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Abstract

We offer a policy basis for interpreting, justifying, and designing (3, 3)-political rules, a large class

of collective rules analogous to those governing the selection of papers in peer-reviewed journals, where

each referee chooses to accept, reject, or invite a resubmission of a paper, and an editor aggregates his

own and referees’ opinions into one of these three recommendations. We prove that any such rule is a

weighted multicameral rule: a policy is collectively approved at a given level if and only if it is approved

by a minimal number of chambers- the dimension of the rule-, where each chamber evaluates a different

aspect of the policy using a weighted rule, with each evaluator’s weight or authority possibly varying

across chambers depending on his area(s) of expertise. Conversely, it is always possible to design a

rule under which a policy is collectively approved at a given level if and only if it meets a certain

number of predefined criteria, so that one can set the standards for policies first, and then design the

rules that justify the passage of policies meeting those standards. These results imply that a given

rule is only suitable for evaluating finite-dimensional policies whose dimension corresponds to that of

the rule, and they provide a rationale for using different rules to pass different policies even within

the same organization. We further introduce the concept of compatibility with a rule, and use it to

propose a method to construct integer weights corresponding to evaluators’ possible judgments under

a given rule, which are more intuitive and easier to interpret for policymakers. Our findings shed light

on multicameralism in political institutions and multi-criteria group decision-making in the firm. We

provide applications to peer review politics, rating systems, and real-world organizations.
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1 Introduction

Collective organizational rules are central to the governance of countries, collectivities, clubs, and corpo-

rations. They define the procedure by which collective decisions are made, and contain mechanisms for

how the preferences of different individuals are aggregated to yield a collective outcome. The simplest

collective rules are weighted rules, where each individual has a certain number of votes (or seats), and a

policy proposal is adopted if and only if the total number of votes it receives surpasses a certain threshold

or quota. In the real world, however, many organizations use more complicated rules to make decisions.

An important class of such rules is the class of (3, 3)-political rules, which are rules analogous to those

governing the selection of papers in peer-reviewed journals, where each referee chooses to accept, reject,

or invite a resubmission of a paper, and an editor aggregates his own and referees’ opinions into one

of these three recommendations. In this paper, we show that any such rule, no matter its complexity,

can be written as a collection of perfectly complementary weighted rules, which has important policy

implications for the interpretation, design and suitability of collective decision-making mechanisms.

The class of (3, 3)-political rules generalizes well-known classes of rules, including (2, 2)-political rules

under which each voter either supports or opposes a policy proposal, the collective outcome being either

the adoption of the proposal or its failure. These latter rules, which were introduced by von Neumann

and Morgenstern (1944), have served as the cornerstone of the analysis of group decision-making in a

broad range of important studies in game theory (e.g., Shapley (1953), Arrow (1963), Peleg (1978, 1984),

Taylor and Zwicker (1999), Ray (2007), Laruelle and Valenciano (2008)), political economy (e.g., Barberà

and Jackson (2006), Brams (1975), Acemoglu et al. (2011)), and corporate governance (e.g., Leech (1988,

2003)). But despite their influence, scholars have argued that (2, 2)-political rules are restrictive, as more

than two levels of individual and collective approval are generally observed in real-life decisions (Fishburn

(1973), Felsenthal and Machover (1997, 1998), Freixas and Zwicker (2003, 2009), Pongou et al. (2011),

Tchantcho et al. (2008), Rubinstein (1980), Hsiao and Raghavan (1993)). For instance, in most real-

world elections, individuals might vote for or against any of the candidates, or might abstain, a situation

forcelluly brought to scholarly awareness by Felsenthal and Machover (1997, 1998). This compelling

argument partly motivates our focus on more realistic collective decision-making mechanisms such as

(3, 3)-political rules.

In this paper, we offer a policy basis for interpreting and designing collective rules. We state our main

findings and discuss their policy implications.

1. First, we show that any (3, 3)-political rule can be decomposed into a hierarchical system of two

weighted multicameral legislatures: the first legislature determines whether a proposal should be

collectively approved at the highest level, such as accepting a paper, whereas the second legislature

determines whether it should be collectively approved at the intermediate level, such as inviting

a resubmission of a paper after revision. A proposal that fails in each of the two legislatures is

simply collectively rejected. Each legislature consists of several specialized houses or chambers, and

a policy proposal is adopted if and only if it is approved by each house, with each house using a

weighted rule in that each decision-maker is assigned a (vector) weight that measures his political

influence in that house, and a proposal passes the vote in that house if and only if the sum of points

representing voters’ opinions exceeds a predetermined quota. If we denote by d1 the minimum
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number of houses of the first legislature, and by d2 the minimum number of houses of the second

legislature, we say that the corresponding political rule is of 2-dimension (d1, d2).

A practical implication of such a weighted multicameral representation of a (3, 3)-political rule

is that such a rule can be interpreted as a multi-criteria decision-making rule that explicitly asks

decision-makers to evaluate different aspects of a proposal to be voted on. Each house evaluates one

aspect, with each decision-maker’s influence or authority possibly varying across houses depending

on his area(s) of expertise. Importantly, since different rules generally have different dimensions,

it follows that each rule is best suited for evaluating finite-dimensional policies whose dimension

(number of aspects to be evaluated) corresponds to that of the rule, and that not all policies can

be evaluated using the same rule. For instance, a one-dimensional policy such as tax rate should

be evaluated using a different rule than policies of two or more dimensions.

2. Second, we show that any (3, 3)-political rule can be written as the minimum of a finite number

of (3, 3) "quasi-weighted" political rules (in a sense to be defined). This allows us to introduce the

concept of quasi-dimension of a political rule, which generalizes the traditional concept of political

dimension introduced by Taylor and Zwicker (1993).

3. Third, for any given pair of naturals (d1, d2), one can always design a (3, 3)-political rule of 2-

dimension (d1, d2). This finding has important implications for the design of constitutions that

value the inputs of different experts for the passage of a finite-dimensional policy. For instance, if

one wants to construct a rule under which a proposal is collectively approved at a given level if

and only if it satisfies a finite set of criteria, this is always possible. In fact, the number of criteria

determines d1 and d2. One can therefore set the standards for policies first, and then design the rules

that would justify the passage of policies meeting those standards or criteria. For instance, one can

always design a rule to select the winner of the election of Miss Universe where each contestant is

judged regarding predetermined criteria such as beauty, self-confidence and ability to communicate.

This finding theoretically provides a rationale for using different rules to pass different policies even

within the same organization.

4. Fourth, based on a newly defined concept of compatibility with a rule, we show that there exist

infinitely many weighted multicameral rules that are compatible with a (3, 3)-political rule, and

prove that these rules constitute a topologically open set. Further applying topological concepts,

we propose a method to construct integer weights to record the possible judgments of an expert,

which are more intuitive and much easier to interpret for policymakers who vote on a regular basis.

To illustrate our main findings, let us consider this "thought" process of selecting a paper for publi-

cation in a journal. Suppose that a paper has two parts, one theoretical and the other empirical. The

editor (E) invites four scholars, two theorists (T1 and T2) and two empiricists (E1 and E2), to evaluate

each aspect of the paper. We imagine a collective decision-making rule defined as follows:

• The paper is accepted if the following two situations both occur:

— At least one of the referees with expertise in theory finds that the paper makes a theoretical

contribution, and similarly, at least one of the empirical referees judges the paper to make an
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empirical contribution.

— None of the four referees rejects the paper.

• The paper is rejected if it is judged by the two theoretical referees to make no theoretical contribution

or it is judged by the two empirical referees to make no empirical contribution.

• The paper is invited to be resubmitted after revision in all other cases.

If we let C1 = {T1, T2} and C2 = {E1, E2}, we can summarize this (3, 3)-political rule by the following

characteristic function V:

V(X1, X2, X3) =






2 (paper is accepted) if |X1 ∩ Ci| = 2 or

|X1 ∩ Ci| and |X2 ∩ Ci| = 1 for any i = 1, 2

0 (paper is rejected) if |X3 ∩ C1| or |X3 ∩ C2| = 2

1 (resubmission is invited) otherwise

where (X1, X2, X3) is a vote profile in which X1, X2 and X3 are respectively the sets of evaluators

accepting the paper, inviting a resubmission, and rejecting the paper, and |X1|, for instance, is the

cardinality of X1.

We note that in the example above, the editor could be one of the referees (e.g., E = T1 or E = E1),

and if he has expertise in both aspects of the paper, he could play the role of two referees, which would

allow him to express possibly different views on the theoretical and empirical contributions of the paper.2

As we can see, the formalization of this rule by its characteristic function V is economical, but a bit

complex. However, we show that it can simply be represented as a pair of weighted two-house legislatures

as in the following table:

Legislature 1 Legislature 2

Theory Empirics Theory Empirics

Referee T1 (2, 1, 0) (0, 0, 0) (2, 1, 0) (0, 0, 0)

Referee T2 (2, 1, 0) (0, 0, 0) (2, 1, 0) (0, 0, 0)

Referee E1 (0, 0, 0) (2, 1, 0) (0, 0, 0) (2, 1, 0)

Referee E2 (0, 0, 0) (2, 1, 0) (0, 0, 0) (2, 1, 0)

Quota 3 3 1 1

The first legislature (Legislature 1) determines whether the paper will be accepted. In this legislature,

the theoretical contribution of the paper is evaluated in the first house (called Theory), and its empirical

contribution in the second house (called Empirics). In each house, each voter has a three-component vector

weight corresponding to the three possible judgments of the paper (accept, resubmit paper, reject). In

the first house, each theoretical referee is assigned a vector weight of (2,1,0), which means that the paper

receives 2 points if accepted by a theoretical referee, 1 point if invited to be revised and resubmitted, and

0 points otherwise. Each empirical referee is assigned a weight vector of (0,0,0), which means that their

opinion on the theoretical aspect of the paper does not count. The paper passes the theoretical test if

2Note that under a different rule, the editor might have the right to overrule the recommandation of the referees. This
situation correspond to the dictatorial political rule. In general, it is always possible to model a rule under which some
referees have more power than others.
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the sum of points received by the paper after each decision-maker evaluates its theoretical contribution

is at least equal to 3. In the second house, each theoretical referee is assigned a weight vector of (0,0,0),

and each empirical referee a weight vector of (2,1,0), and the paper passes the empirical test if it receives

at least 3 points. So only the empirical referees wield power in the second house. The second legislature

(Legislature 2) determines whether the paper will be invited to be revised and resubmitted. In this

legislature, each evaluator has the same weight as in the first legislature; however, the paper can be

resubmitted if and only if it receives at least 1 point in each of the two houses. The 2-dimension of this

peer review rule is (2, 2).

Like the characteristic function V, most collective rules or constitutions are unfortunately simply

defined as a distribution of voting power among the different subgroups of voters. In general, there is no

rationale for the nature of policies that can be evaluated under these rules, which are also silent on the

precise role of each voter in making decisions. A decomposition such as the one performed for V, however,

addresses those shortcomings, as it shows that V is best suited for the evaluation of two-dimensional policy

proposals, where each dimension is evaluated using a weighted rule. It also clearly describes the weight

given to the opinion of each voter along each dimension. Such an approach further suggests a transparent

and policy-driven method to design rules. Indeed, instead of defining a rule by its characteristic function

as it is usually done, one can simply fix the number of criteria to be met by a policy to be collectively

adopted under such a rule, and define a weighted rule for each criterion, which is a simple exercise. Such

a method would clearly value the opinion of experts, as the weight given to the judgment of a voter can

be made to vary across the different dimensions.

Given that the class of (3, 3)-political rules generalizes well-known classes of rules, including (2, 2)-

political rules, (3, 2)-political rules, and (2,3)-political rules, our findings extend to these latter classes of

collective mechanisms as well. Within our framework, (2, 2)-political rules and (3, 2)-political rules have

2-dimension (or simply dimension) (m, 0), where m is a natural number at least equal to 1. A well-known

example of such a rule is the procedure to revise the Canadian Constitution (Kilgour (1983), Taylor and

Zwicker (1999)). Under this procedure, a proposal to amend the Canadian Constitution becomes law

only if it is approved by at least seven of the ten Canadian provinces, subject to the proviso that the

approving provinces constitute at least half of Canada’s population. Thus, this voting rule, which can

be shown to be of dimension (2,0), assigns two weights to each province, with the first representing the

vote cast on the proposal by the province, and the second representing its population share. The case

where m = 1 represents the well-known class of weighted voting rules. These rules are the most appealing

way of modelling voting power inequality in an assembly where each member retains a certain number of

votes. Our analysis implies that such rules are most appropriate for evaluating one-dimensional policies.

In addition to generalizing well-known classes of political rules, our finding that (3, 3)-political rules

can be viewed as systems of weighted multicameral legislatures provides a rationale for multicameral-

ism in political institutions (Rowley and Schneider (2004), Buchanan and Tullock (1962), Bräuninger

(2003)), and multi-criteria decision-making in market organizations. Multicameralism better captures

the complexity of the notion of representation by its ability to aggregate diverse interests. The greater

the number of houses, the greater the probability of the legislature to provide multiple perspectives on

an issue, as our findings imply. Under multicameralism, representatives sharing a common interest are

usually grouped in the same committee. Some interesting examples are: the Westminster system in
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Britain with two houses (the house of Lords and the house of the commons), the South Africa’s apartheid

government in 1983 with three race-based houses (White, Colored, Asians), the Medieval Scandinavian

deliberative assemblies with four houses (the nobility, the clergy, the burghers, and the peasants), and

the Council of the International Seabed Authority (ISA) with four houses, each representing the interest

of a specific group of agents (consumers, investors, producers of minerals, developing countries and some

other countries).3 Similarly, a firm’s decision is sometimes determined by the different opinions expressed

by its different departments as discussed in Baucells and Sarin (2003). In this case, a department (e.g.,

the marketing or the R&D department) plays the role of a specialized house.

Our paper also generalizes classical results on multicameral representation of (2, 2)-political rules

(Taylor and Zwicker (1992, 1993, 1999)). Taylor and Zwicker were the first to show that these latter rules

have a weighted multicameral representation. They also introduced the algebraic notion of dimension,

and argued that it is a "measure of the complexity" of a voting mechanism. They further showed that

there exists a (2, 2)-political rule of any given dimension. The concept of dimension has served as the

cornerstone of many subsequent studies extending Taylor and Zwicker’s results (see, e.g., Freixas and

Puente (2008), Deineko and Woeginger (2006)). Laruelle and Valenciano (2011) extend the concept of

dimension to voting rules allowing four inputs not necessarily ranked, and two possible collective outputs.

It follows from these studies that the focus has mainly been on rules that yield only two possible

collective outcomes such as passing or failing a bill. However, many real-world group decisions are not

binary. Our thought example of the process of selecting papers in a journal is a point in case. But

there are other examples. A winner of a beauty contest may be the queen, the first runner-up, or the

second runner-up. Hierarchy in the victory is also encountered in many sport competitions where the

winners can receive the gold, silver, or bronze medal based upon judges’ allotment of scores. Similarly,

in a legislative assembly, a bill may pass or fail, or the decision on its passage may be adjourned, which

might be a desired outcome for certain legislators who still have to make their mind. Freixas and Zwicker

(2003) have proposed a model of games with multiple inputs and outputs that capture such situations.

In addition to generalizing the literature by focusing on rules with more than two inputs and outputs,

our analysis yields new theoretical findings that have important policy implications for the interpretation

and design of political rules. Following basic definitions in Section 2, we show that a (3, 3)-political rule

is a hierarchical system of two legislatures in Section 3. Building on this result, in Section 4, we introduce

two new theories of dimension, namely the concepts of 2-dimension and quasi-dimension, which fully

capture the complexity of (3, 3)-political rules. These theories imply that most constitutions are implicit

multi-criteria decision-making rules under which each voter can be seen as an expert who has the ability

to judge of the pertinence of a proposal only in his area(s) of expertise. We also show that one can always

design a decision-making rule that values the views of specialized experts, and that is only suited for

the evaluation of policies of a given dimension. In section 5, we introduce the concept of compatibility

with a rule, and show that every (3, 3)-political rule has a weighted multicameral representation with

integer weights and quotas. Our proofs are new. Section 6 provides some applications to real-world

organizations, and Section 7 concludes.

3Note, however, that the fact that like-minded representatives are often grouped in the same chamber under multicam-
eralism might lead to strategic voting, as shown by Dewan and Spriling (2011) with respect to the Westminster system.
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2 Preliminary Definitions

N = {1, 2, ..., n} is a non-empty set of evaluators, players, or voters. Subsets of N are coalitions. For any

finite set S, we denote by |S| the number of elements of S.

Voters are invited to vote on a proposal a. Each voter may vote for or against a, or may express an

intermediate level of approval such as abstaining.4 We denote by X1 the set of voters who vote for, X2

the set of voters who express the intermediate of approval, and X3 the set of voters who vote against.

We call X = (X1, X2, X3) a tripartition of N or a vote profile, and we denote by N3 the set of all vote

profiles of N .

2.1 (3, 3)-Political Rules

A (3, 3)-political rule is a pair (N,V) where V is a function that maps each vote profile of N into one of

three possible collective outcomes in the set {0, 1, 2}. 2 means that the proposal voted on is collectively

accepted, 1 means that it is adjourned, and 0 means that it is rejected. When no confusion is possible,

V will be used for (N,V).

(3, 3)-political rules might have different applications and interpretations depending on the context.

In a legislature, a legislator might support or oppose a policy proposal or abstain, and the latter might

pass, fail, or be adjourned. In the academic peer review context where each evaluator recommends either

acceptance, rejection, or resubmission of a paper (the intermediate level of approval), the final collective

outcome is usually one of these three recommendations. In the context of the comprehensive examination

of Ph.D. candidates in the United States, a student can pass the exam both at the Master and Ph.D.

levels, fail the exam both at the Master and Ph.D. levels, or pass the exam only at the Master level.

Two special classes of (3, 3)-political rules are the classes of (3, 2)-political rules and (2, 2)-political

rules. Under a (3, 2)-political rule, voters have three options, but there are only two possible collective

outcomes, such as adopting or failing a proposal. Under a (2, 2)-political rule, voters have only two

options, such as supporting or opposing a measure, and the collective outcome is either the adoption or

the failure of the measure.

This paper uses the standard definition of a (3, 2)-political rule as a rule that maps each vote profile

of N into one of two possible collective outcomes in the set {0, 1}. In this case, 0 means the proposal has

failed, and 1 means the proposal is accepted.

2.2 Monotonicity

One of the most intuitive properties of political rules is the monotonicity property. A (3, 3)-political rule

is monotonic if any increase in an individual’s level of support for a proposal, ceteris paribus, cannot

decrease the collectivity’s suffrage for that proposal. To be more specific, let us consider two vote profiles

X and Y on a proposal a. We say that X is a sub-tripartition of Y or Y is a super-tripartition of X (

and we write X ⊆3 Y ) to convey that each voter’s level of support for a is weakly greater in Y than X.

Formaly, X is a sub-tripartition of Y if either X = Y or X can be transformed into Y by moving one

or more voters to a higher level of approval, everything else being equal. On the other hand, if X is a

sub-tripartition of Y , distinct to Y , we write X ⊂3 Y .

4The intermediate level of approval has several interpretations depending on the context, as we will see in Section 2.1.
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We define Xj ↑ as the set of the voters who choose a level of approval higher than j , which means

X1 ↑= X1, X2 ↑= X1 ∪X2, and X3 ↑= X1 ∪X2 ∪X3 .

We say that a (3, 3)-political rule V is monotonic if for any vote profiles X, Y such that X is a

sub-partition of Y , V(X)≤V(Y ). This means that if X can make a proposal approved at a given level,

so does Y . This is because voters have weakly higher level of support for the proposal in Y than in X.

2.3 Minimal Winning and Maximal Losing Vote Profiles

As stated earlier, a (3, 2)-political rule G = (N,V) is a voting rule with only two possible outcomes

(such as accepting or rejecting a proposal). Vote profiles that lead to the approval of the proposal are

called winning vote profiles or winning tripartitions ( V(X) = 1), and those that lead to the rejection

of the proposal are losing vote profiles or losing tripartitions (V(X) = 0). A vote profile X is said to

be minimal winning if every sub-tripartition of X is losing, and X is said to be maximal losing if every

super-tripartition of X is winning.

2.4 Monotonic Weighted Multicameral (3, 3)-Political Rules

In the following, we provide a definition of a weighted multicameral (3, 3)-political rule. Intuitively, a

multicameral voting rule is a rule under which the vote takes place simultaneously in a set of houses or

chambers, here denoted by C. As more restrictive conditions should be fulfilled to shift a proposal to a

higher level of approval, we split C into two disjoint sets of houses C1 and C2, where each set of houses

constitutes a legislature. C2 represents the set of all the houses that must approve the proposal for it to

earn the second level of collective approval. However, to earn the highest level of approval, the proposal

should be approved in the additional number of houses that constitute C1. Let d be the total number of

houses (d = |C|). We use the letters i to index the d houses, and j to index the levels of approval of a voter

( 1 ≤ i ≤ d and 1 ≤ j ≤ 3). Each house i is characterized by a quota qi; each legislator p in house i has

a three-component vector weight wi(p) = (wi1(p), wi2(p), wi3(p)), meaning that the number of additional

points credited to a proposal in that house is wi1(p) when p votes for it, wi2(p) when p abstains, and

wi3(p) when p votes against it
5; a proposal is approved in house i if the sum of points credited to it after

everybody has voted is at least equal to the quota qi. Our formal definition is below.

Definition 1 Let G = (N,V) be (3, 3)-political rule. A weighted multicameral representation of G is a

list (C1, C2, w, q) that satisfies the three following conditions:

(1) A vote profile X leads to the highest level of collective approval of a proposal if and only if the

proposal is approved in all the voting chambers (V(X) = 2 if and only if wi(X) ≥ qi for every house i in

C1 ∪ C2, where wi(X) =
∑
{
∑
{wij(p)|p ∈ Xj} |1 ≤ j ≤ 3} is the sum of points credited to the proposal

in house i after each voter has chosen a level of support, resulting in X).

(2) A vote profile X leads to the intermediate level of collective approval of a proposal if and only

if the proposal is approved in all the chambers of C2, but is rejected in at least one of the chambers of

C1 (V(X) = 1 if and only if there is a house i in C1 such that wi(X) < qi and for every house i in C2,

wi(X) ≥ qi).

5For instance, in the example in the introduction, the vector weights for theoretical referees and empirical referees in
the Theory house are respectively: wTheory(T1) = wTheory(T2) = (2, 1, 0), and wTheory(E1) = wTheory(E2) = (2, 1, 0). In
Legislature 1, the quota in the Theory house is qTheory = 3.
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(3) A vote profile X leads to the collective rejection of a proposal if and only if the proposal is rejected

in at least one of the chambers of C2 (V(X) = 0 if and only if there is a house i in C2 such that wi(X) < qi).

The table describing the peer review system in the introduction is a simple illustrative example of the

definition of a weighted multicameral (3, 3)-political rule. In that example, while the sets of houses in

the two legislatures are the same (C1 = C2 = {Theory,Empirics}), this is not always the case in general.

Similarly, while the vector weight of a voter does not vary across the two legislatures in that example, a

voter’s vector weight does vary across legislatures in general.

A political rule is said to be a weighted multicameral political rule if it has a weighted multicameral

representation. Note that C1 = ∅ corresponds to the particular case of weighted multicameral (3, 2)-

political rules. If additionnally, C2 has only one house, the corresponding (3, 2)-political rule is said

to be weighted. We will say that a (3, 3)-political rule G is weighted when the decision criteria are

unidimensional, which means both C1 and C2 are singletons.

Under a weighted multicameral political rule, a voter’s weight associated with a given level of approval

might vary across houses, which implies that a voter may be more influential in certain houses than others,

as illustrated in the example in the introduction. In each legislature, each theoretical referee has a greater

weight in the Theory house than in the Empirics house. Similarly, each empirical referee has a greater

weight in the Empirics house than in the Theory house. A house in which a voter has a high level of

influence may be viewed as the house dealing with matters on which that voter is an expert. We therefore

think of houses as being specialized, and of voters as experts who have decentralized authority and vote

only on specific aspects of a proposal under consideration.

3 A (3, 3)-Political Rule as a Hierarchical System of Legislatures

In this section, we show that a (3, 3)-political rule can be viewed as a hierarchical system of legislatures,

with each using a (3, 2)-political rule. More precisely, we show that voting under a (3, 3)-political rule G

is equivalent to voting simultaneously under two (3, 2)-political rules G1 and G2. The rule G1 determines

whether the proposal should be granted the highest level of approval while the rule G2 decides whether

or not the proposal should be granted the intermediate level of approval. The formal result is as follows:

Remark 1 Let G = (N,V) be a (3, 3)-political rule. Recall that a (3, 2)-political rule is entirely charac-

terized by the set of all its winning vote profiles. Define the (3, 2)-political rules V1 and V2 as follows: for

every vote profile X, (V1(X) = 1 if and only if V(X) = 2 ) and (V2(X) = 1 if and only if V(X) ∈ {2, 1}).

This means V1 considers as winning vote profiles only those that lead to the highest level of collective

approval of a proposal, whereas the winning vote profiles of V2 are those that lead to the approval level at

least equal to the intermediate level.

The decomposition of V as given in Remark 1 yields a unique pair of (3, 2)-political rules (V1,V2) 6.

We write V = V1 ?V2 and we say that V1 ?V2 is a (3, 2)-decomposition of V or V is a (3, 3)-composition of

V1 and V2. V1 is of a higher standard than V2 in the sense that it is more difficult for a policy proposal to

6Mathematically, V1 and V2 satisfy V = V1 + V2.
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pass under V1 than under V2 holding voters’ opinions fixed7. We say that the pair (V1,V2) is ordered8.

The following theorem summarizes the point just made:

Theorem 1 Every (3, 3)-political rule has a unique (3, 2)-decomposition.

Remark 1 proves Theorem 1 by establishing a one-to-one mapping between the set of (3, 3)-political

rules V and the set of ordered pairs (V1,V2) of (3, 2)-political rules.

One of the implications of Theorem 1 is that some of the properties of (3, 2)-political rules can be

extend to the class of (3, 3)-political rules using the (3, 2)-decomposition of (3, 3)-political rules.

The following result provides a necessary and sufficient condition for a (3, 3)-political rule to be

weighted.

Proposition 1 Let G = (N,V) be a (3, 3)-politcal rule and V1 ? V2 the (3, 2)-decomposition of V. V is

weighted if and only if V1 and V2 are weighted (3, 2)-political rules.

The proof of this result is constructed as follows: given a weighted (3, 3)-political rule V, from the

weights of V, we construct the weights of the two weighted (3, 2)-political rules that compose V. Con-

versely, if the weights of V1 and V2 are known, we show how to retrieve a system of weights for the rule

V1 ? V2. See Appendix A for a formal proof.

Consider a pair of weighted (3, 2)-political rules (V1, V2). If (V1, V2) is ordered, then the weighted

(3, 3)-political rule V1 + V2 = V1 ? V2 is said to be a weighted (3, 3)-political rule. However, when (V1,

V2) is not ordered, the (3, 3)-political rule G1+G2 is not necessarily weighted. In this case, we said that

V1 + V2 is a quasi-weighted (3, 3)-political rule.

We can notice that a weighted (3, 3)-political rule is quasi-weighted although the converse is not

necessarily true. Moreover, the notion of quasi-weighted rule coincides on the class of (3, 2)-political rules

with the concept of weighted rule. Any weighted (3, 2)-political rule can be viewed as a (3, 2)-composition

of two weighted political rules V1 and V2 where V = V1 and V2 is the trivial political rule which considers

any vote profile as winning.

4 New Theories of Dimension

Previous studies have characterized voting rules using the traditional concept of dimension introduced

by Taylor and Zwicker (1993). They show that any monotonic (2, 2)-political rule has a weighted multi-

cameral representation with a minimal number of houses called dimension. Intuitively, the dimension of

a monotonic (2, 2)-political rule can be interpreted as the minimum number of houses that must accept a

proposal in order for it to be adopted by the collectivity. This concept, however, does not apply to rules

with more than two levels of collective approval, as the outcome of the rule can no longer be formulated

as accepting or rejecting a proposal. Under a (3, 3)-political rule, a proposal can be approved at two

levels, the highest level and the intermediate level, the third level being its rejection. It seems reasonable

7Notice that V1 ≤ V2 since V1(X) ≤ V2(X) for any vote profile X.
8 In general, decomposing a (3, 3)-political rule G as V1 + V2 does not necessarily provide a (3, 2)-decomposition of G. A

necessary and sufficient condition for V1+V2 to be a (3, 2)-decomposition of G is that the pair (V1,V2) be ordered. We can
also notice that the decomposition V1 + V2 preserves monotonicity in the sense that if G is monotonic, then V1 and V2 are
monotonic too. Conversely we can verify that if V1 and V2 are monotonic, then V1 + V2 is monotonic.
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to require that the first two levels of approval be incorporated in the definition of the dimension of a

monotonic (3, 3)-political rule, which we do in this section. To this effect, we introduce the concept of

quasi-dimension and that of 2-dimension.

4.1 The Quasi-Dimension of a (3, 3)-Political Rule

Earlier studies have shown that a (2, 2)-political rule is a finite intersection of weighted (2, 2)-political

rules (intersection should be understood as minimum). According to Taylor and Zwicker (1993), the

dimension of a (2, 2)-political rule G is defined as the minimum integer m such that G can be written as

the minimum ofm weighted (2, 2)-political rules. In the following, we represent a (3, 3)-political rule as the

minimum of a finite number of quasi-weighted (3, 3)-political rules. We then define the quasi-dimension

of a (3, 3)-political rule G as the minimum number of quasi-weighted (3, 3)-political rules necessary to

construct G. A formal definition of the quasi-dimension of a (3, 3)-political rule is provided below:

Definition 2 The quasi-dimension of a (3, 3)-political rule G is the minimum integer m such that G can

be written as the minimum of m quasi-weighted (3, 3)-political rules but cannot be written as the minimum

of m− 1 quasi-weighted (3, 3)-political rules.

The above definition is an extension of the concept of dimension as defined on the class of (2, 2)-

political rules. In the following, we therefore generalize some results obtained for (2, 2)-political rules.

Theorem 2 Every monotonic (3, 3)-political rule has a weighted multicameral representation and can be

written as the minimum of a finite number of (monotonic) quasi-weighted (3, 3)-political rules.

The proof of this theorem is Appendix B. First, we show that every monotonic (3, 2)-political rule

has a multicameral representation and is the minimum of a finite number of weighted (3, 2)-political rules

(the dimension of a (3, 2)-political rule cannot exceed the number of maximal losing vote profiles). Then

we propose a method to construct a multicameral representation of the (3, 3)-political rule G from the

system of weights of the (3, 2)-political rules that compose G. Finally we show that the sub-political rules

that compose G are (3, 3)-quasi-weighted political rules.

The following result establishes that the concept of quasi-dimension is well defined on the class of

monotonic (3, 3)-political rules.

Proposition 2 Every monotonic (3, 3)-political rule has finite quasi-dimension.

The proof of this result is straightforward given Theorem 2.

4.2 The 2-Dimension of a (3, 3)-Political Rule

We introduce the concept of 2-dimension of a monotonic (3, 3)-political rule. It is a vector (d1, d2) ∈

N × N ∪ {0} where d1 is the minimum number of houses that must accept a proposal in order for it to

be collectively approved at the highest level, and d2 the minimum number of houses that must accept a

proposal in order for it to be collectively approved at the intermediate level. Below, we provide a formal

definition of the concept of 2-dimension.
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Definition 3 Let G = (N,V) be a monotonic (3, 3)-political rule and V1 ? V2 the (3, 2)-decomposition of

V. The 2-dimension of V is the vector (d1, d2) where d1 and d2 are respectively the dimensions of V
1 and

V2.

We note that the notion of 2-dimension generalizes the traditional notion of dimension since the

two concepts coincide on the class of (3, 2)-political rules and (2, 2)-political rules. Indeed, a monotonic

(3, 2)-political rule of dimension d can be seen as having 2-dimension (d, 0).

The following theorem establishes that the concept of 2-dimension is well defined on the class of

monotonic (3, 3)-political rules.

Theorem 3 The 2-dimension of a monotonic (3, 3)-political rule always exists.

If one assumes that one-dimensional policies should be evaluated using weighted (or one-dimensional)

rules, from a policy perspective, Theorem 3 implies that a given monotonic (3, 3)-political rule is only

suited for the evaluation of finite-dimensional policies whose dimension corresponds to that of the rule,

with each aspect of the policy being evaluated in a different house or chamber using a weighted rule. The

fact that any such rule has a weighted multicameral representation also implies that any (3, 3)-political

rule is a collection of perfectly complementary weighted rules in the sense that a policy proposal cannot be

approved at a given level if it is not approved under each of the weighted rules of the legislature deciding

on the approval of the proposal at that level (in fact, the rule used in each legislature is a minimum

of weighted rules, which means that if a policy proposal fails under one of these rules thus yielding an

outcome of zero for that rule, the minimum will therefore be zero, and so the proposal will fail overall in

that legislature).

We also have the following proposition.

Proposition 3 Let m be a positive integer. There always exists a monotonic (3, 2)-political rule of

dimension m (or 2-dimension (m, 0)).

We now prove that there exists a monotonic (3, 3)-political rule of any 2-dimension.

Theorem 4 Let d1 and d2 be two positive integers. There exists a monotonic (3, 3)-political rule of

2-dimension (d1, d2).

Proposition 3 and Theorem 4 imply that one can always design a (3, 3)-political rule for evaluating a

policy that has to meet a set of d1 criteria to be approved at the highest level and a set of d2 criteria to be

approved at the intermediate level, where the d2 criteria in the second set altogether are somewhat weaker

than the d1 criteria in the first set so that a policy that satisfies the first set of criteria automatically

satisfies the second set, while the converse is not true in general. This means that one can set the criteria

for policies first, and then design the rules that rationalize the passage of policies meeting those criteria.

This result also provides a rationale for using different rules to evaluate different policies, even within the

same organization.
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5 Useful Topology of Political Rules for Policymakers

In this section, we introduce the concept of compatibility with a rule, which we subsequently use to show

that any (3, 3)-political rule has a weighted multicameral representation in which weights and quotas are

integers. Weights therefore represent the number of votes, which facilitates the interpretation of political

rules for policymakers.

5.1 Compatibility

We introduce the concept of compatibility of a real vector with a rule, and topologically characterize

the set of weighted multicameral rules that are compatible with a given political rule. We first establish

our results on the class of (3, 2)-political rules, then extend them to the class of (3, 3)-political rules.

Before defining the concept of compatibility, recall that any weighted multicameral representation of a

rule ϕ = (wij(p), qi)1≤i≤d,1≤j≤3,1≤p≤n can be viewed as a vector of Rd×(3n+1) (see Appendix F for the

vector configuration). We have the following definition.

Definition 4 Let G = (N,V) be a (3, 2)-political rule and ϕ = (wij(p), qi) ∈ Rd×(3n+1) a weighted

multicameral representation of G.

ϕ is V- compatible if for every vote profile X, the following two conditions are satisfied:

(1) X is winning if and only if the weight of X in every house i is strictly higher than the corresponding

quota qi (V(X) = 1 if and only if wi(X) > qi for all 1 ≤ i ≤ d).

(2) X is losing if and only if the weight of X is strictly lower than the quota in at least one house,

and is always distinct from the quota in every house. (V(X) = 0 if and only if wi(X) < qi for some i

and wi(X) 6= qi for all i).

We show that the set of weighted multicameral representations of V that are V-compatible is an open

set.

Theorem 5 Let G = (N,V) be a (3, 2)-political rule. The set of weighted multicameral representations

of V that are V-compatible is an open set of Rd×(3n+1).

This result is proved by showing that the set of weighted multicameral representations of V, ϕ =

(wij(p), qi) ∈ Rd×(3n+1), that are V-compatible is the intersection of two open subsets of Rd×(3n+1).

The immediate implication of this result is that all the properties of open sets of Rd×(3n+1) can

be applied to the set of V-compatible weighted multicameral representations of the (3, 2)-political rule

G. For instance, if a weighted multicameral representation of a (3, 2)-political rule is subject to some

sufficiently small pertubations, the distribution of political power will remain unchanged. This finding

will prove important in the next section where we show that any (3, 3)-political rule has a weighted

multicameral representation whose weights and quotas are integers, and propose a method to construct

such a representation.
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5.2 Integer Weights and Quotas

We show that any (3, 3)-political rule has a weighted multicameral representation in which weights and

quota are integers. Such a representation is more intuitive, as it implies that the weights wij(p) can

now be interpreted as the number of votes held by voter p in the house i when he chooses the level

of approval j. Such an interpretation is also more likely to be understood by policymakers, lawmakers

and shareholders who vote on a regular basis, and to shed light on the real structure of power in an

organization.

Theorem 6 Let G = (N,V) be a (3, 3)-political rule. G has a weighted multicameral representation

whose weights and quotas are integers.

This result implies that one can always represent any (3, 3)-political rule in a way that is understand-

able to any policymaker. An example is our example in the introduction where all weights and quotas

are integers. See Section 6 for other examples as well.

We now extend below the concept of the weight monotonicity requirement introduced by Freixas and

Zwicker (2003) for single-house rules. It says that the higher the level of approval of a voter for a given

proposal, the higher should be his contribution to make that proposal approved by the society.

Definition 5 Let G = (N,V) be a monotonic (3, 3)-political rule. A weighted multicameral representation

(w, q) of G satisfies the "weight monotonicity requirement" if :

for every voter p ∈ N and for every 1 ≤ i ≤ d, wi1(p) ≥ wi2(p) ≥ wi3(p).

We show below that any (3, 3)-political rule admits a weighted multicameral representation that

satisfies the weight-monotonicity requirement.

Theorem 7 Any (3, 3)-political rule has a weighted multicameral representation that satisfies the weight-

monotonocity requirement.

6 Applications

In this section, we apply our theoretical findings to some real-life organizations. For each organization,

we define its decision-making rule and provide a weighted multicameral representation of that rule with

integer weights and quotas, and satisfying the weight-monotonicity requirement.

6.1 The Council of the International Seabed Authority

The International Seabed Authority is an intergovernmental organization created in 1994 to monitor

mineral-related activities in the international seabed territories outside of states regulated jurisdiction.

The ISA has two principal organs: an assembly, which consists of all the ISA members, and a 36-member

council, elected by the assembly. The council members are chosen to ensure equitable representation

of countries from various groups. As described by Bräuninger (2003), the members of the council are

distributed into four houses denoted C1, C2, C3, C4 as follows:

C1 : four states elected from among the largest consumers of the minerals in question

C2 : four states elected from among the largest investors in deep-sea mining
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C3 : four states from among the largest net exporters

C4 : six developing countries and eighteen additional states to ensure a balanced geographical distri-

bution of seats in the council.

In the ISA council, a decision on most issues requires a two-thirds majority approval of its members

on the proviso that such decision is not opposed by a majority in any of the four houses. This voting rule

can be modeled as a (3, 2)-political rule G = (N,V) as follows:

For any vote profile X = (X1, X2, X3),

V(X) = 1 if and only if

{
|X1| ≥ 24

|X3 ∩ Ct| <
1
2 |Ct| , 1 ≤ t ≤ 4

This decision-making rule was studied by Bräuninger (2003), who proved that it is not of dimension

one. In the following, we propose a weighted multicameral representation of the vote within the Council of

ISA . In the matrix of weights below, the first, the second , the third and the fourth columns represent the

house of consumers, investors, exporters and the fourth house, respectively. The last column represents

the entire council.

C1 C2 C3 C4 Council

w(consumer) (3, 2,−1) (0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 0, 0)

w(investor) (0, 0, 0) (3, 2,−1) (0, 0, 0) (0, 0, 0) (1, 0, 0))

w(exporter) (0, 0, 0) (0, 0, 0) (3, 2,−1) (0, 0, 0) (1, 0, 0)

w(others) (0, 0, 0) (0, 0, 0) (0, 0, 0) (2, 2,−1) (1, 0, 0)

Quota 1 1 1 10 24

The vote in the ISA council is a monotonic (3, 2)-political rule of dimension 5 (the 2-dimension is

(5, 0) and the quasi-dimension is 5).

6.2 A Voting Rule in the United States Senate

We study the voting rule for electing the Vice-President of the United States when the Electoral College

fails to do so. We show that the quasi-dimension of this rule is 1.

When electing the Vice-President of the U.S., if no candidate receives the majority of the electoral

votes, the Senate chooses between the two candidates with the highest number of votes in the Electoral

College. The U.S. Senate consists of 100 Senators and the current Vice-President. The voting rule is

the absolute majority rule and does not explicitly specify the outcome of the rule if neither candidate

receives 51 votes. Let a and b be the two candidates with the highest number of electoral votes. This

voting mechanism can be modeled as a monotonic (3, 3)-political rule G = (N,V) as follows. For every

vote profile X = (X1, X2, X3), let X1, X2, X3 represent the set of voters who vote for a, abstain, and

vote for b, respectively. The three possible outcomes of the vote are: a wins, the vote is inconclusive, b

wins. The following model of this voting rule was proposed by Taylor and Zwicker (2003):

V(X1, X2, X3) =






a if |X1| ≥ 51

inconclusive if |X1| < 51 and |X3| < 51

b if |X3| ≥ 51
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We argue that the quasi-dimension of this rule is 1 and its 2-dimension is (1, 1). Let G1 and G2 be

two monotonic (3, 2)-political rules defined as follows:

V1(X1, X2, X3) = 1 if and only if |X1| ≥ 51

V2(X1, X2, X3) = 1 if and only if (|X1| ≥ 51) or (|X1| < 51 and |X3| < 51)

A weighted representation of G1 and G2 is respectively given by:

Rule G1 Rule G2

w(Senator) (1, 0, 0) (1, 1, 0)

w(Vice-President) (1, 0, 0) (1, 1, 0)

Quota 51 51

Both G1 and G2 are of dimension 1. Since G1 and G2 provide a (3, 2)-decomposition of G, the

quasi-dimension of G is 1 and the 2-dimension of G is (1, 1).

6.3 Core Examination of Graduate Students in United States Universities

In some U.S. universities, Masters’ students have two options when completing their Masters’ degree.

They can either write a thesis or take an exam. Students who choose the exam option are pooled

with Ph.D. candidates to write a core examination. The core examination usually combines several

subjects. Suppose that the core examination in a department of Economics is based on three subjects:

microeconomics, macroeconomics and econometrics.

Assume that the core examination committee consists of 6 members divided into 3 subcommittees as

follows: the microeconomics committee (2 members), the macroeconomics committee (2 members), and

the econometrics committee (2 members).

To each student taking the core examination, each committee member assigns three decisions cor-

responding to their judgment on the student’s performance on each of the three subjects. There are

three possible decisions for each subject: pass, marginal pass, and fail. There are also three possible final

outcomes for each student. A student can pass the exam both at the Master and Ph.D. levels, pass the

exam only at the Master level, or fail the exam both at the Master and Ph.D. levels. Passing the core

examination at a given level requires obtaining a certain grade on each subject. Assume that a student

must have at least one "pass" and one "marginal pass" to pass a subject at the Ph.D. level, and at least

two "marginal pass" or one "pass" to pass a subject at the Master’s level.

The above described rule is a monotonic (3, 3)-political rule. We denote the examination outcomes

as follows: 2 = Ph.D., 1 = Master, 0 = fail. For any vote profile X = (X1, X2, X3), X1, X2 and X3

are respectively the set of professors who vote "pass", "marginal pass" and "fail". Denote by C1, C2,

C3 the microeconomics committee, the macroeconomics committee, and the econometrics committee,

respectively. On a given subject, only the corresponding subcommittee has the full competence to judge

the performance of a student. Therefore, we assume that the decisions of the members outside of a

subcommittee do not affect the students’ outcome for that subject. The above described core examination

can be modeled as a (3, 3)-political rule G = (N,V) as follows:

For any vote profile X = (X1, X2, X3),
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V(X) =






Ph.D. if (|X1 ∩ Ct| = 2 or (|X1 ∩ Ct| = 1 and |X2 ∩ Ct| = 1) for all 1 ≤ t ≤ 3

Master if (|X2 ∩ Ct| = 2) or (|X1 ∩ Ct| = 1) for all 1 ≤ t ≤ 3

Fail if ∃1 ≤ t ≤ 3, (|X3 ∩ Ct| ≥ 1) and (|X1 ∩ Ct| = 0).

Let G1 (resp. G2 ) be the monotonic (3, 2)-political rule that determines whether a student will pass

the core examination at the Ph.D. (resp. at least at the Master level ). G1 and G2 can be defined as

follows: for any vote profile X = (X1, X2, X3),

V1(X) = 1 if and only if V(X) = Ph.D.

V2(X) = 1 if and only if V(X) ∈ {Ph.D.,Master}

The weighted representations of G1 and G2 are given by:

Rule G1 Rule G2

C1 C2 C3 C1 C2 C3

w(microeconomist) (2, 1, 0) (0, 0, 0) (0, 0, 0) (2, 1, 0) (0, 0, 0) (0, 0, 0)

w(macroeconomist) (0, 0, 0) (2, 1, 0) (0, 0, 0) (0, 0, 0) (2, 1, 0) (0, 0, 0)

w(econometrician) (0, 0, 0) (0, 0, 0) (2, 1, 0) (0, 0, 0) (0, 0, 0) (2, 1, 0)

Quota 3 3 3 2 2 2

Therefore, both G1 and G2 are of dimension 3. Since G1 and G2 provide a decomposition of G as in

Remark 1, the 2-dimension of G is (3, 3).

One might want to modify the examination system to avoid situations where Masters’ students are

evaluated on econometrics as is the case in certain universities. Assume, for example, that every student is

now required to have at least two "marginal pass" outcomes to pass microeconomics and macroeconomics.

Ph.D. students are required to have one "pass" or one "marginal pass" to pass econometrics. The modified

rule has the following weighted multicameral representation:

Rule G1 Rule G2

C1 C2 C3 C1 C2

w(microeconomist) (3, 2, 0) (0, 0, 0) (0, 0, 0) (3, 2, 0) (0, 0, 0)

w(macroeconomist) (0, 0, 0) (3, 2, 0)) (0, 0, 0) (0, 0, 0) (3, 2, 0)

w(econometrician) (0, 0, 0) (0, 0, 0) (2, 1, 0) (0, 0, 0) (0, 0, 0)

Quota 4 4 3 4 4

G1 and G2 are respectively of dimension 3 and 2, and the 2-dimension of G is (3, 2).

7 Concluding Remarks

We have provided a policy basis for rationalizing, that is, interpreting, justifying and designing (3, 3)-

political rules, a large class of collective organizational rules analogous to those governing the selection

of papers in a peer-reviewed journal. The different examples investigated in the paper show that such
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rules can be extremely complex. Yet, we have shown that any such rule, no matter its complexity, is

a hierarchical system of two weighted multicameral legislatures: the first legislature determines whether

a proposal should be granted the highest level of collective approval, such as accepting a paper, and

the second legislature determines whether it should only be approved at the intermediate level, such as

inviting a resubmission. Such a representation is a very convenient way of modelling complex decision-

making rules. It also allows us to view any (3, 3)-political rule as a multi-criteria decision-making rule

under which decision-makers rate different aspects of a finite-dimensional proposal, where each aspect

is evaluated in a different specialized house using a weighted voting rule, and each evaluator’s influence

or weight possibly varies across houses depending on his area(s) of expertise. Evaluators therefore have

decentralized authority, and each is seen as an expert in a particular area.

We have also shown that it is always possible to design a (3, 3)-political rule of any given 2-dimension.

Practically, this finding implies that it is always possible to design a rule under which a proposal is

collectively approved at a given level if and only if it satisfies a certain number of "predefined criteria",

so that one can set the criteria for policies first, and then design the rules that rationalize the passage

of policies meeting those criteria. This shows that rules can be designed so as to be suitable only for

the evaluation of certain policies, and suggests a rationale for using different rules to pass different

policies. Accordingly, a unidimensional policy should be evaluated using a (3, 3)-political rule that has

only one house in each legislature, since only one aspect of the policy will be evaluated. However, multi-

dimensional policy proposals should be evaluated under weighted multicameral legislatures, where each

house examines one aspect of the policy, and each legislator is given more weight in the house evaluating

the aspect that pertains to his area of expertise. We note that a legislator may be expert in many areas,

in which case he should have influence in different houses.

Designing a collective rule based on a set of criteria to be met by an ideal policy is not only transparent,

but practical. Indeed, it might be cumbersome to try to write a decision-making rule as we did in our

example in the introduction. A simpler way of writing the same rule would be to consider the matrix

of weights, which clearly show how much influence each evaluator wields along a given criterion. If one

wants to change the rule at some point, perhaps because one wants to increase the standards of policies

to be adopted, or because one wants to get more evaluators involved along each criterion, one can simply

modify the weights and/or the quotas, which is simple (although this might not be so easy in practice).

For instance, one might change the weight matrix of the two legislatures in that example as follows:

Original Rule Modified Rule

Theory Empirics Theory Empirics

Referee T1 (2, 1, 0) (0, 0, 0) (2, 1, 0) (1, 0, 0)

Referee T2 (2, 1, 0) (0, 0, 0) (2, 1, 0) (1, 0, 0)

Referee E1 (0, 0, 0) (2, 1, 0) (1, 0, 0) (2, 1, 0)

Referee E2 (0, 0, 0) (2, 1, 0) (1, 0, 0) (2, 1, 0)

Quota for Legislature 1 3 3 5 5

Quota for Legislature 2 1 1 3 3

We note that under the modified rule, it is harder to get a paper accepted, or considered for resub-

mission, compared to the original rule. Under the modified rule, while experts still have more power in
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their area of expertise, their only opinion is no longer sufficient to determine that a paper passes the

test in their area. For instance, while under the first rule, the coalition of theoretical referees {T1, T2}

has dictatorial power on acceptance along the theoretical dimension, it only has a veto right under the

modified rule. Similarly, as regarding the empirical assessment of the paper, the coalition of empirical

referees {E1, E2} has only a veto right for acceptance under the modified rule, whereas they had dicta-

torial power under the first rule. However, each expert still has a veto right along his area of expertise

since the paper cannot get accepted (even after revision) without him strongly backing the decision.

These two rules might also be used by two different journals or organizations. One lesson to be

learned here is that writing such a rule explicitly, as we did in the introduction, could be very confusing

in some instances and could subject the written rule to different interpretations. Similarly, writing the

characteristic function of a rule may not let policymakers know whether the rule is really appropriate for

evaluating a given proposal, and it may not be explicit on the precise role of each evaluator. The table,

on the contrary, clearly shows the power structure among the different evaluators along each dimension

of a potential proposal, and should therefore be preferred to a written rule. It also shows that the original

and the modified rules are most appropriate for the evaluation of two-dimensional policies.

We have also proposed two new concepts of dimension (the quasi-dimension and the 2-dimension),

and have shown that they generalize the literature. While the traditional theory is easily interpreted

within our framework, we show that the 2-dimension measure does not only capture the number of

possible outputs yielded by a (3, 3)-political rule, but it also takes into account the hierarchy in these

outputs. Furthermore, we have introduced the concept of compatibility of a vector with a rule, which

we have used to show that there exist infinitely many weighted rules that are strictly compatible with a

(3, 3)-political rule, and that these rules form a topologically open set. We have also proposed a method

to construct integer weights and quotas, which are more intuitive, more relevant for rule design and

policy-making, and more transparent for policymakers. In sum, our results rationalize multicameralism

in real-world organizations and multi-criteria group decision-making in market organizations (Baucells

and Sarin (2003)), and suggest a simple and rational policy-driven approach to the design of collective

rules.
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Appendices

Appendix A: Proof of Proposition 1

If G is weighted, then {wij , i ∈ C1} and {wij , i ∈ C2} are the systems of weights of G
1 and G2, respectively.

Conversely, if {w1j}1≤j≤3 and {w2j}1≤j≤3 are respectively the systems of weights of the weighted rules

G1 and G2, define the system of weights of G, {wij}, as wij = w1j if i ∈ C1 and wij = w2j if i ∈ C2 with

C1 = {1} and C2 = {2}.

Appendix B: Proof of Theorem 2

The following lemma is needed to prove our result.

Lemma 1 Any monotonic (3, 2)-political rule has a weighted multicameral representation. More pre-

cisely, every monotonic (3, 2)-political rule can be written as the minimum of a finite number of weighted

(3, 2)-political rules.

Proof :Let G = (N,V) be a monotonic (3, 2)-political rule and (Y 1, ..., Y d) the list of all the maximal

losing tripartitions (or vote profiles) of N . For every voter p ∈ N , define the matrix of the weights of p

as follows:

for all 1 ≤ i ≤ d and for all 1 ≤ j ≤ 3, wij(p) =

{
0 if p ∈ Y ij ↑

1 otherwise.

The quota for each house i is qi = 1, 1 ≤ i ≤ d

We have:

V(X) = 1 iff for all 1 ≤ i ≤ d, X *3 Y i

iff for all 1 ≤ i ≤ d, there exists 1 ≤ j ≤ 3, Xj ↑* Y ij ↑

iff for all 1 ≤ i ≤ d, there exist 1 ≤ j ≤ 3 and p ∈ Xj ↑ such that p /∈ Y ij ↑

iff for all 1 ≤ i ≤ d, there exist 1 ≤ j ≤ 3 and p ∈ Xj ↑ such that wij(p) = 1

iff for all 1 ≤ i ≤ d, wi(X) ≥ qi.

Therefore, w = (wij)1≤i≤d,1≤j≤3 and q = (qi)1≤i≤d define a weighted multicameral representation of

G.

For each 1 ≤ i ≤ d, let Gi = (N,Vi) be the (monotonic) weighted (3, 2)-political rule represented by

(wij , qi). It can be easily shown that for every X ∈ N3, V(X) = min {Vi(X), 1 ≤ i ≤ d}.

Proof of Theorem 2 Let G = (N,V) be a (monotonic) (3, 3)-political rule and V1 ? V2 the (3, 2)-

decomposition of G (see Proposition 1). Following Lemma 1, V1 and V2 can respectively be decomposed

as the minimum of a finite number of weighted (3, 2)-political rules {V1i }1≤i≤ d1 and {V
2
i′}1≤i′≤ d2 . For

every 1 ≤ r ≤ 2 , 1 ≤ i ≤ d1 or 1 ≤ i ≤ d2, let w
r
i = (w

r
ij)1≤j≤3 be the matrix functions of voters’ weights

in the rule Vri , and q
r
i the quota of V

r
i . Define C1 = {1, ..., d1}, C2 = {d1 + 1, ..., d1 + d2}, and w and q as

follows: for every voter p,
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wij(p) =

{
w1ij(p) if i ∈ C1

w2i−d1j(p) if i ∈ C2

qi =

{
q1i if i ∈ C1

q2i−d1 if i ∈ C2

For every vote profile X ∈ N3:

V(X) = 2 ⇐⇒ V1(X) = 1 and V2(X) = 1

⇐⇒ V1i (X) = 1 and V2i (X) = 1, ∀ 1 ≤ i ≤ d1, 1 ≤ i ≤ d2

⇐⇒ wi(X) ≥ qi, ∀ i ∈ C1 ∪ C2.

V(X) = 1 ⇐⇒ V1(X) = 0 and V2(X) = 1.

⇐⇒ ∃ 1 ≤ i ≤ d1, V
1
i (X) = 0 and V2i′(X) = 1, ∀1 ≤ i

′ ≤ d2

⇐⇒ min{V1i (X) + V
2
i′(X), 1 ≤ i ≤ d1, 1 ≤ i

′ ≤ d2.

V(X) = 0 ⇐⇒ V1(X) = 0 and V2(X) = 0

⇐⇒ ∃ 1 ≤ i ≤ d1, 1 ≤ i ≤ d2,V
1
i (X) = 0 and V2i (X) = 0

⇐⇒ ∃ i ∈ C2, wi(X) < qi
Futhermore, each V1i + V

2
i′ is a quasi-weighted (3, 3)-political rule, and it is easy to show that V =

min{V1i + V
2
i′ , 1 ≤ i ≤ d1, 1 ≤ i

′ ≤ d2} .

Appendix C: Proof of Theorem 3

The (3, 2)-decomposition of a monotonic (3, 3)-political rule as described in Remark 1 yields a unique pair

of monotonic (3, 2)-political rules. Since the notion of dimension is well-defined on the class of monotonic

(3, 2)-political rules (following Lemma 1), the 2-dimension of any monotonic (3, 3)-political rule always

exists.

Appendix D : Proof of Proposition 3

Let m be a positive integer and N = {1, 2, ..., 2m}. Define a monotonic (3, 2)-political rule G = (N,V)

by: for every vote profile X = (X1, X2, X3),

V(X) = 1 iff X1 ∩ {2i− 1, 2i} 6= ∅, ∀1 ≤ i ≤ m.

Below is a two-step proof that the dimension of the above-described monotonic (3, 2)-political rule is

m.

Step 1 : First, we show that G is a minimum of m weighted monotonic (3, 2)-political rules.

For 1 ≤ i ≤ m, let Gi = (N,Vi) be the weighted monotonic (3, 2)-political rule represented by

(wij , qi)1≤j≤3 defined as follows: for every p ∈ N ,

wij(p) =

{
1 if j = 1 and p ∈ {2i− 1, 2i}

0 otherwise

qi = 1.
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Let X ∈ N3 be a winning vote profile.

X ∈ V−1{1} iff X1 ∩ {2i− 1, 2i} 6= ∅, for all 1 ≤ i ≤ m

iff there is p ∈ N such that wij(p) = 1, for all 1 ≤ i ≤ m

iff wi(X) ≥ qi, for all 1 ≤ i ≤ m

iff X ∈ V−1i {1} , ∀1 ≤ i ≤ m

iff X ∈ ∩
{
V−1i {1} | 1 ≤ i ≤ m

}
.

Thus V−1{1} = ∩
{
V−1i {1} | 1 ≤ i ≤ m

}
.

step 2: Our next goal is to show that G is not the minimum of m − 1 weighted monotonic (3, 2)-

political rules. Assume on the contrary that G can be written as the minimum of m − 1 weighted

monotonic (3, 2)-political rules G
′

i represented by (w
′

ij , q
′

i)1≤j≤3.

For every 1 ≤ i ≤ m , define Y i = (N − {2i− 1, 2i} , {2i− 1, 2i} , ∅).

Each Y i is a losing vote profile of G. Therefore, we can pick one of the m − 1 weighted monotonic

(3, 2)-political rules in which Y i has a weight less than the quota of that monotonic (3, 2)-political rule.

By the pigeonhole principle, we can assume without losing generality that we have a similar weighted

monotonic (3, 2)-political rule G
′

t that makes both Y
1 and Y 2 losing vote profiles.

Let X1 and X2 be two vote profiles defined as follows:

X1 = (N − {2, 3} , {2, 3} , ∅) and X2 = (N − {1, 4} , {1, 4} , ∅).

Since X1 and X2 (resp. Y 1 and Y 2 ) are two winning (resp. losing) vote profiles of the monotonic

(3, 2)-political rule G
′

t, it must be the case that w
′

t(X
1) + w

′

t(X
2) ≥ 2q

′

t and w
′

t(Y
1) + w

′

t(Y
2) < 2q

′

t.

However, this cannot hold because w
′

t(X
1) + w

′

t(X
2) = w

′

t(Y
1) + w

′

t(Y
2). Therefore, it is impossible to

write G as the minimum of m− 1 monotonic (3, 2)-political rules.

Appendix E : Proof of Theorem 4

Let N = {1, 2, ..., 2d1, 2d1 + 1, ..., 2d1 + 2d2}. Define the monotonic (3, 3)-political rule G = (N,V) by:

for every vote profile X = (X1, X2, X3),

V(X) = 2 iff (∀ 1 ≤ i ≤ d1, ∀ 1 ≤ i
′ ≤ d2 X1 ∩ {2i− 1, 2i} 6= ∅) and (X1 ∩ {2d1 + 2i

′ − 1, 2d1 + 2i
′} 6= ∅)

V(X) = 1 iff (∃ 1 ≤ i ≤ d1, X1 ∩ {2i− 1, 2i} = ∅) and (X1 ∩ {2d1 + 2i
′ − 1, 2d1 + 2i

′} 6= ∅,∀ 1 ≤ i′ ≤ d2)

V(X) = 0 iff (∃ 1 ≤ i ≤ d1, ∃ 1 ≤ i
′ ≤ d2, X1 ∩ {2i− 1, 2i} = ∅) and (X1 ∩ {2d1 + 2i

′ − 1, 2d1 + 2i
′} = ∅)

Let G1 = (N,V1) and G2 = (N,V2) be two monotonic (3, 2)-political rules defined as: for every vote

profile X = (X1, X2, X3),

V1(X) = 1 iff X1 ∩ {2i− 1, 2i} 6= ∅ ∀1 ≤ i ≤ d1.

V2(X) = 1 iff X1 ∩ {2d1 + 2i
′ − 1, 2d1 + 2i

′} 6= ∅ ∀ 1 ≤ i′ ≤ d2.

The method used to construct G1 and G2 is the same as the one used in the proof of Theorem

3. Therefore, the monotonic (3, 2)-political rules G1 and G2 are respectively of dimension d1 and d2.

Furthermore, G1 ? G2 is the (3, 2)-decomposition of G. This allows us to conclude that the 2-dimension

of G is (d1, d2).
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Appendix F : Configuration of the Matrix of Weights of a Multicameral Rule as a

Vector of Rd×(3n+1)

Let u and v be two positive integers. It is always possible to define a one-to-one function between the

set Mu×v(R) of all the u × v real matrices and Ru×v. Consider the one-to-one function f defined from

Md×(3n+1)(R) to R
d×(3n+1) that maps the matrix w = (wi,j(p), qi)1≤i≤d,1≤j≤3,1≤p≤n to the vector f(w)

defined by:

f(w) = (w11(1), w12(1), w13(1), ..., w11(n), w12(n), w13(n), q1, ...,

wd1(1), wd2(1), wd3(1), ..., wd1(n), wd2(n), wd3(n), qd).

f allows to view a weighted multicameral representation of a (3, 2)-political rule rule as a vector of

Rd×(3n+1).

Appendix G: Proof of Theorem 5

Define the sets UG and VG as follows:

UG = ∩{UX , X is a winning vote profile} where: UX =
{
ϕ ∈ Rd×(3n+1) / wi(X) > qi, ∀ 1 ≤ i ≤ d

}
.

VG = ∩{VX , X is a losing vote profile} where: VX = {ϕ ∈ Rd×(3n+1)/∃1 ≤ i ≤ d,wi(X) < qi}.

The following two lemmas are needed to establish our result.

Lemma 2 Let G = (N,V) be a (3, 2)-political rule. The sets UG and VG are open sets of Rd×(3n+1).

Proof: For any vote profile X, define:

hX : Rd×(3n+1) −→ Rd

ϕ = (wij(p), qi) 7−→ (wi(X)− qi)1≤i≤d

The function hX is well-defined and continuous.

Let us show that UG is an open set of Rd×(3n+1).

UX is an open set of Rd×(3n+1) because UX is the inverse image of an open subset of Rd by the

continuous function hX , as shown below:

UX =
{
ϕ ∈ Rd×(3n+1) /wi(X) > qi ∀1 ≤ i ≤ d

}

=
{
ϕ ∈ Rd×(3n+1) / hX(ϕ) ∈]0,+∞[d

}

= h−1X (]0,+∞[
d).

UG is the intersection of a finite number of open sets of Rd×(3n+1). Therefore UG is an open set of

Rd×(3n+1).

Now, let us show that VX is an open subset of Rd×(3n+1).

For every ϕ ∈ VX , write: d1ϕ = |{i, wi(X) > qi}| and d2ϕ = |{i, wi(X) < qi}|. Notice that hX(ϕ) ∈

Vϕ where Vϕ is the cartesian product of d1ϕ sets ]0,+∞[ and d2ϕ sets ] − ∞, 0[. Vϕ is an open set of

Rd×(3n+1). Furthermore,
VX = {ϕ ∈ Rd×(3n+1) | hX(ϕ) ∈ Vϕ}

= ∪{h−1X (Vϕ), ϕ ∈ VX}.

VX is a union of open sets of Rd×(3n+1), which implies that VX is an open set of Rd×(3n+1). Since VG
is the intersection of a finite number of open sets of Rd×(3n+1), VG is an open set of Rd×(3n+1).
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Lemma 3 Let G = (N,V) be a (3, 2)-political rule. The set Γ(G) of all the vectors ϕ ∈ Rd×(3n+1) that

are V-compatible is the intersection of UG and VG.

Proof: Let ϕ ∈ Rd×(3n+1) a vector that is V-compatible and X a vote profile of N .

If X is a winning vote profile, then wi(X) > qi for all 1 ≤ i ≤ d. Therefore ϕ ∈ UX . This implies that

ϕ ∈ UG = ∩{UX , X winning vote profile }

If X is a losing vote profile, then there exists 1 ≤ i ≤ d such that wi(X) < qi . Therefore ϕ ∈ VX .

This implies that ϕ ∈ VG = ∩{VX , X losing vote profile}.

Therefore, Γ(G) is the intersection of UG and VG.

Now, we can proof our main result.

Proof of Theorem 5: Because Γ (G) can be decomposed as an intersection of open sets of Rd×(3n+1)

(Lemma 3), Γ (G) is an open set of Rd×(3n+1).

Appendix H: Proof of Theorem 6

To proof our main result, we will need the following lemmas that are also interesting on their own.

Lemma 4 Let G = (N,V) be a (3, 2)-political rule. If ϕ = (wij(p), qi) ∈ Rd×(3n+1) is a weighted

multicameral representation of G, then there exists q
′

∈ Rd such that ϕ
′

= (wij(p), q
′

i) is V-compatible.

Proof : Define µi as the lower bound of the set {wi(X)/ wi(X) ≥ qi, X ∈ N3} and λi as the upper bound

of the set {wi(X)/ wi(X) < qi, X ∈ N3}. Notice that λi < qi ≤ µi. Define q
′

i =
µi+λi
2 and consider a

vote profile X.

If X is a winning vote profile, then wi(X) ≥ µi > q
′

i, for all 1 ≤ i ≤ d.

If X is a losing vote profile, then there exists 1 ≤ i ≤ d such that wi(X) ≤ λi < q
′

i.

Thus ϕ
′

= (wij(p), q
′

i) is V-compatible .

It follows that a V-compatible vector can be obtained from a weighted multicameral representation of a

(3, 2)-political rule G. Altering the weights of voters is unnecessary. A judicious alteration of the quotas

of G is sufficient. A corollary to the previous lemma is the following.

Corollary 1 Let G be a (3, 2)-political rule. G is a weighted multicameral rule if and only if there exists

ϕ ∈ Rd×(3n+1) that is V-compatible.

Lemma 5 Let G be a (3, 2)-political rule. G has a weighted multicameral representation if and only if

there exists ϕ ∈ Qd×(3n+1) that is V-compatible.

Proof : If G has a weighted multicameral representation, then Γ (G) is a nonempty open subset of

Rd×(3n+1) (Theorem 5). The denseness of Qd×(3n+1) in Rd×(3n+1) yields a ϕ ∈ Γ (G) ∩ Qd×(3n+1). The

converse is trivial.

Lemma 6 Let G be (3, 2)-political rule. G has a weighted multicameral representation if and only if there

exists ϕ ∈ Zd×(3n+1) that is V-compatible.
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Proof : If G has a weighted multicameral representation, then Γ (G) ∩Qd×(3n+1) 6= ∅ (Lemma 5).

Pick χ = (
aij(p)
bij(p)

, ci
di
) ∈ Γ (G) ∩ Qd×(3n+1) where (bij(p), di) ∈ Nd×(3n+1). Let σ be the least common

multiple of the set {bij(p), di}1≤i≤d,1≤j≤3,1≤p≤n and ϕ = σχ. It readily follows that ϕ ∈ Γ (G)∩Zd×(3n+1).

The converse is trivial.

Proof of Theorem 6

Let G1 ? G2 the (3, 2)-decomposition of a (3, 3)-political rule G. The monotonicity of G insures

the monotonicity of G1 and G2. We can find weighted multicameral representations of G1 and G2 with

integer weights and quotas (Lemma 6). Use these systems of weights to construct a weighted multicameral

representation of G with integer weights and quotas . For the method of construction, see the proof of

Proposition 2.

Appendix I: Proof of Theorem 7

Let w = (wij , qi)1≤i≤d,1≤j≤3 be a weighted multicameral representation of G that violates the weight-

monotonocity requirement. This implies there is a voter x ∈ N and a house t such that wtl(x) < wtl+1(x),

with 1 ≤ t ≤ d, 1 ≤ l ≤ 2.

Construct the new weighted multicameral representation u of G as follows:

uij(p) =






wtl+1(p) if p = x, i = t and j = l

wtl(p) if p = x, i = t and j = l + 1

wij(p) otherwise.

We want to show that both u and w identically distribute the elements of N3 into the group of winning

and losing vote profiles. Let X be any vote profile with x ∈ Xl+1 and Y the vote profile derived from X

by shifting voter x to Xl. We see that:

1. X ≤V Y (by monotonicity), and for every 1 ≤ i ≤ d , wi(X) > wi(Y ).

2. ui(X) = wi(Y ) and ui(Y ) = wi(X).

Therefore, for every 1 ≤ i ≤ d, wi(X) ≥ qi if and only if wi(Y ) ≥ qi (from (1)), which happens if and

only if ui(X) ≥ qi (from (2)).

The technique may be repeated for each voter whose weights violate the weight-monotonicity require-

ment.
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