
Munich Personal RePEc Archive

Similarity Of RD Activities, Physical

Proximity, and The Extent Of RD

Spillovers

Deltas, George and Karkalakos, Sotiris

University of Illinois at Urbana-Champaign, University of Piraeus

1 April 2007

Online at https://mpra.ub.uni-muenchen.de/45962/

MPRA Paper No. 45962, posted 09 Apr 2013 11:22 UTC



 1

 

SIMILARITY OF R&D ACTIVITIES, PHYSICAL PROXIMITY, AND 

 

THE EXTENT OF R&D SPILLOVERS
1
 

 

 

 
by 

 

George Deltas
*
 and Sotiris Karkalakos

**  
 

 

 

 

 

 

This Version: April 19, 2007 

 

 
 

 

Abstract: The diffusion of knowledge generates positive externalities if knowledge flows 

increase the productivity of Research and Development (R&D) by the recipients of these flows. 

This paper investigates the extent to which this positive spillover effect of knowledge diffusion 

depends on the similarity of research activities by the originator and recipient of the knowledge. 

The paper also investigates at what rate these spillover effects diminish as the distance between 

the originator and recipient increases. We find, using regional patent and R&D expenditure data 

from the European Union, that similarity between R&D activities is not only statistically 

significant, but salient: regions with completely dissimilar R&D activities exhibit essentially no 

spillovers at all. We also find an increase in the distance between the originating and recipient 

region by 550 kilometers reduces spillovers by 75% (as low as 55% in some specifications). 

Unlike much of the extant literature, the rate of spatial decay of spillovers is estimated jointly 

with the remaining parameters of the model rather than through specification searches over a set 

of alternative weight matrices. Our results are robust to the inclusion of unobserved country 

effects and border barriers.  
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1. Introduction 

Alfred Marshall (1890) argues that industrial agglomerations exist in part because 

individuals learn from each other when they live and work in close proximity, and increasing 

amounts of evidence confirms this. It is now well documented that there are substantial 

geographical spillovers in R&D activities and that these have important theoretical implications 

(e.g., Aghion and Howitt, 1992, Romer, 1990), though there is still considerable debate on the 

measurement of these spillovers. Economists have assumed that diffusion of ideas depends on 

proximity in space, technological specialization, the stage of economic development, labor 

mobility, and a multitude of other factors (Acs and Varga, 2002). These are plausible 

assumptions, but each of them requires explicit testing. An all-encompassing estimation 

framework, though, is impossible, and thus each empirical study focuses on a particular facet of 

technological spillovers and employs an estimation approach that is tailored to that task.  

This study focuses on the relationship between the similarity in the research activities of 

any pair of regions and the extent of spatial technological spillovers between them. This 

investigation can shed light on the nature of spatial spillovers. If the spillovers are due to the 

local availability of relevant know-how embodied in human capital, the spatial correlation 

between R&D successes would be stronger between regions with relatively similar R&D 

successes (or activities), and conversely the spatial correlation between R&D successes would be 

weaker between regions with dissimilar R&D successes (or activities). This pattern of spatial 

correlation would be absent if the spillovers were driven by general rather than specific 

knowledge, or if the spatial correlation between R&D successes were spurious.  

This paper also makes a contribution on the methodological front. In particular, we employ 

a non-linear spatial econometric framework in which the spatial decay (spatial lag) matrix is a 
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function of a parameter that measures the rate at which the spatial effects dissipate. We assume 

an exponential rate of decay, so that an increase in physical distance by a given increment leads 

to (a further) decrease in spillovers by a fixed percentage. This exponential decay parameter is 

jointly estimated with all the other parameters of the model. In other words, we do not employ a 

set of possible spatial lag matrices and choose among them on the basis of some measure of fit, 

as usually done in the related literature; rather we estimate the spatial lag matrix jointly with the 

all the other parameters in the model. Our approach avoids the possibility of under-estimating the 

standard errors in spatial models, since the standard errors are not conditional on the correct 

choice of the spatial lag matrix.  

As an auxiliary contribution, we investigate the robustness of the spillover estimates to the 

incorporation of the similarity effects on the spatial interactions. The presence of substantial 

differences in the estimates would suggest that ignoring the role that similarities play in 

spillovers could lead to incorrect inferences. Thus, we contribute to the findings on the 

robustness (or non-robustness) of spatial model estimates to the employment of different types of 

spatial weight matrices.  

We utilize data from the European Union at the district level from the late 1990’s. As a 

proxy for R&D inputs and the generation of technological ideas we use the financial outlays in 

R&D, while as a proxy of technological output we use the number of patents issued in a region. 

Our findings show that a similarity of research activities between regions is effectively a pre-

condition for substantial technological spillovers between them. In the absence of any similarity, 

spillovers are small. Moreover, technological spillovers decay at a rate of 75% for every 550 

kilometers of distance. Thus positive spillovers extent beyond a day’s driving range, and thus are 

not due solely to due the Griliches’ notion of exchanging ideas “over breakfast.” Rather, much of 
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these spillovers are likely due to interaction in regional conferences and meetings, through hiring 

of personnel, and through supplier-client relationships.
2
 However, spillovers at a distance of over 

1,000 kilometers do become rather negligible. Finally, our findings are robust to the inclusion of 

border and country fixed effects, except (in some specifications) for a reduction in the estimated 

rate of spatial decay of technological spillovers.  

Knowledge flows have been extensively analyzed in the literature following Griliches 

(1992) and Jaffe (1989).
3
 Several papers followed their outline and enhanced our understanding 

of the process of knowledge diffusion (see recent survey by Breschi and Lissoni, 2001, on 

knowledge sources and their linkages with diffusion). A widely used approach postulates a 

knowledge production function and assumes that knowledge flows exist between firms with 

similar technology. This framework has been broadly used in the United States (Acs, Anselin, 

Varga, 2002 and Varga, 2000), Europe (Fisher and Varga, 2001 and Fritsch, 2002), Asia 

(Evenson and Singh, 1997), or for multi-regional studies (Bernstein and Mohnen, 1998, and 

Bernstein and Yan, 1997). Not only do these studies support the fundamental conclusions of 

Griliches (1990) and Jaffe (1989), but they also vary widely in their methodology (spatial vs 

non-spatial), structure of the data (cross section vs. panel data), the set of variables, and 

conceptual issues (e.g., distinction among different types of knowledge sources). Moreover, the 

choice of geographical unit definition varies: most of the studies use regions according to 

geographical criteria but some employ economic criteria.
4
  

                                                 
2  See Levin (1988) for the perceived importance of these factors as conduits for spillovers by managers of US firms.  
3 Jaffe (1989) is the first to find a positive spatial relationship between the number of patents and R&D activities, 

though his estimation approach only considered spillovers within a geographical unit (as opposed to spillovers from 

neighboring geographical units). This relationship is interpreted as the proof of the existence of “technological 

spillovers” at firm’s level data and provides the motivation of technological similarities in this paper. 
4 Some recent work focuses on the microfoundations of these spillovers. Almeida and Kogut (1999) investigate the 

premise that they are driven to a large extent by the mobility of workers across firms, while Glaeser (1999) uses a 

theoretical model that builds the microfoundations of a particular type of spillover effect and investigates its 

implications. The model can easily be adapted to regional knowledge spillovers. 
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Despite being predominant in terms of frequency of use, the knowledge production 

function approach is not the only methodology for investigating and measuring knowledge 

spillovers. A second approach is proposed by Jaffe, Trajtenberg and Henderson (1993) who use 

the distribution of patents in different regions and measure spatial autocorrelation through the 

number of citations between any two regions. In related work, Peri (2005) uses patent citation 

data as a proxy for flows of knowledge across regions, while Hall et al. (2005) provide direct 

evidence that patents that are more highly cited generated more value (profit) for the firms that 

own them (and, surprisingly, that self citations are more valuable than citations by other firms).
5
 

Both approaches posit that patent counts are a reasonable measure of research output, a premise 

that is supported by Trajtenberg (1990) who also argues for weighing patents by citation counts.
6
  

Closest in spirit to this work are the papers by Bottazi and Peri (2003) and Peri (2005). The 

former uses European regional data to investigate the effect of “technological proximity” on 

R&D spillovers, though this is done as an additional control variable and not part of the distance 

weight matrix as we do. Moreover, in that paper the authors pre-specify the distance weight 

matrices (as the rest of the literature), rather than estimate them directly from the data, as done in 

this paper. The second of these two papers investigates the effects of technological proximity on 

citations rather than on than on patents, with citations in turn being an input (among others) in 

the production of patents. In this paper, too, technology is a control rather than an element of a 

distance weight matrix in a spatial econometric framework.  

 

                                                 
5 See also Thomson and Fox-Kean (2005) for some criticism of Jaffe, Trajtenberg and Henderson (1993), based on 

possibly excessive aggregation in the partitioning of relevant patent classes. 
6 See also Keller (2002) for a relationship between the spatial distribution of R&D and productivity.  
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2. Econometric Model 

Many economists have drawn from the large pool of patent data and used them as a 

convenient measure of research output (Griliches, 1990). A standard empirical specification 

measuring the extent of spatial spillovers in R&D successes (patents) estimates the relationship 
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where jP  is the number of patents in region j, ijw  is an element of spatial weight matrix W that 

depends on the distance between regions i and j (with 0=ijw  when i = j), ijR  is R&D 

expenditure in region i, and jZ  is a set of regressors. Elements of the weight matrix W are 

typically the inverse distance between two regions, or take the value of 1 for regions that are 

closer than a pre-specified cut-off and the value of 0 for regions that are further than the pre-

specified cut-off. There is infinity of possible choices for the weight matrix (Bruckner 1998).
7
 

The use of the log transformation allows for the interpretation of the parameter estimates as 

elasticities and is often also justified by variable distributions that are approximately lognormal 

(i.e., by variables that are positive and whose distribution has, as in our data, a long right tail).   

In our work, we augment the above framework in two ways. First, we allow the spillovers 

from the R&D of region i to region j to depend not only on the measure of physical distance 

between the two regions, but also on the similarity of research activities between the regions. We 

do so by incorporating a measure of similarity of research activities directly into the distance 

weight function. We define a similarity index, ijS , of research activities of regions i and j using 

the difference in the distribution of patent shares over K different industries or sectors. Formally, 

the similarity of patents between regions i and j is  

                                                 
7 The generally correct weight-matrix does not exist (Anselin and Bera, 1998). In the spatial econometric literature a 

variety of different weight matrix choices are typically made, often within a single paper. 
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where jkP  is the number of patents in region j and sector k. By construction, this index ranges 

from 0 to 1, is symmetric (i.e., jiij SS = ) and is independent of the aggregate number of patents 

in regions i and j. In particular, if the sectoral distribution of patents is the same for two regions, 

then the value of similarity index is equal to 1, whereas if all the patents of a region j are in 

sectors for which region i has no patents, the value of the similarity index is equal to 0. The 

index is not defined if one of the regions has no patents, but this does not occur in our sample.  

Our second departure form the standard framework is that the elements of the spatial 

weight matrix, ijw , are not taken as constants in the estimation, but are rather assumed to be an 

estimable function of distance. In particular, we assume that ijd

ij ew
θ−∝ , where ijd  is the 

physical distance between regions i and j and θ is a parameter to be estimated.  We also allow (in 

some specifications) the spatial weights to depend on whether regions i and j are on the same 

side of a border. Thus, our general specification framework is given by 
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where ijB  takes the value of 1 if regions i and j are in the same side of border and c is a vector of 

parameters to be estimated. We estimate many variants of equation (3). In the more parsimonious 

variants, which form our base results, the weight matrix is not a function of border effects, and 

there are no explanatory variables in the vector jZ . Equation (3) then takes the form 
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As robustness tests, we estimate a number of variants of this above specification. Country 

and border effects feature prominently in these additional specifications. If research activities 

within each country were more similar in terms of industrial sector allocation (if only because 

countries specialized in different industries), then one might detect a correlation between the 

similarity of activities and spillovers that is driven solely by differential patent productivity 

across different countries. The inclusion of country fixed effects would eliminate this problem by 

controlling for any unobserved differences in the patent productivity across countries. The 

inclusion of border effects captures any discontinuities in the spatial decay function due to 

linguistic and labor market barriers at country borders. One such specification with both country 

and border effects is given by  
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where jZ  is a vector of country dummies. A number of variants of the above equation have been 

estimated, some including interaction of border effects with similarity of research activities 

between regions, others weighing the border effects by distance using the exponential distance 

weights. These variants are described in more detail in section 4 below.  

 

 

3 Data and Variables.  

  

The patent information, industry classification, and R&D expenditure data is from the 

Cronos data series of Eurostat Statistics. Our sample comes from the 1995-1999 period. We 
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partition the European Union into 146 regions on the basis the territorial units as identified by 

Eurostat, known as Nomenclature Units Territory Statistics (NUTS).
8
 These regions are 

internally rather homogeneous, often have a strong local identity, are administrative units in the 

countries they belong to, and have some degree of policy independence. Their geographical 

extent is shown in the maps in Figures 1 and 2. As a measure of the innovative output of a region 

we use the count of granted patent applications to inventors located in each region. The Eurostat 

data attributes each patent to the first inventor listed in the patent application, as it is generally 

done in this literature (see Jaffe, Trajtenberg and Henderson, 1993). Patents have long been 

considered, not without controversy, as the best measure of output of the innovative activity. 

Although not all inventions are patented, the patented ones have to fulfil minimal standards of 

novelty, originality and potential use. Therefore patents can be considered as a good 

approximation to ideal data on “economically profitable ideas” which one would like to have for 

testing theories on innovation. Though an aggregate patent count forms our dependent variable, 

Eurostat classifies patents into one of five industrial categories: Chemistry/Chemical-related, 

Electricity/Electromechanical, Transportation, Biology/Medicine/Human-related, and Other. We 

construct the similarity matrix on the basis of the distribution of patents in these five sectors in 

each of the districts. The mean and standard deviation of the similarity between any random pair 

of regions are approximately equal to 0.68 and 0.20, respectively. There is also substantial 

variability in the average similarity of any given region’s patent output with that of all the other 

regions of the EU: the standard deviation of this measure is equal to 0.13. 

R&D expenditure data include expenditures that “comprise creative work undertaken on a 

systematic basis in order to increase the stock of knowledge, including knowledge of man, 

                                                 
8  For the time period in our sample, the membership of the European Union consisted of 15 countries. However, 

insufficient (or no) data was available for the three latest entrants (Austria, Sweden, and Finland) and for Belgium. 

The 146 NUTS units in our sample pertain to the remaining 11 countries of the EU.  
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culture and society and the use of this stock of knowledge to devise new applications” (European 

Commission, 2001). The R&D expenditure data is measured in millions of euros, and is 

aggregate rather than sectoral, as a breakdown by sector is not available in the EuroStat database. 

Given that R&D expenditure in any particular year yields results (e.g., patents) with some lag 

and these results are typically spread over time, we use as the dependent variable the average 

number of patents issued in the last 3 years of our sample (1997-99) and as R&D the average of 

the first 3 years of our sample (1995-97).
9
 Given that the year 1996 is characterized by missing 

data for half of the regions, we chose to drop it in computing the average R&D. The average 

number of patents per region is 294, with a standard deviation of 456, while the average R&D 

expenditure is 762 million euros, with a standard deviation of 1,338 million euros.
10

  

 

4 Estimation Results 

We estimate and report results from 12 different models that are variations of equations (4) 

and (5). We have also estimated a few additional variations of these models obtaining similar 

results, but we do not report them here as they would provide effectively zero marginal value. 

The sampling distributions of most parameter estimates are non-symmetric, and thus we 

construct confidence intervals based on bootstrapping (801 replications). We report the standard 

95% confidence interval, but also indicate in the tables parameter significance at the 10% level. 

In all tables, WlnRD denotes the distance weighted variable ∑
≠

−

ji

i

ij
d

Re )ln(
θ

, WSlnRD denotes the 

                                                 
9 The similarity matrix is computed using our dependent variable, and is thus based on the average patent output of 

each region over this 3 year period.  
10 Two regions are characterized by zero expenditure, and thus we add 1 to both R&D and patents before taking the 

log of the dependent and independent variables. Given the scale of the data, this does not materially affect our 

interpretation of the parameters as elasticities.  
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distance and similarity weighted variable ∑
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spillovers that are not distance weighted, i.e., it denotes the variable ∑
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border effects that are similarity but not distance weighted, i.e., it denotes the variable 
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iijij RSB )ln( , and WBSlnRD denotes border effects that are both similarity and distance 

weighted, i.e., it denotes the variable ∑
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.  

We first estimate, as a point of departure, equation (4) omitting the last term, i.e., omitting 

the industry similarity variable (Table 1, Model 1). The elasticity of patents to own R&D is 

approximately 0.82, significantly different from constant returns to scale at the 5% level. Returns 

to scale to own R&D investments may indeed be diminishing; however it is also possible that 

R&D expenditures may yield benefits with a long enough lag that they are not reflected in patent 

output during our sample period. The coefficient on the spatially weighted R&D of other regions 

is strongly statistically significant, but small in size. An increase in the R&D of other firms by 

1%, even if those are effectively co-located and of zero distance, leads to an increase in patent 

output of the target region by slightly less then 0.01%. Measured spillovers are, in this sense, 

small. Moreover, the exponential rate of spatial decay is relatively fast: The estimate of the decay 

parameter θ is equal to 0.2719 per unit of distance, with distances measured in degrees on the 

Earth’s surface (one degree is equal to 111km). Simple calculations using the exponential 

formula show that spillovers are halved for every 283km of distance increment between two 

locations (i.e., the spatial half-life of R&D spillovers is 283km). Nonetheless, the aggregate 

effect of all spillovers is quite substantial because any European region receives positive 
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spillovers from all other European regions. A meaningful statistic is to compute what is the effect 

on a region’s patent output if all other regions increase their R&D expenditures by one percent. 

We compute this for every region and report the average value over all regions for each model as 

the Mean Spatial Effect. For Model 1, this is equal to 0.163. Adding this to the coefficient of 

lnRD, we see that if all EU regions increased R&D expenditures by 1%, research output would 

increase by 0.813+0.163=0.976, which is very close to constant returns to scale, when these are 

evaluated at the EU level, rather than the regional level.
11

  

In Model 2 we estimate equation (4) which allows the elements of the distance weight 

matrix to depend on the degree of similarity of activities between any pair of regions. The 

similarity weighted spillovers are not only statistically significant and but also larger in 

magnitude than the coefficient of WlnRD in Model 1. Moreover, once the similarity weighted 

spillovers are accounted for, the coefficient of WlnRD becomes statistically insignificant at the 

5% level and of the wrong sign. Thus, an increase in the R&D activities in a region that is 

characterized by a completely different set of activities than its regional neighbors confers no 

positive externality to those neighbors (as we see below, the sign changes with the inclusion of 

unobserved country heterogeneity). The estimates of the parameter θ and the Mean Spatial 

Effects are slightly smaller than those of Model 1. When WlnRD is dropped from the regression 

(Model 3), the point estimate of WlnRD remains statistically significant and the model fit (as 

measured by R-squared) drops only marginally. In contrast, Model 2 has a statistically 

significant better fit than Model 1 as measured by an F-test. Thus, on the basis of the first three 

models we conclude that similarity of research activities is not only important for the presence of 

spatial spillovers, but also salient: In its absence, spillovers are essentially zero.  

                                                 
11  We have not at this point computed standard errors for the sum of lnRD coefficient and the Mean Spatial Effect, 

but, given the parameter estimates, the standard error of lnRD is effectively a lower bound. 
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In Table 2 (Models 4, 5, and 6) we include border effects to account for the possibility that 

the similarity effects on the spatial weight matrix are driven by a similarity of research activities 

within countries. More generally, estimated spatial spillovers may just be an artifact of the 

possibility that there are spillovers between regions within a country (possibly with no spatial 

decay) and no spillovers between regions in different countries. To control for these possibilities, 

three different variants of border effects are added to the equation (4): A border effect that is not 

affected by the distance of regions within each country (Model 4), a border effect that adjusts the 

spatial weight matrix of R&D spillovers (Model 5), and a border effect that adjusts the spatial 

weight matrix of similarity weighted R&D (Model 6). In none of these models are border effects 

statistically significant, not even at the 10% level.
12

 All other coefficients are essentially the 

same as in Model 2.  

Table 3 augments the regressions reported in Table 2 through the addition of country fixed 

effects. These fixed effects capture any differences in the effectiveness of R&D in leading to 

patented output. Such differences may be due to a number of factors, not all which can be 

captured through the use of controls such as education levels, GNP per capita, etc. Such factors 

may include differences in the experience of R&D personnel, differences in the cost of obtaining 

R&D inputs, differences in the propensity to patent R&D output (rather than keep it from the 

public domain), differences in the complexity of research undertaken within each country (some 

types of patents are the outcome of a very resource-intensive effort, while others may be 

extensions of existing work), and others. The country fixed effects are statistically significant on 

the basis of F-tests for all models and all conventional measures of significance. The addition of 

                                                 
12 As shown in McCallum (1995) and confirmed by Helliwell (1998), migration and trade flows are much more 

intense between regions of the same country than of different ones. However, this may not necessarily be true for 

flows of ideas. Nonetheless, our findings on this regard differ from Peri (2005) who investigates citation patterns 

and incorporates flows from non-European regions, but more in line with Botazzi and Peri (2002) who find, using a 

different econometric framework, border effects that are typically not statistically significant (though positive).  
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the fixed effects does indeed have a measurable effect on all of the R&D coefficients: all of them 

are now of smaller magnitude than those of Table 2. As a consequence, WSlnRD narrowly 

misses significance at the 5% level (it is easily statistically significant at the 10% level). The sign 

of WlnRD turns positive (an easier finding to explain) but is not statistically significant at any 

conventional level. Thus, the inclusion of country fixed effects weakens the results without 

altering their basic nature: A region’s research output is most responsive to its own R&D 

expenditure (elasticity of approximately 0.7) but exhibits diminishing returns to scale. The R&D 

of regions that have completely dissimilar research activities does not result in any measurable 

spillovers; these spillovers increase with the similarity in the research activities and this increase 

is statistically significant. In aggregate these spillovers are important: Increasing the R&D of all 

(other) EU regions by 1% increases research output in the average EU region by 0.25-0.29% 

depending on specification. Notice that the aggregate effect of these spillovers is higher than 

those reported in Table 1, despite the fact that point estimates of the coefficients of WlnRD and 

WSlnRD are smaller than those of Table 1.
13

 The reason is that the inclusion of country fixed 

effects noticeably decreases the point estimate of θ to between 0.15 and 0.16. These lower point 

estimates indicate that the spatial half-life of R&D spillovers increases to 500km, thus raising 

their quantitative importance.  

In a final set of results we remove the border effects that are consistently not statistically 

significant and undertake a more systematic model selection among regressions with and without 

similarity effects. In particular, in this last set of regressions (reported in Table 4) we re-estimate 

the models in Table 1 with the addition of country fixed effects. Though WSlnRD in Model 11 

barely misses statistical significance at the 5% level, the fit of Model 12 which drops WlnRD is 

                                                 
13  The spillover effects of other regions’ R&D on patent output are about half those of own region’s R&D. This is 

almost as high as the estimate in Peri (2005), who considers both intra-European and trans-Atlantic spillovers.  
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basically the same as that of Model 12, and substantially higher than Model 10 which drops 

WSlnRD (point estimates are essentially identical to those in Table 3). Thus, the balance of 

evidence in the regressions with country fixed effects is that (i) similarity-weighted spillovers 

provide a noticeably better description of the spatial relationship between R&D and patent 

generation than do spillovers that ignore the similarities in the pattern of research activities, (ii) 

incorporating unweighted spillover effects in a model that includes similarity-weighted spillovers 

does not improve that model’s explanatory power, while (iii) incorporating similarity weighted 

spillover effects on a model with unweighted spillover effects increases that model’s explanatory 

power (at the 10% significance level).  

 

5. Discussion and Concluding Remarks 

Our analysis can be seen as a step in integrating two strands of the technology literature: 

The first focuses on spillovers at the firm level as a function of the type of innovation undertaken 

by these firms; the second looks at the regional aggregate level of innovation and research 

activities and focuses on spillovers as a function of physical distance between regions and other 

barriers. Both Bottazi and Peri (2003) and Peri (2005) are steps in the same direction, though our 

approach differs in that it directly incorporates the effects of similarity of research activities into 

the spatial lag matrix rather than use them as an additional control in the knowledge production 

function or treat them as components of an intermediate input in the production of the new 

knowledge. Though computationally intensive, our approach eliminates the need for 

specification searches through the use of different alternative weight matrices in spatial 

econometric models. In this framework, we allow the distance-weighted R&D spillovers from 

the research activity in EU regions on the patenting activity of their neighbours to depend on the 
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similarity of their research activities. Such similarities appear to be very important: Regions with 

dissimilar activities appear to be characterized by essentially no spillovers.
14

 

Our estimates of similarity effects are certainly statistically significant and robust across 

specifications in terms of magnitude of aggregate spillovers (though the relative contribution of 

the key factors varies across some specifications). But does the incorporation of similarity of 

research activities on the spatial decay matrix have economically meaningful effects in the 

geographic pattern and magnitude of spillovers in the European Union? This is examined in 

Figures 1 and 2 which depict the geography of spatial spillovers effects with and without 

technological similarities. Figure 1 shows the percentage predicted increase in a region’s patent 

output if all other regions in the EU experience an one percent increase in their R&D when 

similarity effects are ignored (Model 1). Higher values of spatial effects are observed in northern 

and central European regions, as these regions are in areas with dense economic activity. 

However, taking similarities into consideration leads to a substantial “revision” of the predicted 

level of spillovers. Figure 2 plots the change in the predicted level of spillovers when we use 

Model 3 rather than Model 1 to measure spillovers.
15

  

For some of the regions, the changes in the estimated spillovers through the incorporation 

of similarity effects are negative: these are regions which undertake research activities that are 

different than those of their neighbors and thus the standard approach over-estimates the extent 

of spillovers they receive. Most of these regions are in southern Europe, where estimated 

decreases in spillovers can be of the order of 40%.  Thus, the standard approach of estimating 

                                                 
14  Jaffe (1989) finds that, within a U.S. state, spillovers from academic research to the industry are limited to within 

technical areas, with essentially no spillovers across technical areas. 
15 Somewhat stronger results are obtained when comparing the more fully parametrized Model 2 with Model 1. 

Similar results are obtained when comparing Models 10 and 12: the mean spillovers are higher than those of Model 

1 and 3, but the correlation in the predicted spillovers of Models 10 and 12 is even weaker that the correlation 

between the predicted spillovers of Model 1 and 3 (0.974 versus 0.980). 
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spillovers overestimates the degree of spillovers in many regions that are already thought to be 

low. However, some regions in Germany also experience downward revision of the estimated 

spillovers (e.g., Halle experiences a 15% decrease). Apparently, many German regions are 

characterized by some specialization at the individual region level; for most the revision is 

around zero. Positive changes in the estimated spillover effects are most pronounced in France, 

the UK, Northern Italy, Andalusia and the Eastern fringes of Germany. These regions are 

characterized to a larger extent by research activities that are similar to those of the neighbors.  

Finally, our findings have implications for the location of research centers and the 

agglomeration pattern of research activity. If it is indeed true, as we find, that the extent of 

spatial R&D spillovers  between two regions depends on the similarity of research activities 

undertaken by firms in these regions, then it follows that firms will choose to locate in regions 

(or near regions) in which similar firms are currently located.
16

 Thus, not only there will be 

spatial agglomeration of R&D activities, but there will also be spatial specialization of such 

activities.
17

 Indeed, there is already some corroborating evidence. For instance, Head, Ries, and 

Swenson (1995) show that industry level agglomeration benefits had an important effect on the 

location decisions of Japanese plants in the US, with both intermediate input provision and 

technological/information externalities being driving forces. Further analysis of the dynamic 

relationship between firm location decisions and research spillovers that are related to the 

similarity of activities is an important avenue of future research. 

 

                                                 
16 Abstracting from any similarity effects, the importance of spatial connections, and their linkages with information 

diffusion, interaction, communication and innovation has received wide empirical support. For example, Audretsch 

and Feldman (1996) industries with high levels of innovative activity have more tendencies to cluster. The localized 

character of knowledge diffusion, as proxied by patent citations, is well documented in Jaffe et al. (1993).  
17  This also has implications for the location of firms as a function of the differentiation of their products (see Piga 

and Poyago-Theotoky, 2005, for a theoretical analysis of this issue). Though firms may prefer to choose R&D 

approaches to minimize such spillovers (Kamien and Zang 2000), Wiethaus (2005) provides compelling arguments 

to the contrary.  
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Table 1 

Spatial R&D Externalities with and without Industry Similarity Effects 

 Model 1 Model 2 Model 3 

Variables Coefficient 95% Conf. Interval Coefficient 95% Conf. Interval Coefficient 95% Conf. Interval 

Constant -0.9544 -1.9343 -0.5541 -0.7301 -1.5896 0.0233 -0.8521 -1.6663 -0.4642 

lnRD 0.8129* 0.6884 0.9807 0.7818* 0.6403 0.9443 0.7917* 0.6612 0.9605 

W lnRD 0.0094* 0.0055 0.0158 -0.0074^ -0.1026 0.0019    

WS lnRD    0.0201* 0.0078 0.1500 0.0111* 0.0069 0.0204 

theta-hat 0.2719 0.1448 0.3807 0.2507 0.1444 0.6306 0.2472 0.1116 0.3857 

R2  0.856   0.862   0.861   

Mean Spatial Effect 0.163   0.149   0.163   

Note: Significance at 5% is denoted by *, significance at 10% indicated by ^. Significance is not indicated for the constant and for theta (which by 

construction cannot be zero). Bootstrapped confidence intervals (801 replications) are presented for each regression. The number of observations is 

equal to 146. 

 

 

Table 2 

Spatial R&D Externalities with Industry Similarity and Border Effects 

 Model 4 Model 5 Model 6 

Variables Coefficient 95% Conf. Interval Coefficient 95% Conf. Interval Coefficient 95% Conf. Interval 

Constant -0.6758 -1.5515 0.1514 -0.6366 -1.5663 0.1455 -0.7356 -1.5504 0.1581 

lnRD 0.7903* 0.6590 0.9461 0.7897* 0.6604 0.9460 0.7910* 0.6586 0.9446 

W lnRD -0.0088^ -0.1000 0.0018 -0.0086^ -0.0991 0.0017 -0.0091^ -0.0990 0.0017 

WS lnRD 0.0258* 0.0087 0.1466 0.0251* 0.0086 0.1476 0.0258* 0.0086 0.1487 

B lnRD -0.0020 -0.0065 0.0011       

BSlnRD    -0.00002 -0.00006 0.00001    

WBSlnRD       -0.00007 -0.00082 0.00009 

theta-hat 0.2847 0.1642 0.5738 0.277 0.1641 0.5754 0.290 0.1663 0.5863 

R2 adjusted 0.865   0.865   0.863   

Mean Spatial Effect 0.129   0.174   0.165   

Note: Significance at 5% is denoted by *, significance at 10% indicated by ^. Significance is not indicated for the constant and for theta (which by 

construction cannot be zero). Bootstrapped confidence intervals (801 replications) are presented for each regression. The number of observations is 

equal to 146.  
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Table 3 

Spatial R&D Externalities with Industry Similarity, Border, and Country Fixed Effects 

 Model 7 Model 8 Model 9 

Variables Coefficient 95% Conf. Interval Coefficient 95% Conf. Interval Coefficient 95% Conf. Interval 

Constant -0.3292 -10.0707 6.6325 -0.1801 -17.1280 19.6076 -0.4232 -15.2073 7.7278 

lnRD 0.6970* 0.5696 0.8687 0.6963* 0.5730 0.8696 0.6977* 0.5716 0.8668 

W lnRD 0.0018 -0.0146 0.0129 0.0016 -0.0149 0.0126 0.0020 -0.0259 0.0160 

WS lnRD 0.0088^ -0.0005 0.0373 0.0090^ -0.0004 0.0375 0.0087^ -0.0005 0.0505 

B lnRD -0.0012 -0.1116 0.1123       

BSlnRD    -0.00002 -0.0031 0.0024    

WBSlnRD       -0.00002 -0.0053 0.0058 

theta-hat 0.1549 0.0452 0.3407 0.1563 0.0485 0.3410 0.1516 0.0286 0.3901 

Country dummies Yes   Yes   Yes   

R2 adjusted 0.908   0.908   0.908   

Mean Spatial Effect 0.256   0.276   0.290   

Note: Significance at 5% is denoted by *, significance at 10% indicated by ^. Significance is not indicated for the constant and for theta (which by 

construction cannot be zero). Bootstrapped confidence intervals (801 replications) are presented for each regression. The number of observations is 

equal to 146. 

 

 

 

Table 4 

Spatial R&D Externalities with and without Industry Effects and Country Fixed Effects 

 Model 10 Model 11 Model 12 

Variables Coefficient 95% Conf. Interval Coefficient 95% Conf. Interval Coefficient 95% Conf. Interval 

Constant -0.3333 -2.4829 0.4586 -0.4634 -4.2333 0.4948 -0.2587 -1.1766 0.4476 

lnRD 0.7154* 0.5879 0.8698 0.6984* 0.5708 0.8671 0.6978* 0.5710 0.8553 

W lnRD 0.0101* 0.0074 0.0174 0.0020 -0.0147 0.0130    

WS lnRD    0.0087^ -0.0008 0.0358 0.0113* 0.0082 0.0196 

theta-hat 0.1940 0.0811 0.2886 0.1531 0.0467 0.3345 0.1725 0.0918 0.2845 

Country dummies Yes   Yes   Yes   

R2 adjusted 0.905   0.908   0.908   

Mean Spatial Effect 0.266   0.290   0.253   

Note: Significance at 5% is denoted by *, significance at 10% indicated by ^. Significance is not indicated for the constant and for theta (which by 

construction cannot be zero). Bootstrapped confidence intervals (801 replications) are presented for each regression. The number of observations is 

equal to 146. 
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Figure 1 Geographical mean spatial effects without technological similarities in EU (excluding 

Belgium) 

 

    
                                        

 

 

Figure 2 Percentage change of geographical mean spatial effects with technological similarities 

in EU (excluding Belgium).  

 

      
 


