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Abstract

Music piracy is a double-edged sword for the music industry. On the one hand, it hurts
record sales. On the other hand, it increases sales of its complements. To quantify the
effect of music piracy, I construct a unique survey data set and use a Bayesian method
to estimate the demand for music and iPods, and find three things. First, music piracy
decreases music sales by 24% to 42%. Second, music piracy contributes 12% to iPod sales.
Finally, counterfactual experiments show that Apple’s revenue could increase by $36 per
student if music were free.

∗I am indebted to my advisor Pat Bajari for his continuous encouragement and support. I have benefited from
the suggestions of Tom Holmes, Kyoo il Kim, Om Narasimhan, Minjung Park, Amil Petrin, Hakki Yazici, and
seminar participants at Bates White, CUHK, Colby College, Columbia University, the Federal Reserve Bank
in Kansas City, HKUST, and the University of Minnesota. I also thank Dulguun Batbold, Andrew Cassey,
John Dalton, Tom Holmes, Nick Guo, Christos Ioannou, Ka Fai Li, Mallory Leung, Tina Marsh, Connan
Snider, and Junichi Suzuki for their help in conducting the survey. Lastly I am grateful to the Economics
Department of the University of Minnesota for financial support. The usual disclaimers apply. Correspondence
to: tleung@cuhk.edu.hk

1



1 Introduction

The belief that music piracy hurts record sales prevails in the music industry.1 In 1999, record

sales started to decline after more than a decade of steady growth. The very same year, Nap-

ster, the first peer-to-peer (P2P) software used to pirate music, began operations, which music

industry representatives, such as the Recording Industry Association of America (RIAA) and

the International Federation of the Phonographic Industry (IFPI), argue is no coincidence. A

number of economists have combined data on illegal downloading from a variety of sources with

data on album sales and found that music piracy has led to a decline in the latter (see Blackburn

(2004), Liebowitz (2006), Peitz and Waelbroeck (2004), Rob and Waldfogel (2006) and Zentner

(2006).) Oberholzer-Gee and Strumpf (2007) disagree, however, arguing that music piracy “al-

lows users to learn about music they would not otherwise be exposed to” and thus may actually

boost record sales. They construct a unique data set using weekly volumes of illegal downloads

and show that music piracy’s effect on record sales “ is not statistically distinguishable from

zero. The economic effect of the point estimate is also small.” These contradictory findings cast

doubt on the music industry’s belief in the damaging effects of music piracy. Whether music

piracy hurts record sales remains an open empirical question.

Although, as noted, many economists argue that music piracy hurts record sales, Oberholzer-

Gee and Strumpf (2010) argue that it can increase revenue from music complements such as

concerts. When music piracy drives the effective price of an album down to nearly zero, more

consumers become familiar with the artist’s music, thus driving up demand for concerts. Mor-

timer, Nosko, and Sorensen (2012) show empirically that music piracy has a significant effect

on concert demand, particularly for small artists. Concerts are not the only music complements

to benefit from music piracy. Figure 1 suggests that the iPod, the most popular MP3 player

by far, has gained considerably from such piracy. Although record sales have declined by more

than 25% since Napster was launched, Apple has seen exponential growth in iPod sales since the

device was introduced in 2001. Revenue from iPod sales grew from $344 million in 2003 to $7.6

billion in 2006. If there is strong complementarity between music piracy and iPod sales, then

Netanel (2003) and Fisher (2004) suggest that it might be welfare-improving to have a regime

1I use music piracy and illegal downloading interchangeably in this paper.
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Figure 1:
RIAA and Apple Inc.: CDs Revenue Decreasing, iPods Revenue Growing in the U.S. ($

millions)

in which music piracy is legal and a government-financed fund compensates music producers

according to the download rates of their records. How much music piracy benefits the iPod sales

is another open and important empirical question.

To answer these two empirical questions, I constructed a unique conjoint data set derived

from a survey of 884 University of Minnesota undergraduates. The students were first asked to

report their demographic information and their recent consumption of both music and iPods.

Then, in the conjoint survey, they were asked to make choices about music (from both legal

and illegal sources) and iPods in 12 hypothetical situations. Green and Rao (1971) introduced

conjoint survey analysis as a way to elicit demand estimates. Conjoint survey data are also

known as stated-preference data, as opposed to revealed-preference data collected from real

world observations. There are two main advantages to the use of conjoint survey data rather

than real market data in this research. First, a conjoint survey is possibly the only way to create

a panel data set on the consumption of illegal downloads, legal music, and iPods. Because it
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is essential to ascertain the influence of any copyright regime changes in the music industry on

related products such as iPods, I require a clean panel data set on the consumption of both

music (from legal and illegal sources) and iPods. Second, use of a conjoint survey allowed the

use of instruments for illegal downloads that are unavailable in other studies for the reasons

discussed in Section 3.

Several studies argue that conjoint survey data generate reliable demand estimates,2 and

applications of conjoint survey analysis abound. For example, Leung (2012) estimates the

substitutability of street and Internet piracy of Microsoft Office in Hong Kong, and Hensher and

Louviere (1983) forecast the choice of attendance at various types of international expositions.

Hensher (1994) reviews the development of conjoint analysis’s use in estimating transportation

choice. Many multinational corporations, including Marriott, Procter & Gamble (P&G), and

General Motors, also use conjoint survey data to estimate the demand for new products (see

Green, Krieger, and Wind (2004) and Orme (2005)).

My empirical analysis consists of three parts. First, I set up a demand system with three types

of music: CDs, legally purchased songs from iTunes, and pirated songs from P2P websites. I

estimate this system of three simultaneous equations using the three-stage least-squares method.

My results contrast with those of Oberholzer-Gee and Strumpf (2007), and support the belief

that music piracy hurts record sales. Second, I use the estimates from the first part to establish

a random-coefficient discrete-demand model for iPods. I follow Rossi, Allenby, and McCulloch

(2005) in setting up a hierarchical Bayesian discrete-demand model, with a mixture of normal

priors, and then use a hybrid of Gibbs Sampling and the Metropolis-Hasting algorithm to

implement posterior inference. These estimates indicate that music piracy boosts demand for

and sales of iPods. Third, I use the estimates from the first and second parts of the analysis

to conduct counterfactuals to predict the changes in demand for music and iPods in different

regimes. The results show that approximately 12% of Apple’s revenue comes from music piracy,

which translates into $1.1 billion using 2008 revenue figures.

The remainder of the paper is organized as follows. Section 2 briefly describes the current

situation of growing music piracy and declining record sales. Section 3 discusses the conjoint

2Carlsson and Martinsson (2001) and Hensher, Louviere, and Swait (1999) collect both stated-preference and
revealed-preference data on donation choice and freight shipper choice, respectively, and show that the hypothesis
of parameter equality holds for most parameters across the two data sources.
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survey data set. Sections 4 and 5 describe the set-up of the demand estimates for music iPods,

respectively, and discuss the estimation results. Section 6 reports the results of counterfactual

experiments using the results from Sections 4 and 5. Section 7 concludes the paper.

2 Music Piracy Growing, Record Sales Shrinking

2.1 Music Piracy is Growing

P2P technology has enhanced the ease and speed with which music can be pirated, and thus

triggered the growth of music piracy. In 1999, the first P2P software, Napster, was introduced,

and the number of music pirates has been growing ever since.
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Figure 2:
Big Champagne: Avg Simultaneous P2P Users in the U.S. Has Been Growing

People download music illegally from the Internet because the cost of doing so is low. If

the cost were even lower, even more people would engage in music piracy. Recent advances in

Internet connection speeds has reduced the time cost of pirating music over the Internet, which

has led to the further growth of music piracy. The marketing research firm Big Champagne
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reports an increasing trend in searching, clicking, and pirating music. Figure 2 shows that the

average number of simultaneous users of P2P software in the U.S. increased from 3.5 million in

August 2002 to more than 6 million in October 2006.3 This growing number of music pirates

translates into a huge number of pirated songs. The IFPI estimates that almost 20 billion songs

were illegally downloaded in 2005.

2.2 Record Sales are Shrinking

Music is important to Americans. The average American enjoys almost an hour of music every

day.4 Before Napster, a major source of such enjoyment was records. Record sales almost

quadrupled between 1990 and 1999. As we can see from Figure 1, the 1990s were the heyday

of the music industry. However, since Napster appeared on the scene in 1999, record sales have

declined by $3.6 billion.

The music industry believes that music piracy hurts record sales and has taken action based

on that belief. In 1999, the RIAA sued Napster, leading to the latter’s demise in 2001. In

addition, between 2003 and 2005, the RIAA sued approximately 11,700 individual music pirates,

despite the reputation cost of effectively suing its own customers (Associated Press (2005)).

Economists have created a variety of illegal download data sets to estimate the effect of music

piracy on record sales. Rob and Waldfogel (2006), for example, conducted a survey in a number

of universities to compile a panel data set on both illegal downloads and album consumption.

Oberholzer-Gee and Strumpf (2007) and Blackburn (2004) created music piracy panel data sets

by tracking individual illegal downloading behavior on P2P software. All of these researchers

supplement their data with aggregate record sales data from the RIAA or Nielson Soundscan.

Both Oberholzer-Gee and Strumpf (2007) and Rob and Waldfogel (2006) run a regression of

the following form to determine the displacement effect of illegal downloads on album sales.

Ajt = Xjtβ + αDjt + ǫjt, (1)

3There was a wave of lawsuits against individual pirates in 2003, which caused a decline in the number of
P2P users at the time. This fact motivates me to include the expected punishment as one of the covariates in
the conjoint survey as discussed in Section 3.

4See Table No.909, “Media Usage and Consumer Spending: 1993 to 2003,” in the 2000 U.S. Statistical
Abstract.
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where Ajt is the sales of album j at time t, Djt is the number of illegal downloads, and Xjt

are other covariates. Djt may be endogenous. Popular albums usually attract more downloads,

in which Djt will be positively correlated with ǫjt, and the estimate of α will have an upward

bias. The aforementioned researchers deal with this problem by finding instruments for illegal

downloads that are not themselves related to album sales and thus not correlated with ǫjt.

Oberholzer-Gee and Strumpf (2007) use the number of German high school students on vacation

as such an instrument based on the premise that German high school students spend more time

pirating music during their holidays.5 Rob and Waldfogel (2006) use the speed of students’

Internet connections as the instrument based on the assumption that students do not choose an

Internet speed based on their music preferences.

Rob and Waldfogel (2006) and Blackburn (2004) find that music piracy hurts record sales.

Rob and Waldfogel (2006) find that “one (illegally) downloaded album reduces music purchases

[by] roughly one-fifth of an album.” Blackburn (2004) estimates in his counterfactuals that “the

lawsuits brought by the RIAA have resulted in an increase in album sales of approximately 2.9%

during the 23 week period after the lawsuit strategy was publicly announced.”

Table 1: US Legal Digital Music Market Growing (millions)
2004 2005 2006

Broadband lines 34 43 57
Single track downloadeds 143 353 582

Album downloads 6 16 33
Mobile subscriptions 163 174 194

Sources: IFPI “Digital Music Report” 2006 and 2007.

Oberholzer-Gee and Strumpf (2007), however, argue that music piracy’s effect on record

sales “is not statistically distinguishable from zero. The economic effect of the point estimate is

also small.” They argue that there may be other more important factors leading to the decline

in record sales. First, we might be seeing a shift in entertainment spending from recorded music

toward recorded movies. Second, many people may have replaced their old LPs with CDs in

the mid-1990s, thus boosting record sales in that period. By 1999, coincidentally the year that

Napster began to operate, however, they had completed their replacement process. Third, the

5Liebowitz (2007) points out that Oberholzer-Gee and Strumpf (2007) make a contradictory claim in their
quasi-experiment stating that illegal downloading decreases in the summer because American college students
lose their broadband connections during their vacation. As both countries have both high school and college
students, theoretically there should be no difference in the way that school holidays affect illegal downloading.
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emergence of digital (online) music stores such as iTunes provides an even closer substitute

for CDs. Table 1 shows that the number of legal downloads of both single tracks and albums

increased by more than 50% per year from 2004 to 2006. In addition to these other factors,

Oberholzer-Gee and Strumpf (2007) argue that music piracy may in fact boost record sales

because it allows consumers to learn about music they would not otherwise be exposed to.

These conflicting findings lead to my first question: Does music piracy hurt record sales?

If so, by how much? To answer the question, I use a different approach from that of previous

researches. Section 3 describes the conjoint survey data set and compares the pros and cons of

this data set with these of the data sets used by others.

3 Data Collection and Description

Table 2: Percentage of U.S. Adult Population Answering YES to “Do you ever download music
files on your computer so you can play them at any time you want?”

Aug-Sep Oct June Nov May-June Feb
2001 2002 2003 2003 2004 2005

Overall 15 19 19 9 13 13
18-29 36 41 43 23 31 32
30-49 16 21 20 9 11 13
50-64 6 8 8 4 6 7
65+ 2 3 1 2 2 1
Men 19 22 23 12 17 14

Women 13 16 15 7 9 12

Source: Pew Internet Project.

I collected conjoint survey data from college students, who generally have a lower income

and greater exposure to the Internet than other age groups. As Table 2 shows, college students

also tend to download or pirate more music than other age groups.

3.1 Conjoint Survey

I conducted the survey in Fall 2007 and Spring 2008 among seven undergraduate classes. Of

the approximately 1800 students registered for these classes, 884 attended class on the day of

the survey and turned in completed surveys.

The survey focuses on one dominant brand of MP3 player, the Apple iPod, because Apple
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Table 3: Apple Dominates the MP3 Market
Brand Unit Share
Apple 72.7%
Sandisk 8.9%
Microsoft 3.2%

Creative Labs 2.9%
Samsung 2.0%

Source: NPD Group.

dominates the MP3 market. As Table 3 shows, Apple enjoys more than 70% share of the MP3

market. Sandisk, its closest competitor of Apple, sells only one-eighth of what Apple does.6

The survey comprised of two parts. The first asked students to report demographic infor-

mation and give details concerning their Internet access and music and iPod consumption pref-

erences. The second was the conjoint survey. Green and Rao (1971) were the first to introduce

conjoint analysis to the marketing field. I followed the approach of Louviere and Woodworth

(1983) in using choice-based conjoint analysis, which integrates conjoint analysis and discrete

choice analysis. The questions in conjoint surveys are not descriptive such as “How much would

you be willing to pay for an iPod?” Instead, they ask students to make concrete choices such as

“Given brand A, B, and C with different attributes and prices, which one would you buy?” Con-

joint survey data are also known as stated-preference data, as opposed to revealed-preference

data, which are collected from real market transactions.

The conjoint survey used in this study included 12 hypothetical tasks. In each task, the

respondents were given the option of listening to music on an iPod, a computer or a radio

(which I treat as an outside choice). The choices differed in the level of each of the following six

choice-specific covariates.

• Price of an iPod (varies from $30 to $650)

• Capacity of an iPod (varies from 1 gigabyte to 8 gigabytes)

• Probability of getting caught pirating music (varies from 0 to 1)

• Fine per song if caught pirating music (varies from $0 to $10,000)

6The respondents also showed a distinct preference for iPods in a trial run of the survey that included other
brands of MP3 players.
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• Price per song in iTunes (varies from $0.1 to $3)

• Price per CD (varies from $1 to $30)

There were five to ten levels for each covariate within the pre-specified range.

I followed the following three principles proposed by Sawtooth Software (2008) to draw the

levels of each covariate.

1. Minimal Overlap: Each covariate level is shown as few times as possible in a single task.

2. Level Balance: Each covariate level is shown an approximately equal number of times.

3. Orthogonality: Covariate levels are chosen independently of other attribute levels, such

that each level’s effect on utility can be measured independently of all other effects.

The student were asked to complete two sub-tasks in each of the 12 tasks. In the first sub-

task, they were asked to imagine that they did not have an iPod and then to rank the three

choices in the task. Figure 3 presents a sample of the first sub-task.

Before ranking the choices, students knew roughly what their level of music consumption

would be under each. For instance, the students who ranked the iPod as their top choice

were also those who estimated that they would buy or pirate a considerable amount of music.

In the second sub-task, I assigned the students one of two choices—iPod or computer. This

assignment may or may not have been their first choice in the first sub-task. Given their

assigned choice and associated music prices, students were then asked how they would change

their music consumption from the previous month and estimate their consumption from three

sources (CDs, iTunes and P2P websites). Figure 4 shows a sample of the second sub-task, which

was included in the conjoint survey administered to two of the seven classes, meaning that 270

students completed it.

3.2 Conjoint Survey Data versus Real Market Data

There are several advantages and disadvantages to using conjoint survey rather than real market

transaction data to estimate the demand for music and iPods.
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A Sample of the First Sub-Task
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One of the disadvantages of doing so is that conjoint analysis requires attributes to be

quantifiable, and some attributes, such as the quality of sound from an iPod and a computer,

are difficult to quantify. However, because these attributes are unlikely to vary across the

different copyright regimes I discuss in the counterfactuals section, omitting them is unlikely to

affect the results.

Some researchers have also expressed concerns about the validity of conjoint survey data.

Some consider real market data to be more reliable because it is revealed-preference data. How-

ever, since Green and Rao (1971) introduced conjoint survey analysis to the marketing area, it

has been widely adopted in the marketing literature to elicit demand estimates. As mentioned in

the introduction, applications of such analysis abound. Several studies also argue that conjoint

survey data can generate reliable demand estimates.

Among the advantages of using conjoint survey data rather than real market data in this

research were the following. First, conjoint survey was possibly the only way to create a panel

data set encompassing the consumption of illegal downloads, legal music, and iPods. Oberholzer-

Gee and Strumpf (2007) and Blackburn (2004) gather panel data sets on music piracy by tracking

individual illegal downloading behavior on a P2P network. They then combine weekly album

sales with their novel data on weekly download volumes to estimate the effect of illegal downloads

on album sales. Rob and Waldfogel (2006) carry out surveys among college students to create

a panel data set incorporating legal music consumption and illegal downloading behavior, and

then use their data set to estimate effect of piracy on record sales. However, as I argued before,

it is important to ascertain the effect of any copyright regime changes in the music industry

on other related products such as iPods. Doing so requires a clean panel data set on both the

consumption of music (both legal and illegal) and iPods. To the best of my knowledge, this

paper is the first to construct such a panel data set using a conjoint survey.

Second, conjoint survey analysis provides good instruments. Both Oberholzer-Gee and

Strumpf (2007) and Rob and Waldfogel (2006) use an instrumental variable approach to deal

with endogeneity in Equation (1). In this paper, I use the expected probability of getting caught

and possible fines as instruments for illegal downloads. Although each affects illegal downloads,

neither has a direct effect on legal music consumption.7 However, despite serving as instruments

7I also used the price of an iTunes song, the price of a CD, and the price of an iPod as instruments for their
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for my purposes here, they would not work in other cases for two reasons. First, there is greater

variation in expected punishment in my conjoint survey than in the real world. In a conjoint

survey, the designer can vary the prices of different choices within a pre-specified range. For

instance, I vary the fine per song from $0 to $10,000, whereas the real fine is usually $10 to $50

per song. Basic econometrics tells us that a larger degree of variation in independent variables

(the expected probability of getting caught and possible fines in our case) provides more infor-

mation about their effect on the dependent variable (illegal downloads here). The second reason

is that the levels of these two covariates are drawn exogenously and independently owing to the

orthogonality principle described in the previous subsection. Hence, they do not correlate with

ǫjt in Equation (1) and can serve as instruments for illegal downloads.

3.3 Data Description

Completed surveys were received from 884 students. Most were typical university students:

They did not have a high income, with around 90% of them earning less than $200 per week.

In addition, they reported spending an average of three to four hours a day on the Internet.

Table 4: Summary Statistics of the Data
Mean (s.d.) Min Max

Age 18.94 (1.87) 13 45
Owns an MP3 player 0.86 (0.35) 0 1

Owns an iPod 0.72 (0.45) 0 1
Number of songs on computer 2508 (4773) 0 75000
Bought a CD in past month 0.28 (0.45) 0 1

Bought songs from iTunes last month 0.32 (0.47) 0 1
Downloaded free songs last month 0.54 (0.50) 0 1

N=844.

Table 4 shows that the respondents expressed great interest in listening to music. They

reported having an average of 2508 songs on their computers. They both bought music, and

pirated it. Twenty-eight percent and 32% had bought a CD or a song from iTunes, respectively,

in the previous month. In addition, more than half (54%) of them had downloaded songs illegally

from the Internet in the previous month.

corresponding demands.
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More than 70% of the students said they owned an iPod.8 Unsurprisingly, the students who

owned more music were more likely to own an iPod. If I define students who have more than

1000 songs on their computers as music lovers and others as non-music lovers, 80% of music

lovers own an iPod, whereas only 60% of non-music lovers do.

Table 5: Summary Statistics of Conjoint Survey
Choice First Choice (%) Second Choice (%)
iPod 46.11% 28.50%

Computer 36.63% 37.23%
Radio 17.27% 34.28%

N=10608.

Table 5 shows that in the first sub-task of the conjoint survey, iPod was the most popular

of the three choices, with computer coming second.

An iPod was students’ first choice almost half of the time. Not only did they show a preference

for iPods, but they also prefered lower prices. Table 6 shows that when iPod or music prices

decreased, iPods were the first choice more often.

Table 6: iPod as First Choice under Extreme Attribute Levels
Attribute Lowest level Highest level
iPod price 56.75% 42.21%

Price per song in iTunes 74.22% 42.37%
Price per CD 66.88% 39.66%

Probability of getting caught 85% 23.89%
Fine per song 85% 39.22%

GB 53.04% 53.51%

N=10608.

As noted, I included the second sub-task in the conjoint survey in two of the seven classes.

Of the approximately 884 students surveyed, 270 completed surveys with the second sub-task.

These 270 students have similar characteristics to the overall sample.

4 Music Demand

I used the data from the second sub-task in the conjoint survey to estimate music demand. The

three dependent variables are CDs, iTunes songs, and pirated songs from P2P websites, and the

8Among the students who owned an MP3 player, more than 80% owned an iPod, which justifies my focus on
iPods specifically, instead of MP3 players generally, in this paper.
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independent variables are the prices of music from different sources and demographic variables.

As my first question in this study was whether music piracy hurts record sales, I needed to

determine the effect of pirated songs on CD and iTunes song consumption. The problem can

be expressed as a simultaneous equations problem. The simultaneous demands for music from

agent i in task t are

log Y ∗

itp = z′itpγp + log(Y ∗

its)φps + log(Y ∗

itc)φpc + uitg (2)

log Y ∗

its = z′itsγs + log(Y ∗

itp)φsp + log(Y ∗

itc)φsc + uits (3)

log Y ∗

itc = z′itcγc + log(Y ∗

its)φcs + log(Y ∗

itp)φcp + uitc (4)

where subscripts p, s and c denote P2P (pirated songs), iTunes songs, and CDs. For g ∈ {p, s, c}

Y ∗

g = Yg +1, Yg is the consumption of g; zg is a vector of exogenous regressors, including prices,

that are uncorrelated with ug; and uitg are i.i.d. over i and t and homoskedastic, but correlated

across g. Table 7 presents all of the z.

Table 7: Exogenous Regressors in Music Demand
π∗ = π + 0.001 probability of getting caught
f∗ = f + 1 fine per song if caught

P ∗

s price per iTunes song
P ∗

c price per CD
iPod indicator for iPod

h∗ = h+ 1 hours spent on Internet per day
Antivirus indicator for having antivirus software
P2Pfd indicator for having friend who engages in piracy
Dorm indicator for living in dorm
Income level of income
Prob perceived probability of getting caught in real world

MusInt level of music interest
P2P ∗ illegal songs downloaded last month

iTunes∗ iTunes songs purchased last month
CD∗ CD purchased last month

Each dependent variable has its own instruments. For instance, the probability of getting

caught pirating music (π) instruments for the demand for pirated music from P2P websites,

the price per song in iTunes instruments for the demand for iTunes songs; and the price per

CD instruments for CD demand. I used the three-stage least-square method to estimate this

simultaneous equations system, and the results are presented in Table 8.

There are several things to note. First, the students pirated more music when they owned
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Table 8: Music Demand/Month (std. err.)
log(P2P + 1) Demand/Month log(iTunes+ 1) Demand/Month log(CD + 1) Demand/Month

Constant 0.27 (0.19) 2.21 (0.07) 0.93 (0.04)
log Y ∗

p -0.07 (0.01) -0.04(0.01)
log Y ∗

s -0.33 (0.03) -0.09 (0.01)
log Y ∗

c -0.02 (0.10) -0.09 (0.06)
iPod 0.37 (0.06) 0.14 (0.03)
log π∗ -0.32 (0.01)
log f∗ -0.21 (0.01)
logP ∗

s -1.82 (0.04)
logP ∗

c -0.28 (0.01)
Antivirus 0.29 (0.12)
log h∗ -0.20 (0.07)
P2Pfd 0.06 (0.03)
Dorm 0.11 (0.06)
Income 0.05 (0.03)
Prob 0.05 (0.01)

MusInt 0.02 (0.02) 0.02 (0.01)
MusInstr -0.004 (0.015)
logP2P ∗ 0.35 (0.01)

log iTunes∗ 0.23 (0.01)
logCD∗ 0.25 (0.01)

N=3240.

an iPod. Second, the law of demand holds, that is, the demand for music dropped when prices

increased. However, because I used a simultaneous equations system, the coefficients of price do

not fully reflect the effect of price changes on all three demands equations.

Table 9 shows how the demand for music from different sources changed when music prices

changed and when an iPod was not available . When students could not own an iPod, in

contrast to the real world in which 72% owned an iPod, they pirated 20.21% less music from

P2P websites, and consumed 7.77% fewer songs from iTunes, but consumed 1.8% more CDs.

Table 9: Percentage Change in Demand for Music with Price Changes
yP2P yiTunes yCD

π(0.0001 → 0.0002) -2.83% 0.20% 0.10%
f ($100 → 200) -13.76% 1.03% 0.54%
Ps(0.99 → 1.09) 3.05% -8.73% 0.72%
Pc(15 → 16.5) -0.01% 0.22% -2.51%

To a “no-iPod” world -20.21% -7.77% 1.80%

The probability of getting caught and the payment of a fine are significant components of the

price of (or punishment for) pirating music. Students pirated less music when the punishment

was more severe. When the probability of getting caught increased 100% from 0.01% to 0.02%,
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students pirated 2.83% less music from P2P websites, and consumed 0.20% more songs from

iTunes and 0.10% more CDs. When the fine per song increased 100% from $100 to $200, students

pirated 13.76% less music from P2P websites, and consumed 1.03% more songs from iTunes and

0.54% more CDs.

Students bought fewer iTunes songs when these were more expensive. When the price per

song rose 10% from $0.99 to $1.09, they bought 8.73% fewer songs from iTunes. They also

pirated 3.05% more music from P2P websites and consumed 0.72% more CDs.

Similarly, student bought fewer CDs when CDs were more expensive. When the price of a

CD increased 10% from $15 to $16.5, they bought 2.51% fewer CDs. At the same time, they also

pirated approximately the same amount of music, but bought 0.22% more songs from iTunes.

My estimates are consistent with those of Shiller and Waldfogel (2011), who estimate the

demand for iTunes songs using survey data collected from 500 students. They find that when

the price of an iTunes song increases from $0.99 to $1.87, demand drops by 42% from 7434 to

4351. I identified a similar price effect on demand for iTunes songs using the estimates in Table

8. When the price of an iTunes song was increased from $0.99 to $1.87 in the survey, demand

drops 49%, which is reasonably close to the 42% in Shiller and Waldfogel (2011). At the same

time, I also found a price effect on the demand for other types of music. Students pirated 25%

more music and bought 6% more CDs in this case.

Note that record sales from different sources are substitutes for one another. When students

bought 10% more CDs, demand for iTunes songs decreased by 0.9%. At the same time, demand

for CDs decreased by 0.9% when consumption of iTunes songs increased by 10%. The emergence

of online music stores such as iTunes plays a role in the decline of revenue from CD sales.

Table 10: Piracy Elasticity of Sales (%)
Oberholzer-Gee and Strumpf -0.00001

Rob and Waldfogel -0.13
Blackburn -0.18

This paper (CD sales) -0.04
This paper (iTunes sales) -0.07

Finally, it is clear that music piracy does hurt record sales.9 When students pirated 10% more

9Table 10 reports the piracy elasticity of sales. Oberholzer-Gee and Strumpf (2007) and Rob and Waldfogel
(2006) report only estimates of the displacement effect of illegal downloads (P2P) on album sales. I combine those
estimates with their sample statistics on album consumption and illegal downloads to calculate the elasticities.
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music through P2P websites, they bought 0.7% fewer iTunes songs and 0.4% fewer CDs. This

result is both economically and statistically significant and contrary to the claim of Oberholzer-

Gee and Strumpf (2007), thereby corroborating the findings of other economists. Rob and

Waldfogel (2006) report that individuals buy 1.3% fewer records (including iTunes songs and

CDs) when they pirate 10% more music, whereas Blackburn (2004) suggests a higher number:

people buy 1.8% fewer records when they pirate 10% more music.

5 Discrete-Choice Demand for iPods

The results in Section 4 suggest that music piracy does hurt record sales. Before quantifying

the welfare implications of the three copyright regimes, I here build a discrete-choice demand

model for iPods to quantify the complementary relationships between music and iPods.

In each of the 12 first sub-tasks in the conjoint survey, students were asked to rank three

options for listening to music: an iPod, a computer, and the radio (which I treat as an out-

side good). These rankings served as the students’ choices, and thus constitute the dependent

variables in the demand estimation.

Students would generally be expected to have a rough estimate of their music consumption

before they purchased an iPod. The average lifetime of an iPod is two years, and students would

only buy one if they thought they would buy or pirate a considerable amount of music in those

two years. I thus entered the estimated demands for music from the previous section into the

indirect utility of a choice to account for how music complements that choice.10 The indirect

utility of choice j for student i in task t is

Uijt = βij + αi,pricePjt + αi,gbGBjt + αi,p2p
ˆP2Pijt + αi,itunes

ˆiTunesijt + αi,cd
ˆCDijt + ǫijt, (5)

where Pjt is the price of choice j in task t, GBjt is the capacity (in gigabytes) of choice j in task

t, and ǫijt is the usual i.i.d. logit error.

10I did not correct the standard errors in the second-stage estimation of discrete demand. In other words, I
treat the estimated demands for music as true demands.
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We can express the demand parameters of student i in Equation (5) as

Θi ≡ [βi1; βi2;αi,price;αi,gb;αi,p2p;αi,itunes;αi,cd],

where Θi is a 1 × 7 vector of individual parameters. Θ is a ni × 7 matrix whose ith row is Θi,

and ni is the number of students in the sample. Define Xjt as a 1 × 7 vector of covariates in

Equation (5), and we can then express the indirect utility as

Uijt = ΘiXjt + ǫijt. (6)

The likelihood that student i will choose j in task t takes the following logit form.

Prijt =
exp(Uijt)∑

k exp(Uikt) + 1
. (7)

As Berry, Levinsohn, and Pakes (1995), Nevo (2000), Petrin (2002) and Rossi, Allenby,

and McCulloch (2005) argue, random coefficient models generate better estimates of consumer

demands than do homogenous coefficient models. In this data set, it is natural to consider

that the students have heterogeneous coefficients. For instance, an average student may be

more responsive to iPod price changes than an iPod lover, which translates into a higher price

coefficient (in absolute value) for the average student.

I follow Rossi, Allenby, and McCulloch (2005) in using a hierarchical Bayesian model with a

mixture of five components of normal priors to estimate the random coefficients. This approach

is more flexible than the classical approach because it does not restrict the coefficients to coming

from a normal distribution. Moreover, this approach allows for correlated coefficients without

additional computation time.

Because the students provided demographic information in the survey, I include aspects of

that information in the demand model to account for the observed heterogeneity across students.

Define Zi as a 1 × nz vector of the demographic characteristics of student i, where nz is the

number of such characteristics. Define Z as an ni×nz matrix. The demand model, in which the
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unobserved heterogeneity is distributed as a K mixture of normal, can be expressed as follows.

Uijt = ΘiXjt + ǫijt

Θi = Zi△+ ui

ui ∼ N(µindi ,Σindi)

indi ∼ MultinomialK(γ)

γ is a vector giving the mixture probabilities for each of the K components. The complete

specification with priors over the mixture probabilities (α), mean (µ̄ and a−1

µ ), and covariance

matrices (v and V ) is

γ ∼ Dirichlet(α)

µk|Σk ∼ N(µ̄,Σk × a−1

µ )

Σk ∼ IW (v, V )

{µk,Σk} independent

5.1 Estimation

I follow Rossi, Allenby, and McCulloch (2005) in using a hybrid of Gibbs sampling and the

Metropolis-Hasting method to implement posterior inference for this model. I use a hybrid

Metropolis method that employs customized Metropolis candidate density to draw Θi for each

student. Conditional on Θi, I use an unconstrained Gibbs sampler to draw δ, µk, and Σk.
11

In particular, I alternately obtain draws between the individual-level parameters in (8) and

hyperparameters in (9):12

Θi|indi, Zi△, µindi ,Σindi (8)

γ, ind,△, {µk}, {Σk}|{Θ} (9)

11Constraints must be imposed on the Gibbs sampler to fix an identification problem called “label switching” if
inference is desired for the mixture component parameters. This is not a problem here because I am interested in
estimating individual student parameters and their distribution across students alone. An unconstrained Gibbs
sampler is enough to ensure identification. See Rossi, Allenby, and McCulloch (2005) for more details.

12Interested readers can find the details of the implementation of the MCMC draws in Chapter 5 of Rossi,
Allenby, and McCulloch (2005).
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The conditional posterior in (8) is proportional to the product of the likelihood in (7) and

the prior of the hyperparameters. I use the Random-Walk Metropolis to obtain the draws of Θi.

The draws of the hyperparameters in (9) can be broken down into a succession of conditional

draws as follows.

ind|γ, Z,△, {µk,Σk}, {Θ} (10)

γ|ind (11)

{µk,Σk}|ind,Θ (12)

△|ind, Z, {µk,Σk},Θ, (13)

where the draw of the indicators in (10) is a multinomial draw based on the likelihood ratios

with γk as the prior probability of membership in each component. The draw of γ given ind

in (11) is a Dirichlet draw. The draw of each (µk,Σk) in (12) can be made using a standard

algorithm to draw from a multivariate regression model. The draw of △ in (13) requires that

the pooling of data from all K components into one regression model.

5.2 Estimates

Table 11: Heterogeneity Improves Fit
Log Marginal Density

Homogenous Coef. -15786.634
1 Component -11870.235
5 Components -10960.389

Table 11 reports the log marginal density for alternative model specifications. The model’s

posterior probability is monotone in the log marginal density. Hence, a higher log marginal

density means a better fit. Note also that log marginal density includes an automatic penalty

for the addition of additional parameters (Rossi, Allenby, and McCulloch (2005)). Heterogeneity

leads to a substantial improvement in fit. In addition, a more flexible distribution of parameters

fits the data better. The estimates from the five-component mixture model yield a higher log

marginal density than those from the one-component model.

Figure 5 displays the density distribution of the coefficients, which indicates substantial
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Figure 5:
Density of Random Coefficients
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heterogeneity among students’ preferences. The five-component model is more flexible and is

able to capture the fatter tail of the preference distribution of some of the coefficients.

Table 12: Elasticity of iPod Demand
1 Component 5 Components

PiPod -0.229 -0.242
[-0.251, -0.208] [-0.283, -0.203]

π -0.017 -0.017
[-0.018, -0.016] [-0.020, -0.015]

f -0.021 -0.022
[-0.022, -0.019] [-0.024, -0.019]

PiTunes 0.007 0.008
[-0.006, 0.008] [-0.006, 0.009]

Pcd -0.013 -0.010
[-0.016, -0.009] [-0.013, -0.007]

The 5th and 95th percentiles of the estimates are reported in brackets.

Students’ demand for iPod is not elastic. Table 12 shows that iPod’s own price elasticity

ranges between -0.229 and -0.242 under different specifications. Music consumption and the iPod

are complements to each other: iPod demand decreases if music prices increase. The elasticities

of iPod demand with respect to the prices of music from different sources are all below -0.01%.

6 Counterfactual Experiments

The results in Section 4 suggest that music piracy hurts record sales, and those in Section 5

suggest that it increases demand for, and thus the revenue from, iPods. In this section, I discuss

how demand for music and iPods would change in three different copyright regimes, which may

shed light on the direction of future copyright policies.

The three copyright regimes are as follows.

Current Regime: In this regime, the RIAA uses the No Electronic Theft Act to occa-

sionally file lawsuits against P2P software companies and individual music pirates. In the first

decade of this century, two of the largest P2P software companies, Napster and Kazaa, were

sued and later forced to shut down. Between September 2003 and June 2005, 11,700 music

pirates were sued (Associated Press (2005)). This wave of lawsuits, however, turned out to have

no lasting effect. After a slight decrease in music piracy immediately following the rulings, the

number of music pirates began to grow again.
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No Music Piracy Regime: In this regime, the government would increase the penalties

for music piracy with the aim of eradicating it, which would provide music producers with

sufficient income and incentive to create music. Eradicating music piracy would be difficult, but

it would be possible if Internet service providers cooperated. Currently there are proposals in

France and Britain urging Internet service providers to band together voluntarily to crack down

on pirate subscribers.

Free Music Regime: In this regime, music piracy would be legal, and music from all

sources would be free. The idea of legalizing music piracy is not new. Fisher (2004) and Netanel

(2003) propose a copyright regime in which it is legal to share music files, but firms such as

Apple, which would benefit from the boost in iPod sales, would have to pay royalties to the

music industry. Such royalties are similar to the private copying levy, a government-mandated

scheme in which a levy is charged on transactions involving recordable media. In the U.S.,

the levy applies to stand-alone CD recorders and portable satellite radio recording devices.

Analyzing the demand for music and the demand for iPods can shed light on the range of

possible royalties to be imposed on iPods and other MP3 players.

Table 13: Product Attributes in All Regimes
Product Attributes Current No Music Piracy Free Music-Royalty

Regime Regime Regime
Price per iPod $200 $200 $200

Price per iTunes song $0.99 $0.99 $0
Price per CD $15 $15 $0

π (in %) 0.01 100 0
Fine per song $30 $10,000 $0

Table 13 gives the product attributes in the three regimes. The Current Regime describes

the current music world. I mimic the current copyright system of the U.S. government and the

RIAA’s approach with a low probability of getting caught and a small fine for pirating music.

At the time the survey was conducted, an 8-gigabyte iPod cost $200, and iTunes songs and CDs

cost $0.99 and $15, respectively.

The government and the RIAA would impose a more severe penalty on music piracy in the

No Music Piracy Regime. Those engaging in it would be caught for sure, and they would have

to pay $10,000 for every song they illegally downloaded.

In the Free Music Regime, downloading music online would free and legal and CDs would
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cost $5 to cover the marginal cost of production (I varied this amount from $1 to $7, but my

main conclusion remained unchanged).

Table 14: Changes in Monthly Music Consumption from Current Regime
To Free Music Regime No Music Piracy Regime
P2P ↑ 690% ↓ 100%

iTunes ↑ 70% ↑ 42%
CD ↑ 29% ↑ 24%

Overall Songs ↑ 527% ↓ 68%

In calculating the changes in overall song consumption, I assumed each CD contained 10 songs.

Table 14 reports the changes in the consumption of music from the Current Regime to the

two other regimes. When online music becomes free and CDs are sold at a marginal cost in

the Free Music Regime, the overall consumption of music increases by more than 500%. When

there is no music piracy, the consumption of legally purchased increases, with demand for iTunes

songs, and CDs increasing by 42% and 24%, respectively. In other words, music piracy reduces

record sales by 24% to 42%. However, because the average student pirates more music than he

would consume, the overall consumption of music decreases by 68%.

Table 14 sheds light on how students’ probability of purchasing an iPod varies across the

regimes. In the Free Music Regime, in which the demand for music is much higher than that

in the Current Regime, we should see an increase in the demand for iPods. In the No Music

Piracy Regime, in which overall music consumption drops by 68%, we should see a drop in iPod

demand.

Table 15: iPod Purchase Probability in Different Regimes (in %)
Current Regime Free Music Regime No Music Piracy Regime

Predicted Market Share 53.04 70.66 46.75
[51.58, 54.45] [69.49, 71.78] [45.15, 48.39]

The 5th and 95th percentiles of the estimates are reported in brackets.

Table 15 shows students’ iPod purchase probabilities are consistent with the changes in music

consumption in the different regimes. On average, students would be approximately 18% more

likely to buy an iPod in the Free Music Regime than in the Current Regime because of the

increase in overall music consumption. That would translate into a $36 increase in expected

revenue from each student.
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When the average student’s overall music consumption decreases in the No Music Piracy

Regime, he becomes approximately 6% less likely to buy an iPod. Put another way, in this

scenario, approximately 12% of Apple’s revenue from iPods comes from the additional music

consumption realized by music piracy. Using Apple’s iPod revenue in 2008 ($9.2 billion) as a

reference, we can estimate that $1.1 billion of the company’s revenue that year came from music

piracy.

7 Conclusion

I answer two important empirical questions regarding music piracy in this paper. First, does

music piracy hurt record sales, and, if so, by how much? Second, does music piracy benefit the

sales of music complements, such as iPods and, if so, by how much? I answer these questions

using a unique conjoint survey data set. Estimates from three-stage least-squares estimation

indicate that music piracy does indeed hurt record sales, which corroborates the prevailing belief

in the music industry, but is contrary to the claim of Oberholzer-Gee and Strumpf (2007). I also

use a Bayesian approach to estimate the demand for iPods and find that music piracy benefits

iPod sales. If there were no music piracy, Apple’s revenue from iPod sales would decrease by

12%, which would have translated to $1.1 billion in 2008. If music were free, however, then

Apple’s expected revenue would increase by $36 per student.

In addition to iPods, many other products are also music complements and thus would benefit

from a free music regime. Examples include other brands of MP3 players, Internet providers,

and live music performances. Although I only focus on iPods in this paper, my approach could

easily be extended to examine the complementary relationships between music and these other

products. This extension would make possible the evaluation of the effects of different copyright

regimes on different products.
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