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Abstract

General purpose technologies (GPTs) are technical breakthroughs that are
able to spur growth via their pervasive use in the economy. This paper at-
tempts to study the effects of these innovations for the economic system on
an empirical and theoretical level. A structural decomposition analysis for
Denmark from 1966 to 2007 tracks the impact of the current GPT, the in-
formation and communication technology (ICT), on aggregate and sectoral
labor productivity growth. Findings show that the broad diffusion of ICT
affected growth significantly after 2000, owing to technical change, substi-
tution and capital deepening, and can be associated with skill-induced wage
dispersion. The diffusion process of a GPT is subsequently reconstructed
by an evolutionary multisectoral framework: The Sraffian input-output ap-
proach is combined with the replicator dynamics approach of evolutionary
game theory. Technical unemployment, transitional wage inequality and de-
celerating economic growth after the appearance of a GPT can thereby be
explained.
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1 Introduction

By 1900, 38 per cent of vehicles in the U.S. were electric; 40 percent were steam

powered and only 22 percent used gasoline. However, because of the limited driving

range of electric vehicles and the lacking infrastructure for recharging, the technical

advances in internal combustion engineering literally drove the rise of gas-powered

automobiles. In 2004, automobiles and light trucks in the USA were responsible for

nearly half of all greenhouse gases emitted by automobiles globally, according to

a recent study by DeCicco and Fung (2006). Back in 1900, if innovative activities

would have been channeled to the prevailing technology, the economy and the

environment would have developed along a different, probably more sustainable,

path. So history matters and some innovations are able to make history.

This is particularly the case of general purpose technologies (GPTs): major

technological breakthroughs that shift physical restrictions and spur growth via

their pervasive use in the economy. Prominent examples are the steam engine and

electricity, and lately the new information and communication technology (ICT).

To understand the inter-sectoral spill-over effects by the emergence of a GPT re-

spectively by technical change within a GPT-producing sector therefore facilitates

the understanding of economic and social consequences of technical progress. For

instance, the productivity slowdown of advanced economies (especially of the U.S.)

experienced in the 1980s, followed by substantial growth in the following decade,

can be linked to some extent to the rise of ICT: Basic arguments for the slump

brought about by ICT were the irreversibility of tailor-fit inputs, obsolescence of

capital and a short supply of skilled labor (Helpman, 1998).

On an empirical level, a wide spectrum of studies have dealt with the immediate

and long term effects of ICT on productivity growth. Jorgenson et al. (2007), for

example, analyzed the industry sources of growth resurgence in the U.S. for the

period 1960 to 2005. They identified IT as an important source for both capital

deepening and total factor productivity growth in the late 1990s and after 2000. In

a similar study Basu and Fernald (2007) found that industries with higher demand

for ICT capital in the 1987–2000 period also had higher TFP growth rates in the
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2000s. Inklaar and Timmer (2007) compared seven economies1 with regard to

industry output, input and multi-factor productivity (MFP) levels. They showed

that the U.S. used twice as much ICT-capital than Anglo-Saxon countries where

production tends to be more labor-intensive. This high level of IT-capital can be

found across all sectors of the American economy. In a recent article, Jorgenson

and Timmer (2011) show that the rapid productivity growth (in terms of MFP)

in the European Union, the U.S. and Japan is accompanied by the growing role

of service sectors, the decline of the labor share in value-added, and the increased

use of IT-capital across all regions and sectors.

Even though the ICT revolution, starting in the U.S. in the 1960s, took several

decades to show up in productivity growth in the computer-using industries, the

wage of skilled workers has risen significantly from the emergence of this GPT

onward. The most common explanation is that the efficient utilization of ICT

makes great demands on the qualification of the workforce: New skills are required

that first need to be obtained through investments in education and on-the-job-

training. Thus, increasing computerization has been associated with higher levels

of both skills and wages in the workforce (Majumdar, 2008; Allen, 2001; D. Autor

and Krueger, 1998; E. Berman and Griliches, 1994; Krueger, 1993), as well as

with the substitution of low-skilled by higher-skilled workers (Levy and Murnane,

1996). Thus, the rapid skill-biased technical change has resulted in rising wage

inequality both among and within different education groups, despite an increasing

supply of better qualified labor (see e.g. Murphy and Welch (1992); D. Autor

and Krueger (1998)). The relation between the emergence of a GPT and skill

and wage differentials have been extensively discussed in the theoretical literature

(see e.g. Helpman and Trajtenberg (1998b,a) and Nahuis (2004) for a general

equilibrium approach). Furthermore, Aghion and Howitt (1998a, 2002) propose a

Schumpeterian framework for explaining the evolution of wage inequality.

This paper aims at contributing both to the empirical as well as to the theoret-

ical literature. It therefore advances along two dimensions: (1) On the empirical

level, the paper attempts to assess the impact of ICT (the current GPT) on ag-

1France, Germany, Netherlands, U.K., U.S., Australia and Canada.
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gregate and sectoral productivity for Denmark between 1966 and 2007 by use of

a structural decomposition analysis (SDA). Denmark is chosen due to the extent

of the available data and its size, which characterizes it as a small open economy.

We revert to labor productivity growth, since ICT has had a special impact on the

labor market: On the one hand, labor intensity of production decreased through

automation owing to ICT-capital, on the other hand the IT-boom has raised the

demand for qualified workers. Combining the Sraffian (price-) with the Leontief

(quantity-) system, annual changes in labor productivity are decomposed into dis-

embodied technical change, shifts in the employment of low and high skilled labor,

factor substitution, and technical change embodied in capital goods. Contrast-

ing these results with the changes in the electricity sector allows comparing the

different maturity stages of these general purpose technologies. (2) Supported by

empirical evidence, the theoretical part of the article proposes a Sraffian multi-

sectoral approach that is embedded in an evolutionary framework. This model is

capable of reconstructing the output slump after introduction of a GPT as well as

transitional wage inequality during the diffusion process of the new GPT.

The paper proceeds as follows: Section 2 introduces the inter-sectoral frame-

work. Section 3 describes the structural decomposition analysis and the underlying

data. A detailed presentation of the SDA and the industry classification can be

found in the Appendix. Section 4 displays the most important results with a spe-

cial emphasis on the GPT at work, ICT. In Section 5 the Sraffian static framework

is augmented by the replicator dynamics approach of evolutionary game theory to

gain some deeper understanding of how the inter-sectoral linkages work. Conclud-

ing remarks are given in Section 6.

2 Methodology and notation

Following Helpman and Trajtenberg (1996), pervasiveness is one of the three defin-

ing characteristics of a GPT (besides scope for improvement and innovation spawn-

ing). Since in this context pervasiveness is defined as the property of some technol-

ogy to spread to most sectors throughout the economy, it is inevitable to analyze
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the economic implications of some GPT in a multi-sector setting. Therefore a

classical input-output model developed by Piero Sraffa (1960) serves as the ba-

sis of our investigation. Subsection 2.1 introduces the general notation for the

long-period position of the economy. This prepares ground for two further steps:

Firstly, for the structural decomposition analysis outlined in Subsections 2.2 and

in the Appendix A.1 for further refinement of the subsequent empirical analysis;

and secondly for embedding the static model into an evolutionary framework in

Section 5 to investigate dynamical aspects of the diffusion process.

2.1 A Sraffian multi-sectoral framework

In an N -sector economy, let amn ∈ (0, 1) be the amount of good m produced in

sector m to produce one unit of output in sector n. A new GPT such as the ICT is

accompanied by new skills necessary to operate the innovative technologies. Skill

diversification, including the existence of wage premia, is considered by allowing

for K different skills. lmk > 0 then denotes the quantity of skill k necessary to

produce one unit of output of sector m. The input matrices A ∈ [0, 1]N×N and

L ∈ R
N×K
+ with coefficients amn and lmk characterize the utilized technology. The

n-th entry pn of the price vector p ∈ R
N
+ denotes the price of commodity n. w is the

wage vector with the k-th entry wk denoting the remuneration of skill k. Assuming

prices to be determined by unit costs of production, one gets the following price

system

(1 + r)Ap+ Lw = p (1)

with normal rate of profits r (Kurz and Salvadori, 1995). Defining some commodity

bundle d ∈ R
N
+ as numéraire by dTp = 1 and wage level w = ‖w‖, the falling

w − r relationship

w =
1

dT (I− (1 + r)A)−1 Lu
(2)

with constant u = w/w can be obtained. Different kinds of technical progress

can be found by studying the dynamics of the w − r relationship: Harrod-neutral

or purely labor-saving technical progress is represented by a clockwise rotation

of the curve, whereas Solow-neutral or purely capital-saving technical progress
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Figure 1: Wage-profit curve for Denmark from 1966 to 2006

corresponds to an anti-clockwise rotation. Hicks-neutral or factor-saving techni-

cal change leads to a parallel shift outwards. If two curves–related to different

technologies–intersect, then technical progress is not unambiguous and one has

to draw on actual income distribution w and r to scrutinize the sort of change

(Degasperi and Fredholm, 2010, p.274).

Figure 1 shows the corresponding wage-profit-frontier for Denmark from 1966

to 2006. The intersection with the axes determines the maximum wage rate (for

r = 0), and the maximum rate of profits (for w = 0) respectively. Until 1986 the

curve rotates clockwise around a more or less stable rate of profit in the range of

0.92. Since this value is in reality unlikely to occur, one can conclude that in the

20 years between 1966 and 1986, labor-saving technological change took place. For

1996 the w − r-relationship shows unambiguous technical progress, because both

intersection points moved outwards. Since then, however, the maximum rate of

profits has decreased and the curves of 1996 and 2006 intersect at a rate of profit

equal to 0.31. Comparing this value to the average interest rates for 20062 it is

2The EURIBOR interest rate, which is the ruling rate in the European interbanking system

6



clear that within a realistic range of profit rates the latter technique turns out to

be labor-saving and capital-using relatively to the former production system.

In the case of a zero profit rate r = 0, equation (2) reads

w̄ =
1

dT S Lu
(3)

with the Sraffa Inverse S ≡ (I − A)−1. The higher w̄, the less direct and indirect

labor inputs are necessary for the production of the exogenously specified com-

modity bundle. An increase in the maximum wage rate over time thus indicates

productivity gains due to technical progress. The relative change in the maximum

wage rate from one year to the next therefore provides a measure for the annual

labor productivity growth:

glt =
w̄t − w̄t−1

w̄t−1

= w̄t

(

1

w̄t−1

−
1

w̄t

)

(4)

This measure differs from the conventional indicator of labor productivity growth

in so far as it considers not only the labor that is directly employed in the respective

sector, but also takes into account the labor input in the upstream production.

This means that an industry exhibits a higher labor productivity (as defined by

Eq.3) whenever the supplying industries operate less labor-intensively.

Labor productivity growth is in case of innovations accompanied by the emer-

gence of new skills and respective skill premia captured by the vector u in equa-

tions (2) and (3). For the simple case of two different skills, and each employed in

another process within the economy, wage inequality can be calculated by

GINI = qh(1− qh)
u− 1

1 + (u− 1)qh
, (5)

where qh denotes the share of high skilled labor which is utilized by the innovative

process and remunerated by some wage premium u > 1 relative to the low skilled

labor utilized by the incumbent technology. Figure 2 graphically demonstrates

the dependence of wage inequality on the share of high skilled labor with a wage

for lending money and could be thus considered as a reference value, was about 0.032 on annual
average.
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Figure 2: The GINI coefficient depending on the share of high-skilled labor

premium of u = 2.

2.2 Structural decomposition analysis

SDA has been a prominent tool in input-output analysis for associating changes in

one variable, most often gross output or value-added, to changes in other variables

(Miller and Blair, 2009; Rose and Casler, 1996; Dietzenbacher and Los, 1997, 1998).

With regard to labor productivity, Yang and Lahr (2008) use two multi-regional

input-output tables of China to decompose the change in labor productivity growth

between 1987 and 1997 into five determinants3 and subsequently assess the results

at a regional level. In a follow-up study, the analysis is extended to further com-

ponents, with a special focus on the intra- and inter-sectoral composition of final

demand, and extended to the year 2005 (Yang and Lahr, 2010). The account-

ing framework goes back to Jacob (2003), who analyzed the growth experience

in Indonesia between 1971 and 1995, distinguishing between a pre- and a post

liberalization phase.

In this paper, SDA is used to break down the change in the maximum wage rate

3i.e. value-added, direct labor requirements, aggregate production mix, interregional trade
and final demand.
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(labor productivity) into its different components. Therefore the afore discussed

Sraffian model is coupled with the analytical framework developed by Wassily

Leontief4.

In the Leontief system, gross output x is calculated from the demand side, as

market clearing implies

xTA+ yT = xT .

y gives total final demand (from private households and government, investment

and exports). Furthermore, total labor demand l (weighted by its relative wages)

can be calculated as the product of the labor intensity L and the gross output

vector x:

l = diag(Lu)x = diag(Lu)Hy (6)

H ≡ (I− AT )−1 = ST denotes the Leontief Inverse.

Combining (6) with (3), the maximum wage rate is given by

w̄ =
1

dT S Lu
=

1

dT S l̂ x̂−1 e
=

1

dT S l̂ [diag(Hy)]−1 e
, (7)

where ˆ indicates a diagonalized vector and e ∈ R
N is a vector with coefficients

en = 1 for all n = 1, . . . , N . Considering two different snap shots in time, from (4)

and (7) labor productivity growth glt can be derived as

glt = wt d
T
[

St−1 l̂t−1 [diag(Ht−1yt−1)]
−1 − St l̂t diag(Htyt)]

−1)
]

e. (8)

Given equation (8), the relative change in the maximum wage rate can be

decomposed into four partial factors: (1) technical change as indicated by a change

in the direct input matrix A (∆S ≡ St − St−1), (2) change ∆l ≡ lt − lt−1 of total

employment, (3) substitution effect indicated by a change in AT (∆H ≡ Ht−Ht−1)

and (4) change ∆y ≡ yt − yt−1 of final demand. This initial decomposition is

extended by differentiating between low and high skilled labor, and capital flows

4Interestingly, both input-output models are based upon the classical approach of value and
distribution in stressing the circularity of production and were developed at about the same time
(see e.g. Leontief (1928)), but independently from each other.
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of ICT and Non-ICT related investments. The decomposition can be found in

detail in A.1.

3 Data

3.1 National account data

Denmark is used as a case study for the following two reasons: Firstly, it is a small

open economy acting as a net-importer of ICT-products5. ICT can therefore be

analyzed from a more general perspective, since the focus is on the impact of a

GPT as an input of production and not on its impact on final demand. Economies

such as the U.S., Japan or Finland – which are net-exporters of ICT-products

– would cause a bias with regard to this research question: It is their extensive

trade with these products that affects economic development, and not primarily

the pervasive use of this GPT in production.

Moreover, Statistics Denmark also provides a very good data base that fits the

purpose of this work: Annual IO tables for 130 sectors in ISIC 3.2. Rev. classi-

fication, in current as well as constant prices of the year 2000, entailing domestic

and import flows, and covering a long period of time (1966 to 2007). Applying the

criterion of Jovanovic and Rousseau (2005a), whereby the emergence of a GPT

can be dated to the year when the new technology reaches a one percent share in

the industrial sector’s stock equipment – which in Denmark’s case was in 1979 –

we can therefore also study the pre-arrival time.

The 130 sectors in the original classification were subsumed under 53 indus-

tries for the sake of better illustration of the results and in order to ensure the

non-singularity of the system (see Table 2 in A.2). In the following, the years 1970

until 1972 will be excluded due to the lack of data reliability, because for these

periods the results indicate a hardly viable system (i.e. with a profit-rate close

to zero). Concerning the definition of the ICT-producing sector, a broad classifi-

cation scheme is used, including not only the ICT manufacturing sector, but also

5The only exceptions are central processing units. For a detailed analysis of Denmark’s
position among Europe with regard to ICT activities see Koski et al. (2002).
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computer related business activities and software consultancy. The following in-

dustrial and service classes comprise the notion of ICT in the scope of the present

analysis: (1) Mfr. of information and communication technology (ICM): Mfr. of

office machinery and computers, Mfr. of other electrical machinery and apparatus,

Mfr. of radio and communications equipment etc. (2) ICT-related services (ICS):

Computer activities, Software consultancy and supply.6

Investments in ICT capital deserve a special consideration, since most ICT

products are not used up within one period, but remain in the production process.

Thus the analysis needs to include investment flows as well. From 1993 to 2007 real

investment matrices, in constant prices of year 2000, were available in 5 categories:

(1) buildings other than residential, (2) machinery, (3) transport, (4) software, (5)

construction. The classification of delivering sectors is identical to the one in the

IO-scheme. However, the set of investing sectors corresponded to the national

standard classification of 53 sectors, whereby 3 industries (health, research and

education, culture) are further disaggregated, resulting in 56 sectors in total. In a

first step, the investment matrices were re-classified according to the 53 sectors in

the Sraffian classification, which was in most cases a one-to-one concordance. The

only industry that needed to be split up further was electricity, since in the original

classification it is presented together with gas and water supply. The assigned

share was therefore derived from total deliveries of these two sectors to investment

demand. However, the distribution across sectors was assumed to be the same for

the electricity and the gas and water supply industry. Investment demand before

1993 was only available at an aggregate level in the aforementioned categories (1)–

(5). For these years, the sectoral shares in the demand for the respective asset were

calculated from the purchases of intermediate products. It is therefore assumed

that sectors with higher demand for intermediate (circular) products also invest

more in this technology. These estimations were backed up with investment data

(industry by industry) from 1966 to 1992.

6This definition is widely accepted among empirical studies on ICT (see e.g. Jorgenson et al.
(2007)). The division into ICT-using sectors and Non-ICT sectors was done according to the
share of ICT-equipment in total investments in the year 2000 (with the threshold being 5%).
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3.2 Employment data

As regards employment, total working hours of employed persons and self-employees

were obtained from Statistics Denmark. For the discrimination of the labor force

according to the attained education we used the Denmark labor input data pro-

vided by the EU KLEMS database (Edition 2008). This dataset comprises the

shares in total hours worked as well as the shares in total labor compensation for

three different qualification levels for a time-span of 26 years (1980–2005). Since

these data are only broken down for 15 sectors, each subsector is approximately

characterized by the same labor composition. For the purpose of this paper, only

between low-skilled and higher (i.e. middle and high)-skilled workers was discrim-

inated; no differences in age and gender are considered. For Denmark, low-skilled

labor refers to basic schooling, whereas middle and high skilled labor comprises

short, middle and long cycle higher education as well as vocational education and

training (for further details on the labor accounts see the EU KLEMS manual,

pp. 24–31). For both qualification levels, the ratio between the respective wage

share and the share in total working hours is calculated in order to obtain the

compensation level of the respective skills compared to the industry average.

3.3 A note on the numéraire

The empirical analysis in this paper requires the specification of a numéraire.

A number of different commodity bundles were tested. By means of sensitivity

analysis the specification of the numéraire is chosen whose application fits best

sectoral labor productivity growth as derived from the system of national accounts.

Thus, the index finally selected is the share of each industry in the net product of

the year 2000. This numéraire also makes sense intuitively due to its analogy to

a consumer price index, and the year 2000 is chosen as the reference period, since
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Figure 3: Growth of labor productivity (LPG) from 1966 to 2007. Figures from
the Sraffian system and the system of national accounts.

the monetary IO-tables are set out in constant prices as of 2000.7

dn =
xn −

∑53
j=1 znj

∑53
n=1

∑53
j=1 ynj

Figure 3 presents the growth of labor productivity (LPG) obtained from the

national accounts,8 together with the productivity measure derived from the Sraf-

fian system (solid line). The LPG measure deviates in two years (1981 and 1983)

from the indicator based on national accounts, but otherwise represents a good fit

to the conventional figures (with a correlation-coefficient ρ = 0.87).

7Since competitive imports are included in the transaction matrix, a negative net output is
likely to occur in those periods where domestic production depends largely on imported interme-
diate products. Therefore it is necessary to ensure that the numéraire is strictly positive. Note
that the more negative the net-product, the higher would be the positive impact of the sector
on the productivity measure, thus causing a severe bias on the aggregate level.

8More precisely, for each period GDP at market prices is divided by total hours worked in
the respective period.
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4 Results and Discussion

The results of the SDA are presented first on the aggregate level (Subsection 4.1)

and then with regard to the ICT (Subsection 4.2). In the latter part a discussion

is included how the diffusion of ICT is linked to the evolution of wages and wage

inequality.

4.1 Aggregate results

Figure 3 shows that labor productivity growth has been steadily decreasing in

the past 40 years: 4.0% per annum in the 1960s compared to around 1% in the

last decade. These historically low growth rates also lag behind other countries:

Whereas Denmark ranked eighth among OECD countries in terms of labor pro-

ductivity in 2000, it dropped back to position 12 by 2011 (McGowan and Jamet,

2012, p.5). Table 1 contains the growth rate of aggregate labor productivity on

an annual average in five-year intervals from 1966 to 2007 (first line). Lines 2-9

present the decomposition of aggregate labor productivity growth into (1) technical

change, (2) changes in labor composition, (3) substitution, and (4) final demand.

The sign and magnitude of these factors depict the change over time in the amount

of vertically integrated labor embodied in the numéraire, i.e. the physical quan-

tities of labor directly and indirectly required in its production. While technical

change led to a reduction in total labor input and thus had a positive impact on

LPG until the 1990ies (except for the period 1975–1980), it was directed towards

labor-using afterwards. Employment also affected productivity growth in both di-

rections: Over the whole period of study, one can observe a decline in low-skilled

labor employed, and an increase in working hours of higher-skilled workers (there-

fore the negative sign). However, whereas in the first decade of study the economy

operated all in all labor-saving, the following decade was characterized by a rise in

total working hours, caused by the strong demand for higher-skilled labor particu-

larly in the ICT-producing and ICT-using industries. Between 1990 and 2005 the

reduction in low-skilled labor outweighed the increase of higher-skilled workers.

The substitution effect, i.e. the changing product mix within a sector, has had a

14



positive impact on labor productivity growth (except for the period 1970–1980).

The most important driver for LPG, however, was final demand, whereby the effect

of investment demand for ICT products grew by factor seven.

The remainder of Table 1 presents the sectoral origin of growth. According to

the focus of the paper, the 53 sectors are aggregated into ICT-producing, ICT-

using and Non-ICT industries. As also shown in Figure 4, the impact of Non-ICT

industries is significant given their share in total value-added of about 70% over

this period. But it has been continuously declining, from 2.9% in the 1960s to

0.13% in the first decade of the 21st century.

On the other hand, the contribution of ICT-using industries (which account

for another one third of value-added) was significant right after the emergence of

the new ICT with a share in aggregate LPG of 24% or 1.99 percentage points

between 1970 and 1975. This might be due to the fact that at that time office

machinery already played an important role in these sectors and that the new ICT

replaced the old technology step by step. In the following 20 years, the impact of

ICT-using industries rose slightly (see Figure 4), until the mid 1990s, where their

contribution to labor productivity growth dropped to 15%. From 2000 onwards, it

seems as if ICT has finally been rejuvenating growth: ICT-using industries account

for 55% (0.55 percentage points) and, in the last period of study, even for 77% (0.66

percentage points) of aggregate labor productivity growth. This rise in magnitude

can directly be traced back to the ICT-producing industries, despite their small

share in value added (1966: 0.6%, 2007: 4.0%). From 1966 to 1970 these five

industries (three in manufacturing, two in the service sector) contributed less than

half a percentage point to aggregate labor productivity. Between 1970 and 2000

their share in LPG increased moderately from 2.5% to 4%. In the most recent

years of study, ICT-producing industries accounted for 0.06 percentage points of

LPG (or 8%).

Turning to another general purpose technology, Table 1 also entails the effects

of electricity on aggregate labor productivity growth. The era of electricity was

triggered by the invention of the dynamo in 1867 and spanned from the end of the

twentieth century until 1930. This time was characterized by big transformations

15



1966- 1970- 1975- 1980- 1985- 1990- 1995 2000- 2005-
1970 1975 1980 1985 1990 1995 2000 2005 2007

LPG (annual average) 4.01 3.32 2.32 2.71 3.01 2.35 0.86 1.02 0.85

Factors

Technical change 0.45 0.11 (0.47) 0.06 0.21 (0.29) (0.40) (1.06) (1.63)
Labor input 0.58 2.07 (0.92) (0.25) 0.65 0.44 (1.86) 0.08 (1.64)
-Low skilled (LS) - - 9.38 1.29 1.51 1.45 0.17 0.38 (25.14)
-High skilled (HS) - - (10.31) (1.54) (0.86) (1.01) (2.03) (0.30) 23.50
Substitution 11.51 (11.65) (0.92) 0.03 0.23 0.30 0.48 1.08 1.72
Final demand (8.53) 12.78 4.65 2.87 1.92 1.90 2.64 0.92 2.40
-ICT products (0.14) 0.02 0.07 0.16 0.22 0.13 0.39 0.09 0.19
-Non-ICT products (8.40) 12.76 4.58 2.71 1.70 1.77 2.25 0.83 2.21
Industries

ICT-producing 0.04 0.11 0.08 0.09 0.08 0.11 0.03 0.05 0.06
ICT-using 1.07 1.22 0.55 0.76 0.83 0.68 0.13 0.55 0.66
Non-ICT 2.89 1.99 1.70 1.88 2.10 1.59 0.67 0.40 0.13
-Electricity (0.02) 0.04 0.01 0.02 0.01 0.00 0.00 (0.01) (0.01)

Table 1: Growth in aggregate labor productivity and the growth factors. All
figures are average annual percentages. The industry classification is defined in
the appendix. ICT includes Mfr. of ICT equipment and Computer and related
activities.

in the economic system, as new products and industries arose and the industry

organization changed from small-scale production to assembly lines. Electricity

also involved huge changes in the labor market: workers were replaced by the

new technology which moreover lowered the basic skill level required for formerly

skilled jobs (Lipsey et al., 2005, p.199). Thus, whereas electricity entails decreas-

ing demand for human capital, ICT caused the opposite. Yet it was the former

technology that enabled the development of the latter. When ICT arrived in the

1970s, electricity was already in its final maturity stage. As one can see from

Table 1, the impact of electricity was almost continuously declining. In the last

two periods of study, the effects even turned negative.

4.2 The case of general purpose technologies: ICT

To uncover the role of GPTs in economic development, the focus in the following

is put on the sources of labor productivity growth related to the general purpose

technology at work, ICT. As Jorgenson et al. (2007) conclude, even though ag-

gregate data are easier to handle and to present, they might conceal considerable

differences among industries. Thus, the full range of data is exploited in show-
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Figure 4: Sectoral contribution to annual labor productivity growth (LPG=1) in
five year interval. 1975–2005

ing the spill-over effects of GPT-producing sectors for all other industries. More

specifically, we seek to understand both the origins and the evolution of ICT-

induced productivity growth by answering the following questions: (1) What is

the impact of innovational complementarities, i.e. the impact of technical change

within the ICT-sector, on the labor productivity growth in all other industries?

(2) How does the utilization of ICT products affect sectoral labor productivity

growth? (3) Which role can be attributed to ICT-related capital deepening? For

this analysis the sectoral weights in the structural decomposition are dropped

to show the impact of ICT for the different industries, regardless of their share

in the net product9. In order to gain further insights into the relation between

diffusion and productivity, a fourth dimension is introduced which shows the sec-

toral employment of ICT. Therefore it is necessary to cover all channels through

which ICT-related products could enter the production system (presented by the

transaction matrix) by incorporating imports as well as capital flows. The for-

mer makes sense, since Denmark is a net-importer of ICT products; the latter is

9Mathematically, this means that the numéraire is represented by a vector with all coefficients
equal to one.
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essential, since most products of ICT (such as computers and office machinery)

are of fixed capital type and are thus not included in the intermediate demand.

Hence, the compound direct requirements matrix representing both intermediate

and capital demand produced domestically and abroad was used (see e.g. Lenzen,

2003) for ranking the industries according to the intensity of ICT in the respective

production processes.

Since the analysis involves a time span of 42 years and 53 different industries,

and the full range of data across industries is to be examined, the results are

presented at a graphical level. Moreover, since the effects within the own sector are

usually the strongest, the respective industry is removed from the graphs. Hence,

just the inter-sectoral – and not the intrasectoral – contributions are plotted. The

intensity of ICT in each sector is represented by the shades of gray of the surface:

The higher the share of ICT-products, the darker the color. Industries that are

displayed in black shades thus produce with the highest ICT-intensity.

Figure 5 shows the contribution of technical change within the ICT-industries

to sectoral labor productivity growth from 1966 onwards. As Lipsey et al. (2005)

point out, an important criterion for identifying a GPT is its scope of improvement.

After its arrival, the crude technology takes decades to mature and show its full

potential. Even though technical change in the ICT-producing sector as measured

from an input-output perspective is a developable indicator for improvements of

the technology itself, the results nevertheless capture the pervasive character of

ICT. Thus, ICT had its strongest impact on labor productivity growth in the fol-

lowing manufacturing industries: Machinery and equipment, Optical and medical

instruments and Transport equipment. It also significantly affected the construc-

tion sector. As regards the service sector, a high impact on Post and telecommu-

nications, Real estate activities, Consulting activities, Research & development,

Public administration and Services of membership organizations can be observed.

Furthermore, Figure 6 plots the effect of substitution for intermediate products

from ICT-producing industries on the rest of the economy. Obviously, the substi-

tution effect is highest in those sectors that adopted ICT in an early stage and use

it most intensively relative to other industries: Machinery and equipment, Optical
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Figure 5: The contribution of technical change in the ICT manufacturing sector
to sectoral labor productivity growth.
Mfr.=Manufacturing of; FOOD=Food, beverages and tobacco; MAS=Machinery and equipment n.e.c.;
OPT=Optical and medical equipment; TRAN=Transport equipment; CON=Construction; POST=Post and
telecommunications; REST=Real estate activities; RD=Research and development; CONS=Consultancy etc.;
PUB=Public administration; MEM=Activities of membership organizations n.e.c.

and medical instruments, Transport equipment, Real estate activities, Consulting,

and Public administration.

Turning to the impact of demand for ICT-capital, the pervasiveness of this GPT

becomes evident once more: The increasing demand for ICT-capital has raised

labor productivity growth not only in ICT-using, but also Non-ICT industries.

The food manufacturing sector, for example, benefits from the capital deepening

in the industries upstream (see Figure 7).

Even though the effects of technical change, the substitution effect and changes

in capital demand of ICT distinguish in magnitude, the three plots share some

similarities: The impact of the information and communication technology has
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Figure 6: The contribution of factor substitution for ICT manufacturing products
to sectoral labor productivity growth.
Mfr.=Manufacturing of; FOOD=Food, beverages and tobacco; MAS=Machinery and equipment n.e.c.;
OPT=Optical and medical equipment; TRAN=Transport equipment; CON=Construction; POST=Post and
telecommunications; RES=Real estate activities; RD=Research and Development; CONS=Consultancy etc.;
PUB=Public administration; MEM=Activities of membership organizations n.e.c.

been growing over time and has spread over most of the industries. As regards

the time-path, technical change in the ICT-producing industries manifests itself in

labor productivity growth not earlier than from the mid 1990s onwards. Most of

the important improvements in ICT, which aim at facilitating its wide-spread use,

were developed between 1975 and 1990. Thus, ICT, as expected from a GPT, took

longer to work through the economy. Figures 6 and 7, on the other hand, exhibit a

slightly different evolution of the impact of ICT: The substitution for intermediate

products and to a greater extent capital deepening unfold their effects on labor

productivity growth in two waves. The first wave started in 1980 and triggered a

modest rise in LPG in all industries. The second wave started at the beginning of
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Figure 7: The contribution of capital demand for ICT manufacturing products
to sectoral labor productivity growth.
Mfr.=Manufacturing of; FOOD=Food, beverages and tobacco; PLAST=Rubber and plastic products;
NMET=Other non-metallic mineral products; BASM=Basic metals; MAS=Machinery and equipment n.e.c.;
OPT=Optical and medical equipment; TRAN=Transport equipment; CON=Construction; WHO=Wholesale and
commisson trade, exc. of m. vehicles’; OTH RET=Other retail sale, repair work; POST=Post and telecommu-
nications; RES=Real estate activities; RD=Research and development; CONS=Consultancy etc.; PUB=Public
administration; MEM=Activities of membership organizations n.e.c.

the 1990s and had a more significant impact on the economy.

The analysis of the role of ICT for labor productivity change in the rest of the

economy also reveals industry clusters: The ICT sector had its strongest impact on

technology-intensive manufacturing industries, such as Machinery and equipment

or Transport equipment as well as on neighboring service sectors such as Post and

telecommunications, Real estate and Public Administration. This supports the

hypothesis that new technologies are first applied in similar industries, before they

spread over more divergent sectors.
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GPT diffusion and skill-induced wage dispersion

The era of ICT is also characterized by changes in the industrial organization and

the institutional landscape. In this respect, one social aspect of ICT, namely its

impact on skill-induced wage differentials, is discussed. As Figure 8 reveals, be-

tween 1980 and 1990 the GINI-coefficient as a measure of wage dispersion between

low and high skilled labor rose sharply in the ICT-producing sectors due to the

high demand of qualified workers, but decreased thereafter. Since 2000 the GINI-

coefficient has been increasing again. With regard to ICT-using sectors, the GINI

evolves along a similar path, though at a lower level and with an earlier peak in

1997. After 2000, the indicator decreased, but since 2003 it has shown an up-

ward tendency again. Not surprisingly, the wage dispersion in Non-ICT-industries

has declined significantly. Figure 9 links the evolution of wages of low and high

skilled labor to the diffusion of ICT. A more sophisticated analysis would require

econometric tools; however, as the empirical part of this paper focuses on the

inter-sectoral linkages, comparing the development of ICT use among the different

industries with the changes in wage dispersion of low and higher qualified work-

ers suffices. To derive the diffusion pattern of ICT, again the compound direct

requirements matrix (including imports and capital flows) is reverted to. As an

indicator for dating the arrival of a GPT in a specific sector, following Jovanovic

and Rousseau (2005b) the year when the new technology reaches a one per cent

share in the industrial sector’s stock equipment is taken. Given the compound re-

quirements matrix and assuming regular reinvestments in ICT-capital, a coefficient

above 0.01 for ICT manufacturing and ICT services indicates that the respective

sector has adopted this technology. The resulting diffusion path is plotted in Fig-

ure 9, where the left ordinate presents the share of sectors that already use ICT,

and the right ordinate gives the GINI coefficient as an indicator for the dispersion

of wages of low and high-skilled labor. Since the ICT manufacturing sector (ICM)

and computer-related service sector (ICS) follow a different time path, they are

plotted separately. Figure 9 shows that office machinery has been steadily em-

ployed in over one fourth of the sectors since the 1960s, but experienced a take-off

in the mid 1980s with the emergence of the new information and communication
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Figure 8: Dispersion of wages of low and high-skilled labor between 1980 and 2005

technology. Another leap is observable before the dot.com-crash in 2000. As re-

gards ICT-related services, particularly software, their diffusion follows the typical

sigmoid path with a first bump in 1985 and a turning point after 1995. In the

most recent years under study, both ICT manufacturing products and services

have spread across the same range of sectors (about two third of all industries).

Contrasting this diffusion pattern with the evolution of wage differentials, one can

see that the wage dispersion peaked when the rate of adoption of ICT was about

taking off in the mid 1990s. Interestingly, wage differentials between low and

high-skilled labor have also increased significantly after 2000; at a time when the

diffusion process had already slowed down and ICT begun to unfold its impact on

labor productivity growth.

5 An evolutionary model of technological diffu-

sion

The time path of productivity measured by the maximum real wage w̄ in equation

(3) and the respective growth rate glt in definition (4) provide a suitable framework
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Figure 9: The diffusion of ICT manufacturing products (ICM) and ICT service
products (ICS) across sectors (left ordinate) and the GINI-coefficient for low and
high-skilled labor (right ordinate).

to understand the empirical results of the previous section. A thorough discussion

of the underlying causes of the observed patterns is facilitated by a theoretical

reconstruction of the observed data. Helpman and Trajtenberg (1996) and Aghion

and Howitt (1998b) provide examples of how to explain on theoretical grounds

effects of the diffusion of innovative GPTs. Both modeling approaches include

R&D activities as crucial in explaining observed patterns of the diffusion process,

something which induces endogeneous technical change. It is possible to provide

a sound theoretical explanation of output slump and transitory wage inequality

by means of an evolutionary framework based on firm growth processes. To this

end, the multi-sector formalism introduced in Section 2.1 is embedded into repli-

cator dynamic equations. Time dependency of w̄ is therefore introduced since the

technical coefficients change in time.

5.1 General model setting

The basic assumption is that for each sector n a number In of processes exists to

produce the respective good. At time t a fraction qinn (t) of the output of sector n
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is produced by process in. If a
in
nm is the input of good m and linnk the input of skill

k labor to produce one unit of good n by means of process in, then

ānm =
In
∑

i=1

qinn ainnm and l̄nm =
In
∑

i=1

qinn linnm

are the respective input coefficients of the average technology defined by Ā(t) and

L̄(t). In this setting, (3) can be rewritten in a time-continuous manner as

w̄(t) =
1

dT [I− Ā(t)]−1L̄(t)u
. (9)

What remains to be answered is the time development of the market shares qinn

of the different technologies within their sector. Extra profits ρinn gained by some

specific technology induce firm growth as follows. Assuming prices p to equal unit

costs of production, they are implicitly given by

(1 + r + ρinn )pTain
n + w(t)uT linn = pn (10)

with vectors (ain
n , linn ) of input coefficients of technology in in sector n. Firm output

xin
n now grows according to extra profits. Consequently,

ẋin
n

xin
n

= ρinn

and due to xin
n = qinn xn and ẋn =

∑In
in=1 ẋ

in
n one gets ẋn/xn = ρ̄n. Here xn denotes

total output of sector n, and ρ̄n =
∑In

i=1 q
in
n ρinn is the average extra profit generated

in sector n. Acknowledging ẋin
n = q̇inn xn+ qinn ẋn, the evolution of the system in the

presence of technical change is described by the replicator dynamics

q̇inn
qinn

= ρinn − ρ̄n. (11)

A more detailed derivation and explanation of (11) is provided by Rainer (2012).
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5.2 General Purpose Technology innovations: a two-sector

example

The introduced evolutionary multi-sector framework can be applied to the case

of GPTs as follows. Technical progress due to a new GPT implies the existence

of some new kind of technical device produced by a new (basic) sector. For the

case of ICTs, let sector 1 be the one producing a commodity used for reproduction

and for consumption. Prior to the existence of the new GPT, the economy is

described by unit production input a111 and labor input l11. As an aggregate of all

consumption commodities, this sector also serves as the numéraire to express real

wages w. At time t = 0, a new GPT is invented, leading innovating firms in sector

1 to introduce some new process characterized by

(1 + r + ρ2)(a
2
11 + a12p) + wul12 = 1 (12)

with unit production input a211 of the good itself and unit production input a12

of the GPT. ρ2 denotes the extra profits gained by the new process supported

by the GPT. Extra profit (respectively losses) ρ1 of the old technology are then

determined by

(1 + r + ρ1)a
1
11 + wl11 = 1. (13)

The new process needs high skilled labor remunerated by the wage premium u > 1.

The GPT itself is produced in the new sector 2 according to

(1 + r)a2 + wul22 = p (14)

with capital input a2 from the incumbent sector 1 and high skilled labor input l22,

yielding a price p.

Equations (11-14) determine the dynamics of the system. For the special case

of (a111, l11) = (0.3, 0.3) and (a211, a12, l12) = (0.4, 0.1, 0.2) for the incumbent and

innovative process in sector n = 1 as well as (a2, l22) = (0.1, 0.1) the diffusion

process is depicted in Figures 10 and 11 qualitatively replicating the sigmoid-

shaped diffusion process indicated in Figure 8. The transitional wage inequality
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can also be observed, which is formally derived and graphically plotted in Figure

11 based on expression (5) with

qh =
q (l12 + a12l22)

(1− q) l11 + q (l12 + a12l22)
.

Also the slump after the innovation as a consequence of labor saving and cap-

ital augmenting technological progress gets apparent in Figure 10. This is an

illustration of Schumpeter’s creative destruction in a more severe manner than he

imagined: the decline of the incumbent process outperforms the rise of the innvoa-

tion. As a consequence, output on average declines due to the destructive effect

the innovation has on the incumbent technology.

0
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Figure 10: Negative growth in case of a GPT innovation

6 Conclusion

The economic dynamics which is triggered off by the arrival of a general purpose

technology is studied on both an empirical and theoretical level.

The empirical part makes use of the Danish input-output tables that were

produced at a yearly basis in order to analyze annual change in labor productivity

and its sources. The time period spans from the 1960s, where the ICT revolution
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Figure 11: The diffusion of an innovative process and the resulting wage inequality.

just started, up to 2007. By accounting not only for the labor demand of a single

industry, but also for the labor embodied in the upstream products, the derived

labor productivity indicator gives more comprehensive insights into the impact of

ICT on the economic system.

At the aggregate level, we have seen a falling trend of labor productivity par-

ticularly over the last decades. Assessing the impact on overall growth within

the whole period, the ICT-producing and ICT-using industries show an increasing

contribution. However, it took two decades for ICT to become a major source

of productivity growth, which indicates the long time span necessary for a GPT

to reach maturity and for the economic system to adapt to the new technology.

Comparing ICT to another general purpose technology, namely electricity, reveals

that this sector has continuously lost in importance over time. This reflects the

late stage in development of this GPT.

The main purpose of the empirical part was to show that ICT was not a

sectoral revolution but transformed processes throughout the whole economy: The

inter-sectoral analysis demonstrates that the new information and communication

technology has also affected those industries which do not produce with high ICT
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intensity. Furthermore, the distinction between an ICT-manufacturing and ICT-

service sector allows tracking the different diffusion path of the related products.

In this context, the final take-off of the ICT-manufacturing industry in the 1990ies

was accompanied by a sharp rise in ICT services; this underpins the hypothesis that

the diffusion of a GPT essentially depends on the development of complementary

inputs that facilitate the switch from the old to the new technique. As regards

the impact of ICT on the labor market, the diffusion of this technology can also

be associated with transitional wage dispersion in the ICT-using industries.

Based upon this empirical evidence, ICT has been playing a crucial role in

Denmark particularly in recent years, and given the current low growth rates of

labor productivity, this role needs to be considered in future policy design.

As the second feature proposed by this article, the just described empirical

results are reconstructed to some extent by an evolutionary multi-sectoral model.

The retarded diffusion process and the induced transitional wage inequality are the

two basic features which can be explained by the theoretical model. The former is

a result of relative growth of innovative and non-innovative firms, and the latter

is a consequence of skill premia, which are assumed to be paid for skills which are

used for innovative production processes.

A

A.1 Structural decomposition analysis

Given Equation (8), the relative change in the maximum wage rate can be decom-

posed into four partial factors: (1) technological change (as indicated by a change

in the direct input matrix A, ∆S ≡ St−St−1), (2) change ∆l ≡ lt−lt−1 of total em-

ployment, (3) substitution effect (indicated by a change in AT , ∆H ≡ Ht −Ht−1)

and (4) change ∆y ≡ yt − yt−1 of final demand. The result of each decompo-

sition is an N -dimensional vector that shows the contribution of the respective
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determinant to sectoral labor productivity growth:

SSt−1 ≡ −dT
[

∆S l̂t−1 [diag (Ht−1 yt−1)]
−1
]

wt e (15a)

llt−1 ≡ −dT
[

St ∆̂l [diag (Ht−1 yt−1)]
−1
]

wt e (15b)

LLt−1 ≡ dT
[

St l̂t x̂
−1
t [diag (∆H yt−1)] x̂

−1
t−1

]

wt e (15c)

Y Yt−1 ≡ dT
[

St l̂t x̂
−1
t [diag (Ht ∆y)]x̂−1

t−1

]

wte (15d)

Depending on data availability, the labor input is further decomposed into low-

skilled (l1) and higher-skilled (l2) labor (hours per unit of output).

ll1t−1 ≡ −dT
[

St ∆̂l1 [diag (Ht−1 yt−1)]
−1
]

wt e (16a)

ll2t−1 ≡ −dT
[

St ∆̂l2 [diag (Ht−1 yt−1)]
−1
]

wt e (16b)

Equations (16a-16b) replace (15c) for the time span of 1980 to 2005. Furthermore,

final demand is decomposed into ICT-related and Non-ICT investments:

Y Y ICT
t−1 ≡ dT

[

St l̂t x̂
−1
t [diag (Ht ∆yICT )]x̂−1

t−1

]

wte (17a)

Y Y NonICT
t−1 ≡ dT

[

St l̂t x̂
−1
t [diag (Ht ∆yNon−ICT )]x̂−1

t−1

]

wte (17b)

Equations (17a) and (17b) sum up to (15d).

Definitions (15a-15d) reveal an obvious index problem that affects precision

and interpretation of the outcome whenever the number of partial factors exceeds

two. So far all variables are weighted by t − 1 values. However, in the case of

four determinants we have 4! possible decompositions for each factor, resulting

from the permutation of the variables with respect to time. Dietzenbacher and

Los (1998) showed that the polar decomposition gets remarkably close to the

average of all possible decompositions; thus it suffices to calculate the second

polar decomposition, by starting with the values in period t instead of period t−1
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and taking the average of the two:

SSt ≡ −dT
[

∆S l̂t [diag(Htyt)]
−1
]

wt e (18a)

llt ≡ −dT
[

St−1 ∆̂l [diag (Ht yt)]
−1
]

wt e (18b)

LLt ≡ dT
[

St−1 l̂t−1 x̂−1
t−1 [diag (∆H yt)

]

x̂−1
t ] wt e (18c)

Y Yt ≡ dT
[

St−1 l̂t−1 x̂−1
t−1[diag (Ht−1 ∆y)

]

x̂−1
t ] wt e (18d)

Hence, the initial decomposition of the labor productivity growth indicator10 reads

as follows:

glt =
1

2
dT

[

{(LLt−1 + LLt}+ {Y Yt−1 + Y Yt}+

{SSt−1 + SSt}+ {llt−1 + llt}
]

wt e

(19)

Inner- and intersectoral linkages

To show the impact of ICT on productivity changes across industries the direct

input matrices A and AT are decomposed into their submatrices. Following Miller

and Blair (2009, pp.603-605), changes in S and H are related to changes in the

underlying direct input matrices:

Proposition 1. Changes ∆A of the input matrix A translate into changes ∆H of

the Leontief Inverse and changes ∆S of the Sraffa Inverse according to

∆S = St−1 ∆A St and (20a)

∆H = Ht−1 ∆ATHt. (20b)

Proof. (20b) is the transpose of (20a). Thus one only has to show that

(I− At)
−1 − (I− At−1)

−1 = (I− At−1)
−1(At − At−1)(I− At)

−1.

10For equations (15c) and (15d) as well as for equations (18c) and (18d), note that
x̂
−1

t−1
∆x̂x̂

−1

t
= x̂

−1

t
∆x̂x̂

−1

t−1
= −∆(x̂−1) ≡ x̂

−1

t−1
− x̂

−1

t
.
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But this can be shown to be true by post-multiplication with (I − At) and pre-

multiplication with (I− At−1).

Analyzing the impact of a specific sector on all other sectors necessitates to

take a closer look onto the economic structure. To assess how sectors are linked

together, the direct input matrix A is split up in such a way that each row composes

an own submatrix. By doing so, the isolated effect of one sector on the production

technique can be traced back. Decomposing A into individual sectors means to

create submatrices such that ∆A =
∑N

i=1 ∆A(i) with

∆A(i) ≡



















0 . . . 0 . . . 0
...

...
...

∆ai1 . . . ∆aij . . . ∆ain
...

...
...

0 . . . 0 . . . 0



















.

By recalling Proposition 1 and introducing ∆A(i) into equations (15a) and

(18a), the effect of changes in the production process of a specific sector due to,

for instance, technical change on labor productivity growth in all other sectors can

be analyzed:

SSt ≡ −dT
[

St ∆A St−1 l̂t diag(Htyt)
−1
]

wt e

Applying the same procedure to equations (15c) and (18c) allows tracking the

effect of changes in demand for a specific factor, i.e. the effect of substituting one

input for another:

LLt = dT
[

St−1 l̂t−1 x̂−1
t−1 [diag (Ht ∆AT Ht−1 yt)] x̂

−1
t

]

wt e

Finally, the role of fixed capital provided by the ICT-sector is scrutinized.

There is a bunch of studies discussing the importance of the ICT-capital producing

industries for ICT-capital-using sectors (see e.g. Jorgenson et al., 2007). It is

obvious that a big part of the output of the ICT industry represents assets that

remain longer than a year in the production process. These assets are therefore
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not captured within the direct input matrix, but are declared in the investment

demand of an input-output table, so that for a comprehensive analysis changes in

ICT-capital have to be taken into account in one way or the other. One possible

approach is to re-weight the direct input-matrix by the share of fixed capital used in

the production process. This implies the need for the so-called centre-coefficients

for each sector, where the production recipe also represents capital assets and

thus needs to be related to rates of profit. Another more simplistic approach

that implies the incorporation of investment flows into the previous analysis is

taken in this article to facilitate the empirical analysis: The final demand vector

y is disentangled into different categories; furthermore the column of investment

demand is replaced by the respective investment matrix Yinv, which shows (similar

to the industrial transaction matrix) the inner- and inter-sectoral deliveries of

capital assets:

Y Yt−1 = dT [St l̂t x̂
−1
t [diag (Ht ∆(Yinve+ yrest))] x̂

−1
t−1] wte

A.2 Industry classification

Table 2: Aggregation of Danish industries. Note: The numbers in the sec-

ond column indicate the assignment of the respective sector to the Danish

130-industry-classification, the third column to ICT-producing, ICT-using and

Non-ICT industries.

Code Industry Aggregation ICT-classification

1 Agriculture 1 Non-ICT

2 Horticulture, orchards etc. 2 Non-ICT

3 Agricultural services; landscape gardeners etc. 3 Non-ICT

4 Forestry 4 Non-ICT

5 Fishing 5 Non-ICT

6 Extr. of crude petroleum, natural gas etc. 6 Non-ICT

7 Extr. of gravel, clay, stone and salt etc. 7 Non-ICT

8 Mfr. of food, beverages and tobacco 8-18 Non-ICT

9 Mfr. of textiles, wearing apparel, leather 19-21 Non-ICT

10 Mfr. of wood and wood products 22 Non-ICT

11 Mfr. of paper prod.; printing and publish. 23-26 Non-ICT

12 Mfr. of refined petroleum products etc. 27 Non-ICT

13 Mfr. of chemicals and man-made fibres etc. 28-35 Non-ICT

Continued on next page
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Table 2 – continued from previous page

Code Industry Aggregation ICT-classification

14 Mfr. of rubber and plastic products 36-38 Non-ICT

15 Mfr. of other non-metallic mineral products 39-41 Non-ICT

16 Mfr. and processing of basic metals 42-47 Non-ICT

17 Mfr. of machinery and equipment n.e.c. 48-52 ICT-using

18 Mfr. of ICT equipment 53-55 ICT-producing

19 Mfr. of optical and medical equipment 56 ICT-using

20 Mfr. of transport equipment 57-59 ICT-using

21 Mfr. of furniture; manufacturing n.e.c. 60-62 Non-ICT

22 Electricity supply 63 Non-ICT

23 Gas and water supply 64-66 Non-ICT

24 Construction 67-70 Non-ICT

25 Sale and repair of motor vehicles etc. 71-73 ICT-using

26 Ws. and commis. trade, exc. of m. vehicles 74 ICT-using

27 Retail trade of food etc. 75 ICT-using

28 Department stores 76 ICT-using

29 Re. sale of phar. goods, cosmetic art. etc. 77 ICT-using

30 Re. sale of clothing, footwear etc. 78 ICT-using

31 Other retail sale, repair work 79 ICT-using

32 Hotels and restaurants 80-81 Non-ICT

33 Land transport; transport via pipelines 82-85 Non-ICT

34 Water transport 86 Non-ICT

35 Air transport 87 Non-ICT

36 Support. trans. activities; travel agencies 88-89 Non-ICT

37 Post and telecommunications 90 ICT-using

38 Financial intermediation 91-92 ICT-using

39 Insurance and pension funding 93-94 ICT-using

40 Activities auxiliary to finan. intermediat. 95 ICT-using

41 Real estate activities 96-98 ICT-using

42 Renting of machinery and equipment etc. 99 ICT-using

43 Computer and related activities 100-101 ICT-producing

44 Research and development 102-103 ICT-using

45 Consultancy etc. and cleaning activities 104-109 ICT-using

46 Public administration etc. 110-113 Non-ICT

47 Education 114-118 Non-ICT

48 Health care services 119-120 Non-ICT

49 Social institutions 121-122 Non-ICT

50 Sewage and refuse disp. and similar act. 123-125 Non-ICT

51 Activities of membership organiza. n.e.c. 126 ICT-using

52 Recreational, cultural, sporting activities 127-128 Non-ICT

53 Other service activities 129-130 ICT-using
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