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Abstract

This paper examines the assumptions and conclusions of the neoclassical

growth model put forth by Solow and many others. We investigate the origins

of the paradigm of unlimited growth and technological progress and question

their plausibility. In contrast, we develop a modified version of the neoclassi-

cal growth model where we consider non-human, environmental resources

such as energy as an additional input factor and recognize their limited ca-

pacity to recover from human impact. Surprisingly, the same mathematical

framework of the neoclassical growth model gets to the opposite conclusions

- namely that long term growth cannot exceed a level in which nature begins

to deplete. Growth further that level as we might experience today leads to

natural and economic disaster. Technological progress understood as produc-

tivity increase can only delay but not prevent this crisis. We compare these

conclusions to the opposite hypothesis of the Environmental Kuznets Curve.

Also we show how this model can lead to a greater understanding of present

or future observations that are connected to environmental deficiency, such

as social divergence and stagnating life satisfaction in developed countries.
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List of symbols

α weight of capital input

β weight of labor input

K̇ dK/dt: capital over time, resp. net capital accumulation per year

φ pollution, emission and other negative impacts per unit of eco-

nomic output

Rreg nature’s ability to recover: energy added yearly, resp. environ-

ment’s self adjustment power

Ymax maximum size of economy beyond which depletion prevents

growth

Ysus level of sustainability: any larger economy causes depletion

d deprecation of capital

E the total of all non-human inputs that contribute to welfare: e.g.

energy availability, biodiversity

g technological progress, growth rate of labor productivity

K capital input

L labor input

n growth rate of population

s saving’s rate

T technology, resp. labor productivity

Y economic output, resp. economic value added
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1 Introduction

The search for the roots of the doctrine of unlimited growth leads to the traditional

anthropocentric world view where human has to relate himself only to a given

nature. This dualism between a human with unlimited technological power and a

static nature is not able to explain such phenomena as stagnating happiness indexes,

continuous food and resource insecurity, health problems and climate change.

In the first section of this paper we investigate how modern models of economic

growth like the neoclassical Solow-Swan model have adopted this kind of world

view. Notwithstanding the fact that there are many other models we chose the

neoclassical growth model for its unquestionable impact and the dominant role

it still plays in undergraduate and graduate economic courses. We outline the

argumentation behind the notion that unlimited growth on a longer time scale is

possible due to technological progress and analyse its plausibility with respect to

the role of nature.

Taking these reflections into account this paper then introduces a new model of

economic growth which extends the neoclassical model of growth in two important

points. The first consideration is that the real value of economic output, not

necessariliy measured in terms of gdp, is very much influenced by the shape of the

environment. The second consideration lies in the fact that nature has the ability

to recover at a certain rate and that it also deteriorates depending on the negative

impact and the size of that economy. A further analysis of this model leads to

the conclusion that growth that exceeds the maximum level sustainable by nature

causes instability, depletion and finally an environmental and economic crisis. At

this point technological progress in terms of productivity growth can no more

counterbalance the effect that depletion has on the economy.

There has already been reseach that denotes scepticism about strategies that in-

volve the technological decoupling of economic growth and resource consumption

leading to an international debate about the necessity of degrowth (Paech, 2009, p.

28). We will put our findings in relation to the scientific debate about the contrary

hypothesis of the Environmental Kurznets Curve that predicts environmental bet-

terment because of economic growth. In the final part we explain why it makes

sense today to degrow in a controlled manner, avoiding a much more catastrophic

depletion crisis. Long-term welfare cannot be achieved by increasing industrial

productivity but by putting all efforts in maintainng a rich biosphere, promoting less

intensive technologies and retaining an ecologically coherent economy. This means

that our understanding of efficiency and growth has to be questioned constantly

with respect to its ecological dimension.
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2 Neoclassical growth model

2.1 Production function

The starting point of this paper shall be the neoclassical Cobb-Douglas production

function which is the basis for all variations of the Neoclassical growth model

(Solow-Swan model). The output Y in conventional economic theory is determined

by capital K and labor L with different weights according to the ratio between its

exponents alpha and beta.

Y = KαLβ (1)

The input factors have a diminishing marginal productivity which means that

every added capital unit causes a lesser production increase with constant labor

and vice versa. Due to condition 2 the Cobb-Douglas function has constant returns

to scale, hence there are no scale effects (Y (2K,2L) = 2Y (K,L)).

1 = α +β (2)

K̇ = sY −dK (3)

Another important idea is that capital evolves depending on savings rate s and

deprecation d. This leads to a so called Steady State which denotes an equilibrium

of capital in relation to output (K̇ = 0, capital reaches a constant in an economy

without technological progress and population growth).

2.2 Technology and population

An extended version of the Solow-Swan model considers also labor productivity T

(technology) and defines the rate of technological progress g externally.

Y = Kα(LT )β (4)

Ṫ

T
= g (5)

As population growth n causes a growing workforce, the available labor L

increases at the rate of n.

L̇

L
= n (6)
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2.3 Steady State in the long run

A central conclusion of the standard Solow model is that an economy tends to

reach an equilibrium state of balanced growth after some time: if the initial capital

stock is below the equilibrium ratio, capital and output will grow at a faster pace

than the labor force until the equilibrium ratio is approached (Solow, 1956, p. 70).

This means that the capital-output ratio converges to a constant value. Given a

constant capital-output ratio both capital and output have to grow at the same pace

which is expressed by:

K̇

K
=

Ẏ

Y
(7)

The derivative of equation 4 divided by output leads to the growth rate.

Ẏ

Y
=

β Ṫ

T
+

β L̇

L
+

αK̇

K
= βg+βn+

αK̇

K
(8)

In the long run, under the Steady State condition 7, economic growth is only

determined by technological progress and population growth.

Ẏ

Y
(1−α) = βg+βn (9)

Ẏ

Y
=

β

1−α
(g+n) (10)

It becomes evident that the neoclassical growth model leads to the assertion that

growth and technological progress is unlimited as the growth rate in the balanced

growth path does not change autonomously. The fact that we live on a finite planet

with finite resoures has cast doubt upon this notion. Soon we will find how simple

changes to the basic conditions of the model lead to different conclusions.

3 Conditions of a model that considers natural resources

In this section we shall outline a model of growth that considers those environmen-

tal conditions which are partly influenced by human activity.
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3.1 Energy dependency of output

To do so we introduce a new input factor E that reflects the availability of all natural

(non-human) inputs that contribute to our wealth. E can resemble environmental

inputs as well as energy. Condition 12 is responsible for constant returns of scale

analog to the production function in section 2.

Y = Kα(T L)β Eγ (11)

1 = α +β + γ (12)

3.2 E over time

The richness and health of the environment is influenced positively by its ability to

recover itself Rreg and negatively by the size Y and intensity phi of our economy

in terms of pollution and resource efficiency. For now Rreg is assigned as an

exogenous constant. In the longest time prospect the interpretation of Rreg would

be the constant radiation of the sun that reaches the surface of our planet each year.

Respectively the external constant phi φ would denote energy usage per output and

Ė net savings or creation of fossil fuels. In another scenario Ė (-Ė) would resemble

net increase (reduction) of biodiversity, soil fertility, ecc.

Ė = Rreg −φY (13)

So E can be taken in a much more wider sense that comprises all natural ele-

ments that shape the quality of live and are exposed to human impact. Additionaly

the ability to recover Rreg suffers from depletion and is not always constant as

assumed here rather optimistically. A not so simplified version of this model would

consider all forms of human impact such as emission of greenhouse gases, waste

and the reduction of biodiversity as aspects of φ . Thus for our logical analysis it is

sufficient to take account of the constant nature of φ . Figure 1 shows that φ has

not been correlated to technological progress in the past. 1

3.3 Output level of Sustainability

The interdependence of Ė(Y ) and Y results in the existence of a highest output Ysus

that is still sustainable or does not lead to depletion. Every economy bigger than

1 This does not mean that it is impossible to reduce the intensity φ . There are technologies such

as the permacultural approach which aim to increase energy yields within living systems that are

capable of sustaining themselves (Mollison, 2002, p. 18). In this way Rreg should benefit primarily

and human consumption subsequently. Such an approach involves a different understanding of

productivity which is not human-centered and accepts also short-term reductions in consumption.
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Figure 1: Resource intensity of world economy: the overall world energy and carbon intensity

(inflation-adjusted) has not decreased in the last decades. This supports the assumption that

environmental intensity φ remains high despite of technological advancement. Source: own

representation based on data from U.S. Energy Information Administration

Rreg

φ leads to overconsumption of natural resources. This is characterized by the

formation of a peak of resource availability on which has already been written in

the past (Heinberg, 2007).

Ė = 0 (14)

Ysus =
Rreg

φ
(15)

4 The long run

This section examines the initial behavior of or model-economy. We will find

that until Y < Ysus or as long as the initial stock of E is available in abundance

the economy doesn’t differ very much from the one in the standard Neoclassical

growth model.

4.1 Growth in the initial steady state

Like we did previously, we obtain the overall growth rate through differentiation of

the output Y (equation 10). Then we take into account the Steady State condition

(equation 7) that establishes itself early in relation to the longer timeframe we are

examining.

Ẏ

Y
=

β Ṫ

T
+

β L̇

L
+

αK̇

K
+

γ(Rreg −φY )

E
(16)
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Ẏ

Y
(1−α) = βg+βn+

γ(Rreg −φY )

E
(17)

Ẏ

Y
=

β

1−α
(g+n)+

γ

(1−α)E
(Rreg −φY ) (18)

When capital output ratio has converged to its equilibrium Steady state, i.e.

constant capital-output ratio, the growth rate is determined by g (technological

progress), n (population growth), net energy- or environmental savings Ė and the

environmental status E itself. The influence of net depletion (−Ė) is relatively

small as long as there is a large supply of energy and as long as Y is relatively small.

This explains the observation that during industrialisation happiness index and

nominal growth may not have been as disconnected as today. Figure 2 shows how

economic growth which would have been expected by the conventional growth

model persists even subsequent to the peak of E.

5 The very long run

Figure 2 views the simulation of this model with a considerable initial stock of E.

Like the equations suggested, the peak of Y occurs subsequent the peak of E. This

section analyses the economy during stagnation and on its downfall.

5.1 Immanent instability and its consequences

Logically the maximum of Y eventuates when growth rate is zero. Due to the

interdependence of the growth rate and Y we can figure out the highest possible

size of the economy Ymax.

Ẏ

Y
= 0 (19)

Ymax(E) =
Rreg

φ
+

β

(1− γ)

E(n+g)

φ
(20)

As Ymax is conditional on the endogenous (non-constant) variable E we can

identify an inherent instability of the long run output function. The economy

that reaches Ymax is per definition bigger than Ysus. This implies a persisting

depletion (decrease of E) which again conditions Ymax. With every period depletion

alters the circumstances and hence the ceiling limit of economic growth decreases

even further. In consequence the economy is characterized by an unprecedented

disruption and decline.
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Figure 2: Simulation: environment and output in a longer timeframe. A simulation of E and output

Y shows how they interact. Before and even some time after the peak of resource availability

(timepoint 1) growth behaves as predicted by conventional models. But soon after, depletion

affects the economic value added (Y) substantially. After timepoint 2 output exceeds the maximum

limit Ymax which itself shrinks due to depletion. A natural and economic crisis continues until

sustainability Ysus is reached despite persisting technological progress.
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6 Relation to the Environmental Kuznets Curve

A reviewer criticized the assumption that every economical activity decreases

ecological quality. One argument which has been cited is the hypothesis of the

Environmental Kuznets Curve (EKC). The EKC suggests that "[...] at higher

levels of development, structural change towards information-based industries and

services, more efficient technologies, and increased demand for environmental

quality result in leveling-off and a steady decline of environmental degradation"

(Panayotou, 2000, p. 2). Assuming that the hypothesis holds, there is no reason

to modify the model as defined here. The reduction of environmental degradation

cannot be an equivalent to increasing environmental quality. Whereas the first is a

flow variable (Ė, the deviation of E over time, in our model), the second is a stock

variable, represented by the variable E. As long as the reduction of environmental

degradation does not stop degradation itself, the EKC predicts only a deceleration

of degradation and no decoupling of the underlying relationship. In our model this

corresponds to a decreasing pollution per output φ over time. As shown before

this does not remove the need to degrow when the sustainable output level Ysus has

already been surpassed.

Nonetheless the empirical relevance of the EKC is still subject of ongoing

scientific debate (Stagl, 1999) (Perman and Stern, 2003). The main problem is

that it is very difficult to verify a causal connection between reduced pollution and

rising GDP per capita with many other factors involved. Studies often analyse

only isolated pollution variables such as carbon emissions or sulfur oxides within

one country or within a restrained group of countries (Selden and Daqing, 1994)

(Cole et al., 1997). This puts them in a weak position for verifying a generalized

EKC assumption that involves all ecological variables. Also it leaves room to

other explanations. It is not clear how the import of energy intensive, material

goods (thus an export of emissions to poorer countries) contributes to a reduction

of energy intensity in western service based economies (Stagl, 1999, p. 7). Figure

1 suggests that these effects annihilate local improvements on a global scale.

Another explanation for a seemingly verified EKC hypothesis is the substitution

of one pollutant with another. For example, in a recent study which examined

carbon emissions in different countries Japan was the only one for which the EKC

hypothesis has not been rejected (Mota and Dias, 2009, p. 25). But there has also

been the unprecendented expansion of the nuclear power sector between 1970 and

1990 in Japan (Tanaka, 2006, p. 25). So in this case the EKC hypothesis competes

with the much simpler suspection that nuclear waste replaced much of the carbon

emissions during the time period in question.
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7 Conclusions

7.1 Logical deductions

Out of the preceding mathematical and conceptional reflections we can deduce

following findings.

1. Certain Crisis: No matter how small γ or how big the initial supply of E,

Ymax exists and will be reached. This means that also if nature’s influence

corresponds to γ = 0,001 an energy crisis will occur sooner or later if not

avoided by self-restriction to the level of sustainability. On the very long run,

humanity has no other choice than producing at the level of Ysus.

2. Non-Compensation: Depletion cannot be compensated by technological

progress g. When the economy reaches point 2 (figure 2 ) even an exponential

increase of labor productivity cannot prevent the downturn back to the level

of sustainability.

3. Perceived Inflation: Although we accounted for environmental inputs in

our model, the GDP will still measure only human output. This means

that growth indicators still keep rising when depletion already affects the

economy substantially. As a consequence nominal growth and perceived

satisfaction detach from each other until the consequences of depletion

become obvious and the biosphere suffers. Still conventional indicators

would not be aware of this.

4. Social Distress: Capital and output evolve proportionally due to the Steady-

State condition. But depletion limits the possible amount of "active" capital

that can be used to process resources, e.g. diminishing oil wells make func-

tioning refineries useless. Still working population L continues to grow at

rate n. This means a diminishing marginal product per worker while the

marginal product per capital unit remains constant because of the constant

capital output ratio. The typical adding-up theorem from the textbook pre-

dicts diminishing wages as a consequence (Cezanne, 2005, p. 123). Hence

inequality between capital owners that have access to resources and working

population rises.

7.2 The opportunities of degrowth

All these consequences can be resolved avoiding growth and by limiting production

to the level of sustainability. Like demonstrated in this paper degrowth2 can

2 more precisely: a paradigm shift that alters the understanding of progress
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preserve environment, favor a less intensive production and eventually increase

the possible level of sustainability by reducing pollution per output. Figure 3

demonstrates this scenario.

The conventional growth model has been transformed with the simple and

reasonable assumption that our environment conditions the value of our yearly

output and that this environment has a limited capacity of regeneration. The

conventional conception of progress has shown to be inadequate.

7.3 Final considerations

But not only our conception of progress has to be doubted. The neoclassical growth

model’s blind eye lies in a mainly anthropocentrical world view which assumes

that nature can be substituted and hence be ignored. Although this paper has shown

the opposite, it is not liberated from a certain anthroprocentrical way of thinking.

We have presumed on nature as an object to be exploited by man, although in

a sustainable manner. We have not taken into account nonrenewable resources

nor intrinsic values such as the non-extincition of a species. Solow himself was

aware of the need of social and environmental accounting. But he suggested

that an innovation in social accounting practics would make it possible for us

to take decisions precisely and rationally, leading to optimal trade-offs between

environmental preservation and consumption (Solow, 1992, p. last). This view

can be questioned as it presumes the possibility of complete information. It is

almost certain that from a human perspective some natural impacts remain always

undiscovered or underestimated. With this model the authors did not intend to

predict the optimum long-term output, but rather disclose the hidden assumptions

behind the notion of unlimited growth. Ironically we used pure logic, being aware

of its potential to be instrumenalized as it has been in our long history as "zoon

logicon", supposedly, the only rational animal on earth (Aristotle, 1934, book 1,

chapter 13).
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Figure 3: Degrowth: an alternative growth path. In many regions and regarding many resources,

we might already have surpassed the level of sustainability (Murray and King, 2012). A different

outcome is yet possible. Intentional degrowth can retain nature as basis for a healthy economy. A

less technology intensive but more ecological economy (smaller φ ) means greater welfare in the

long run. It also prevents a hypothetical downturn, i.e. it increases social and economic stability.
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