. At y = y∗0 , we
must have F 1(y

∗
0) = 0. This leads to

C1 =
2BA

m∗(β2 − β1)

(
ℓn(y∗0) +

1

β2 − β1

)
.

Hence, the correction term is given by

√
ǫF1(y) = F 1(y) =

2BA

m∗(β2 − β1)
ℓn

(
y∗0
y

)
yβ1 .

Finally, we isolate y∗1 from (2.17) and get

y∗1 = −dF1

dy

∣∣∣∣
y=y∗

0

/
d2F0

dy2

∣∣∣∣
y=y∗

0

,

which is equivalent to

√
ǫy∗1 = −dF 1

dy

∣∣∣∣
y=y∗

0

/
d2F0

dy2

∣∣∣∣
y=y∗

0

.

Thus we can get

√
ǫy∗1 =

ρσβ1y
∗
0

k∗(β2 − β1)
.

Combining F0, F 1, y
∗
0 and y∗1 gives the result in (2.19). Note that similar approach

is also applied to (3.15), (3.18), and (3.24).
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Appendix B

Derivation of (3.4). Let L(y, s) = E

[∫ T b

0
e−rtD(1)dt

]
. By dynamic program-

ming, we get the following PDE

rL =
1

2

[
y2s

∂2L

∂y2
+ sσ2 ∂

2L

∂s2
+ 2ρysσ

∂2L

∂y∂s

]

+αy
∂L

∂y
+ k∗(m∗ − s)

∂L

∂s
+ yD(1).

(B.1)

with the boundary conditions

L(yb0, s) = 0, (B.2)

L(0, s) = 0, (B.3)

∂L

∂s

∣∣∣∣
y=yb

0

= 0. (B.4)

Note that we only need three boundary conditions to work out L, since yb0 is already
given in (3.2). Condition (B.2) says that as y approaches yb0, T

b is likely to be small
and so L(yb0, s) = 0. (B.3) says that when y is very small, T b is likely to be large
and therefore L(0, s) = 0. (B.4) is derived from the fact that the project value does
not depend on the volatility after the follower invests. Again we follow the steps
similar to those in Appendix A and get the following non-homogeneous ODE

1

2
m∗y2

d2L0

dy2
+ (r − δ)y

dL0

dy
− rL0 + yD(1) = 0. (B.5)

with the boundary conditions

L0(0) = 0,

L0(y
b
0) = 0,

∂L0

∂s

∣∣∣∣
y=yb

0

= 0.

Solving (B.5) by following steps similar to those in Appendix A gives

L0(y) = −yb0D(1)

δ

(
y

yb0

)β1

+
yD(1)

δ
, (B.6)

and the correction term for L(y, s) is given by

√
ǫL1(y) =

ρσβ2
1(β1 − 1)

k∗(β2 − β1)
ℓn

(
yb0
y

)
yb0D(1)

δ

(
y

yb0

)β1

. (B.7)

Combining (B.6) with (B.7) gives

E

[∫ T

0

e−rtyD(1)

]
=
yD(1)

δ
− yb0D(1)

δ

(
y

yb0

)β1
(
1− ρσβ2

1(β1 − 1)

k∗(β2 − β1)
ℓn

(
yb0
y

))
.

Now, let G(y, s) = E
[
e−rT

]
. Then the following ODE for zero order term holds,

1

2
m∗y2

d2G0

dy2
+ (r − δ)y

dG0

dy
− rG0 = 0. (B.8)
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The corresponding boundary conditions are

G0(0) = 0, (B.9)

G0(y
b
0) = 1. (B.10)

(B.9) says when y is very small, T b is likely to be large and e−rT b

is close to 0
therefore G0(0) = 0. (B.10) says that as y approaches yb0, T

b is likely to be small
and thus G0(y

b
0) = 1. Solving (B.8) gives

G0(y) =

(
y

yb0

)β1

. (B.11)

Similarly the correction term for G(y, s) is given by (refer to Appendix A)

√
ǫG1(y) = −ρσβ2

1(β1 − 1)

k∗(β2 − β1)
ℓn

(
yb0
y

)(
y

yb0

)β1

. (B.12)

Combining (B.11) with (B.12) gives

E
[
e−rT

] yb0D(2)

δ
=

(
y

yb0

)β1
(
1− ρσβ2

1(β1 − 1)

k∗(β2 − β1)
ℓn

(
yb0
y

))
yb0D(2)

δ

The above results lead to (3.4).
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