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Abstract

In this paper, we empirically investigate the dynamics of the marginal propensity to pirate for com-
puter software. We introduce a state space formulation that allows us to estimate error structures and
parameter significance, in contrast to previous work. For data from 1987-92, we find a rising propen-
sity to pirate as the number of existing pirate copies increases, and higher late piracy incidence than
implied by static models. We strengthen prior results on the impact of piracy in the spreadsheet mar-
ket, finding it to be the only significant internal influence on diffusion. However, when we allow for
negative error correlation between legal and pirate acquisitions, we contradict earlier work by finding
that, in the word processor market, piracy did not contribute to diffusion and only eroded legal sales.

1 Introduction

Social contact has long been implicated in technology diffusion, following Bass (1969).
The idea is that existing users of a technology influence non-users to adopt the technology.
Similar mechanisms have been proposed for describing markets subject to software piracy,
the illegal copying of software. In pirate diffusion literature including Givon et al. (1995),
Prasad and Mahajan (2003), and Liu et al. (2011), influenced non-users may acquire the
legal or pirated good. Owners of the pirated good may influence non-users, like legal
owners.

The pirate diffusion literature presents a variety of reasons why piracy may be beneficial
to legal sellers and consumers. In Givon et al. (1995) and Givon et al. (1997) it is suggested
that pirate acquisitions may accelerate legal diffusion through pirate owners’ social contacts
with non-users. Prasad and Mahajan (2003) show that legal profits may be increased for
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the same reason, when piracy rates are subject to control by the legal sellers and sales
affect price preferences of remaining non-users in a specific way. Liu et al. (2011) proposes
a similar mechanism, where either piracy or pricing can be selected as routes to obtain
optimal diffusion speed prior to mature market sales.

The marginal propensity to pirate is the proportion of pirate acquisitions out of total
new acquisitions. Its value and dynamics are critical influences on whether piracy does
indeed benefit legal sellers. If the marginal propensity to pirate rises as the market size
increases, then legal sellers will capture little of the late market. If they then take measures
to avoid piracy, consumer welfare is likely to be affected.

Despite the importance of the marginal propensity to pirate, we are unaware of any
pirate diffusion studies that test whether it rises or falls with diffusion. Much pirate
diffusion research has been theoretical. The empirical work by Givon et al. (1995) and
Givon et al. (1997) assumes that the marginal propensity to pirate is constant. In Haruvy
et al. (2004), the ratio of pirate sales to legal sales can fall at a constant exponential rate
as the number of users increases. However, the interpretation of the rate in terms of piracy
protection and resulting company optimisation function precludes the possibility of an
increasing ratio.

There are reasons to believe that increased diffusion could lower or raise the share of
piracy in acquisitions. For example, on one hand legal sellers may find it cost-effective to
take action against piracy only when it reaches a certain level, so increased piracy could
lower the marginal propensity to pirate. On the other hand, widespread piracy may make
new piracy less difficult and more socially acceptable, so that the marginal propensity to
pirate would rise with higher piracy prevalence.

In this paper, we estimate the level and change in the marginal propensity to pirate for
data on spreadsheets and word processors. The statistical significance of the parameters
and the models’ predictive power is assessed. We compare diffusion when we allow for
variable marginal propensity to pirate to diffusion without it.

Our theoretical model is a small modification of that in Givon et al. (1995). It introduces
an adjustment factor to pirate sales, where the factor is the number of users of pirate
goods raised to an estimated coefficient. The adjustment represents the effect of factors
promoting or hindering piracy. We also consider an alternative modification where past
piracy explicitly adjusts piracy’s share of sales.

The stochastic component of the model includes errors in the legal and pirate acquisi-
tions, and allows for their correlation. In order to achieve identification, we restrict the
error matrix to depend on a single parameter. However, we consider multiple forms for
the error, including positive and negative correlation and heterogeneity.

We use data on legal software sales taken from Givon et al. (1995), which is also used
in Haruvy et al. (2004) and (for calibration) in Liu et al. (2011). As with these prior
authors, we have no piracy data. Givon et al. (1995) estimates their model by non-linear
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least squares while omitting joint error specifications between the legal and pirate data,
and so do not report parameter standard errors. Standard errors are also missing from
non-linear least squares estimates in Givon et al. (1997), simulated annealing estimates in
Haruvy et al. (2004), and calibrated model solutions in Liu et al. (2011).

We estimate our model by formulating it in state space form, with pirate acquisitions as
an unobserved state variable. We calculate one-step ahead predictions using the Kalman
filter, and maximise the resulting likelihood to give parameter estimates. We allow for
cross-sectional relations between legal and pirate diffusion, and present parameter standard
deviations unlike prior work. We use the continuous time, discrete observation extended
Kalman filter to avoid time interval bias, in common with Xie et al. (1997). However,
whereas they use the filter projection as a Bayesian updating procedure for parameter
estimates and sales simultaneously, we leave the parameters outside the state variable, and
so make them available for classical estimation. As extensive piracy represents a hidden
phenomenon of uncertain impact, limiting the impact of prior beliefs is a prudent approach
to analysis and permits classical inference.

Our central estimates show that the share of pirate acquisitions out of current acquisi-
tions rose with past piracy. The expanded specification offer gains in fit and assumption
plausibility that were robust across different deterministic and stochastic specifications, but
frequently lacked parameter certainty. Predictive performance is mixed. We find dynamic
estimates of piracy that are higher than static estimates at long time scales.

Givon et al. (1995) find that past piracy is an important internal influence on spread-
sheet diffusion. We strengthen their result, finding that piracy was the only economically
and statistically significant internal influence on spreadsheet diffusion, with no role for past
legal sales. Our finding is consistent across all specifications. Givon et al. (1995) also find
that piracy influenced word processor diffusion. In many specifications we obtain similar
results. However, when we allow for negative correlation between legal and pirate errors,
piracy is a negligible influence on diffusion and only serves to displace legal sales. The
negative correlation stochastic specification outperforms models with no correlation, and
is our preferred specification. We interpret the difference between the results on piracy’s
effect as being due to stochastic correlations being incorrectly ascribed to deterministic
links when no correlations are allowed.

In section 2 we present our model and in section 3 we look at the data and empirical
method. Results are in section 4 and section 5 concludes.

2 Model

In this section we present our model of diffusion with increasing marginal propensity to
pirate. The model is a small deterministic variation on the one described in Givon et al.
(1995), and a larger stochastic variation. It describes the joint evolution of a technology’s
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acquisition by legal and pirate means. The deterministic component is similar to a bivariate
Bass model in that either source or an external advertiser can inform a non-user about
the technology, who then adopts. The stochastic specification allows for correlation in the
adoptions by either route.

There is a population of agents of constant size m who are able to buy a computer.
The adoption process for computers follows a standard univariate Bass model. At any
time, some of the population will have acquired a computer, and the rest will not yet have
bought one and remain potential buyers. Initially, there are no owners. The potential users
are subject to external advertising, so that a fixed proportion p of them are contacted by
advertisers and then buy the computer in any time period. There is also a word-of-mouth
effect by which an additional share of potential adopters adopts in the period, where the
share is proportional to the number of previous adopters with constant of proportionality
equal to q/m. The diffusion pattern for computers thus follows the differential equation

dNt/dt = (p+ q
Nt

m
)(m−Nt) (1)

An agent can acquire a computer software product only if they own a computer. Of
the computer owning population, a number Zt of these potential software users will have
acquired the software and the remainder totalling Nt − Zt will not yet have acquired it.
They can acquire it only once. Initially there are no computer software users. The software
can be produced as a legal or pirate copy. The number of legal owners isXt and the number
of pirate owners is Yt, so Xt + Yt = Zt.

Non-users are subject to external influence so that they acquire legal copies at an
instantaneous rate of a. They are also subject to internal influences from current legal
and pirate owners. Legal owners influence them to acquire either legal or pirate copies
at a rate that is linear in the number of legal owners, b1Xt/Nt. Pirate owners influence
them to acquire software by either route at a rate linear in the number of pirate owners,
b2Yt/Nt. For non-users who are internally influenced to acquire the software, a share α
acquires the legal good, while the remaining 1− α intend to acquire a pirate copy. These
number of these motivated non-users who adopt the pirate copy is then either magnified
or diminished by the number of existing pirate copies. For example, it may be magnified
if current pirates make piracy more acceptable, or diminished if increased piracy leads to
anti-piracy measures being taken. The magnification or diminution is represented by a
multiplier applied to the number of pirate adopters, max(Yt−1, 1)

ǫ, depending on whether
ǫ is greater or less than zero. Givon et al. (1995) constrain ǫ = 0.

Thus, we have the following model
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dXt = (

[

a+ α
b1Xt + b2Yt

Nt

]

(Nt −Xt − Yt))dt+ dw1

dYt = (

[

(1− α)max(Yt, 1)
ǫ b1Xt + b2Yt

Nt

]

(Nt −Xt − Yt))dt+ dw2 (2)

where dw = (dw1, dw2) ∼ N(0,Qdt) is a normal error term with covariance matrix Qdt.
The explicit introduction of general errors and allowance for their covariance is a novelty
over the specification in Givon et al. (1995), or the sampling errors in Haruvy et al. (2004).
We consider their structure in the estimation section.

3 Estimation

In this section, we describe our empirical approach, presenting the data and estimation
method.

3.1 Data

The data we use is from Givon et al. (1995). It consists of legal sales of personal computers
using a DOS operating system, of spreadsheets, and of word processors in the UK, and
is reported monthly from January 1987 to August 1992 inclusive. As with Givon et al.
(1995), we assume that DOS personal computers were introduced in October 1981 and the
two software products were introduced in October 1982. These assumptions are used to
determine initial values for cumulative sales in January 1987.

3.2 Estimation by maximum likelihood

We now present the estimation method for our model and its restriction to the Givon et al.
(1995) pirate model. It is maximum likelihood estimation with tracking of the likelihood
function through an extended Kalman filter. The approach generates estimates of the joint
error structure in legal and pirate acquisitions, and parameter standard errors.

3.2.1 The extended Kalman filter with continuous state and discrete observations

The extended Kalman filter with continuous state and discrete observations operates on
state space models of the form
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dξt+1/dt = f(ξt,ut) + vt+1 (3)

zt = h(ξt) +wt (4)

where zt is a vector of variables observed at time t and ξt is a state vector of possibly
unobserved variables. ut is a vector of exogenous variables, while f and h are differentiable
functions. The error vectors vt+1 and ut+1 are mutually uncorrelated white noise, with
contemporaneous error variances given by E(vtv

T
t
) = Qt and E(wtw

T
t
) = R.

The filter generates repeated linear forecasts based on past data given at discrete in-
tervals, with forecasts generated recursively through a linearised approximation to the
continuous generating system. It proceeds by two steps at each period in a time series,
alternating between forecasting based on past data and projection based on current data.
It tracks the forecasted state variable ξt given data available at time t− 1 (when the fore-
cast is denoted ξt|t−1) and the projected state variable given data available at time t (the
projection is denoted ξt|t). The forecast mean squared errors are also tracked. They are
denoted Pt|t−1 = E((ξt − ξt|t−1)(ξt − ξt|t−1)

T ) and Pt|t = E((ξt − ξt|t)(ξt − ξt|t)
T ).

In detail, the filter stages are as follows.

Initialisation
Estimates are made of the state vector and its mean squared error matrix in the absence
of any information at time zero, that is, of ξ0|0 and P0|0.

Forecasting
Given ξt|t and Pt|t for any t, we integrate the equations

dξt/dt = f(ξt,ut) (5)

dPt/dt = FtP
T
t
+ PtF

T +Qt (6)

where Ft = df/dξT is the Jacobian of f evaluated at (ξt,ut). The integration is
performed from t to t + 1, with the initial ξt = ξt|t and Pt = Pt|t in the first and
second equations respectively. We set ξt+1|t and Pt+1|t to be the integrated values at the
corresponding end points. The forecasted value for the observation equation and its MSE
are then

zt+1|t = Hξt+1|t (7)

MSE(zt+1|t) = Ht+1Pt+1|tH
T
t+1 +Rt+1 (8)
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where Ht+1 = dh/dξT is the Jacobian of h evaluated at ξt+1|t.

Updating
Given ξt+1|t and Pt+1|t, we update the forecasts with data zt+1 at time t + 1 using the
formulae

ξt+1|t+1 = ξt+1|t +Kt+1(zt+1 − h(ξt+1|t)) (9)

Pt+1|t+1 = (I −Kt+1Ht+1)Pt+1|t (10)

where I is the identity matrix with dimension equal to the number of state variables,
and

Kt+1 = Pt+1|tH
T
t+1(Ht+1Pt+1|tH

T
t+1 +Rt+1)

−1 (11)

.

3.2.2 State space representation of the pirate diffusion model

We may represent our extended pirate diffusion model in the state space models with the
following definitions:

ξt =

(

Xt

Yt

)

(12)

f(ξt,ut) =

(

f1
f2

)

(13)

ut = 0 (14)

F =

(

F1,1 F1,2

F2,1 F2,2

)

(15)

vt =

(

ǫX
ǫY

)

(16)

zt =
(

Xt

)

(17)

h(ξt) = ξt (18)

H =
(

1 0
)

(19)

wt =

(

0
0

)

(20)

where the components of the vector f(ξt,ut) are given by
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f1 =

[

a+ α
b1Xt−1 + b2Yt−1

Nt

]

(Nt −Xt−1 − Yt−1) (21)

f2 =

[

(1− α)max(Yt−1, 1)
ǫ b1Xt−1 + b2Yt−1

Nt

]

(Nt −Xt−1 − Yt−1) (22)

and the components of the matrix F are given by the following expressions:

F1,1 =αb1 − a− 2α
b1
Nt

Xt−1 − α
b1 + b2
Nt

Yt−1 (23)

F1,2 =αb2 − a− α
b1 + b2
Nt

Xt−1 − 2α
b2
Nt

Yt−1 (24)

F2,1 =

[

(1− α)max(Yt−1, 1)
ǫ b1
Nt

]

(Nt −Xt−1 − Yt−1)

−

[

(1− α)max(Yt−1, 1)
ǫ b1Xt−1 + b2Yt−1

Nt

]

(25)

F2,2 =

[

(1− α)ǫmax(Yt−1, 1)
ǫ−1 b1Xt−1 + b2Yt−1

Nt

]

× (Nt −Xt−1 − Yt−1)

+

[

(1− α)max(Yt−1, 1)
ǫ b2
Nt

]

(Nt −Xt−1 − Yt−1)

−

[

(1− α)max(Yt−1, 1)
ǫ b1Xt−1 + b2Yt−1

Nt

]

(26)

.
The stochastic component of our model includes all sources of error. In contrast, the

formulations in Schmittlein and Mahajan (1982) and Basu et al. (1995) allocate all error
to differences from multinomial sampling of adoption timing. Thus, while both we and
these authors use maximum likelihood estimation, we are not susceptible to the type of
criticism levelled in Srinivasan and Mason (1986) that our error specification leads to
underestimation of errors.

Our general variance-covariance matrix specification allows for contemporaneous corre-
lation only and is given by
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Qt =

(

q1,1 q1,2
q1,2 q2,2

)

(27)

Rt = 0 (28)

for scalars q1,1, q1,2, q2,1, and q2,2.
We have assumed that the errors occur in the state equation rather than the observa-

tion equation, so that errors are persistent over time. This approach is consistent with the
accumulating errors used in estimation methods including OLS (Bass, 1969), NLS (Srini-
vasan and Mason, 1986; Jain and Rao, 1990), and MLE (Schmittlein and Mahajan, 1982;
Basu et al., 1995) specifications of the deterministic-stochastic Bass model.

The restriction on the R matrix reduces the number of parameters in our model. State
space models are typically underidentified in maximum likelihood estimation (Hamilton,
1994, pp.387-8). To achieve identification, we further restrict the parameters in the Q

matrix. Our initial specification sets q1,1 = q2,2 = σ2 for some constant σ2 and q1,2 = q1,2 =
0. Later, we consider alternative specifications for the fixed parameters.

The initial state vector ξ0|0 in January 1987 is generated by iterating on the system in
equation 2 from October 1982 using the parameters estimated in Givon et al. (1995). The
initial mean squared error matrix P0|0 is assumed to be the zero matrix, so the starting
state vector is known with certainty.

For the forecasting stage, we integrate equations 5 and 6 numerically over ten iterations.
We also require estimates of Nt. From equation 1, it follows a Bass model. Givon et al.
(1995) make the same assumption and fit the equation by non-linear least squares. We
retain their estimated parameters of p = 0.00037, q = 0.0316, and m = 15, 386, 100.

3.2.3 Maximum likelihood estimation

The one step ahead forecasts for the observation zt+1|t and its mean squared errorMSE(zt+1|t)
are described by equations 5 and 6. Given a distribution fZt

of the next observation de-
pendent on these two parameters, we may construct the sample log likelihood as

T−1
∑

t=0

logfZt+1
(zt+1) (29)

where the distribution fZt+1
is conditioned on zt+1|t and MSE(zt+1|t). Under the as-

sumption of normal distributions for ξ0|0, vt, and wt, the log likelihood is (Hamilton, 1994,
p.385)
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logfZt+1
(zt+1) =(2π)−n/2

∣

∣Ht+1Pt+1|tH
T
t+1 +Rt+1

∣

∣

−1/2

× exp{−(1/2)(zt+1 −Htξt+1|t)
T (Ht+1Pt+1|tH

T
t+1 +Rt+1)

−1

× (zt+1 −Htξt+1|t)} (30)

where |M | is the determinant of M and n is the dimension of wt.
We maximise the log likelihood function in equation 30 numerically. The maximisation

has to give estimates in feasible parameter regions, with positive q variance parameters,
a, b1, and b2 contact parameters that are positive and bounded by unity, and the same
for the α share parameter. We further constrain the ǫ parameter to lie between −0.2 and
0.2, the α parameter to be no larger than 0.02, and q1,1 not to exceed 109. Estimates
are comfortably within these domains, so they restrict the region for checking without
excluding probable solutions.

To constrain the variables to lie in the required domains, we map to them by functions
whose input variables are unconstrained (see Hamilton (1994, pp.146-8)). The functions
are φ = 0.2ǫ/(1 + |ǫ|), and φ = kλ2/(1 + λ2) with the other parameters replacing λ for
appropriate rescaling factors k. We then maximise the transformed functions with respect
to the unconstrained variables using a Nelder-Mead algorithm. We start the algorithm
from the parameter solutions in Givon et al. (1995). The solutions in the transformed
parameters give solutions in the original parameters.

The Hessian for the maximised transformed function yields second derivative estimates
of the standard errors for the transformed parameters. We can calculate standard error
estimates for the original parameters by calculating the Hessian with respect to the non-
transformed function. However, a flat likelihood function in a couple of the parameter
directions and limits on accuracy for numerically calculated second derivatives meant that
negative estimates of variance were occasionally produced in the non-transformed function
(but never in the transformed function). So we use variance estimates calculated from the
outer product of the score matrix at the original parameter values. The estimates were
invariably positive.

The estimation was implemented in the R programming language (R Development Core
Team, 2009) using the library packages MASS and numDeriv. We employed the Microsoft
Excel add-in Excel2LaTeX to generate the tables. The code is available from the author’s
website1.

1http://ebasic.easily.co.uk/02E044/05304E/mpp and diffusion.html
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4 Results

In this section we present our results. Subsection 4.1 gives estimates for our model and its
restriction with constant marginal propensity to pirate, as in Givon et al. (1995). Subsec-
tion 4.2 looks at the model’s out of sample performance, subsection 4.3 examines estimates
with alternative error specifications, and subsection 4.4 considers parameter estimates for
a qualitatively similar but functionally different model.

4.1 Parameter estimates

Table 1: Parameter estimates for our pirate model and the ǫ = 0 restricted
model

WP WP S S

a 0.00146 0.00151 0.00155 0.00148
0.00463 0.0048 0.00429 0.00262

b1 0.109 0.229 0.00176 0.00000
0.798 1.01 0.595 0.341

b2 0.0888 0.0962 0.0509 0.114 **
0.356 0.173 0.38 0.0547

α 0.163 0.124 ** 0.224 0.101 **
0.39 0.0596 1.36 0.045

σ2 0.0108 *** 0.0107 *** 0.00379 *** 0.00403 ***
0.00202 0.00203 0.000732 0.000756

ǫ 0.0226 0.0684
0.171 0.484

AIC 1287.0 1285.1 1217.0 1218.8
MSE (%) 100 100 95 100

Standard deviations are shown below the coefficients. *** de-
notes an p-value of less than 0.01, ** of less than 0.05, * of less
than 0.1. MSEs are expressed as percentages of the MSE for the
corresponding restricted model. σ2 is reported in units of 109.

Table 1 shows parameter estimates for our model and its restriction to the Givon et al.
(1995) model. In column one, our model is fitted to the word processor data. The a
parameter equals 0.00146, which is higher than the 0.0002 rate reported in Givon et al.
(1995). Our rates lie between the mean and median of estimates reported in the meta-
analysis of Bass curves in Van den Bulte and Stremersch (2004), whereas the Givon et al.
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(1995) estimate lies at the lower end of their range. Thus, we find that word processors
were subject to external influence to a more usual extent than is found in Givon et al.
(1995) (although the Van den Bulte and Stremersch (2004) data does not disaggregate
their reported figure by annual, quarterly, and monthly frequency of calculation, so the
sub-divided ranges may move closer to the Givon et al. (1995) figure). Thus, we find a
higher effect of external influence on diffusion. The b1 parameter equals 0.109, describing
the internal influence on sales by legal owners. The value is lower than in Givon et al.
(1995) where it is 0.135. Our estimate for the pirate internal influence parameter b2 is
0.0888, again lower than in Givon et al. (1995) at 0.135 too. Our α parameter is 0.163,
representing the proportion of internally influenced adopters who buy the legal software
when few past pirate copies have been made. It is higher than in Givon et al. (1995)
(0.144). The σ2 variance parameter is 10,800,000, giving an implied standard deviation
for legal and pirate acquisitions of 3,300 units per month. The ǫ parameter is 0.0226,
indicating that the marginal propensity to pirate rises as the number of pirates rises. This
is consistent with a hypothesis that increasing piracy prevalence makes it more viable or
acceptable for new adopters to acquire pirate copies. The significance of all parameters is
low, except for the error variance.

In column two, we set the ǫ parameter to zero to see how the parameters and fit adjust
compared with the model including it. The parameters on a, b2, and σ2 change little,
although the significance on b2 increases whilst remaining low. The b1 parameter rises to
0.229, with low significance. The α parameter drops to 0.124, and becomes significant at
five percent. The Akaike Information Criterion selects the smaller model over the larger
model, and the mean squared errors from the two models are almost identical indicating
no in-sample predictive benefit from including the ǫ term.

Column three reports parameter estimates for our model applied to the spreadsheet
data. The coefficient of external influence a is 0.00155, similar to that for word processors
and compared to 0.00069 in Givon et al. (1995). The legal owners’ influence parameter b1
is negligible, and far below the external influence parameter b2 of 0.0509. In Givon et al.
(1995), the estimated parameters are larger and comparable at 0.0976 for the b1 parameter
and 0.104 for b2. Our α parameter is 0.224 compared with 0.121 in Givon et al. (1995).
The error variance is 3,790,000 implies a standard deviation for monthly legal and pirate
acquisitions of 1,900 units per month. The estimate for the ǫ parameter is 0.0684, so that
the marginal propensity to pirate rises with the number of pirates. Except for the variance
parameter, significance is low.

Column four shows the model when ǫ is excluded. The a, b1, and σ2 parameters are
similar to the model with it. The b2 parameter rises to 0.114, and the α parameter drops to
0.101. Both are now significant at five percent. The Akaike Information Criterion selects
our model with variable marginal propensity to pirate, and the model offers a non-trivial
reduction in mean squared error.
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The performance of our model vis-à-vis the restricted model is mixed. The ǫ parameter
estimates are plausibly positive and low in value. With the word processor data, the extra
variable offers no improvement in fit and weakens the significance on the α parameter, but
not the other parameters. With the spreadsheet data, there are noticeable gains for the fit,
but the parameter significance worsens perhaps indicating that qualitative behaviour of the
larger model better describes the data but the functional form is not correctly specified.
We examine these issues in the next subsections.

A further notable point is the insignificance of the legal internal influence in any speci-
fication. The estimates point to the only possibly statistically significant internal influence
coming from past acquirers of pirate copies.

Figure 1 shows the predicted sales as generated by the Kalman filter at our estimated
parameters. The top panel shows the fitted sales for word processors in our model (column
one in table 1, with red dashes) and in the restricted model (column two, with green dots).
Our model fits the data better across most of the period except towards its end where
its predictions are lower than the restricted model, and far lower than the suddenly hiked
sales. The extra parameter available in our model allows for better fitting but comes at a
cost in that pirate sales dominate late in the period, if the optimal ǫ parameter is positive.
The legal sales are lower as a result. In the bottom panel, we see the fitted sales for
spreadsheets for our model (column three), and for the restricted model (column four).
The fit is comparable between the two models for most of the period, but at the end of the
period our model fits much better the sudden fall in sales. The reason for the relative fit
is that the extra flexibility in our model allows for comparable fit quality over most of the
curve, and then better fit to the late fall as pirate sales displace legal sales. The different
directions of the sales shifts at the end of the period explains why the mean squared error
for our model with the word processor data is the same as the restricted model, whereas
it is much lower with the spreadsheet data.

Figure 2 shows the same graphs with pirate acquisitions included. The top panel shows
forecast piracy for the word processor data. Our model, following the upper line with red
dashes, shows pirate acquisitions rising quickly to account for most software acquisition.
A similar path is shown for the restricted model, which is the upper line marked by green
dots. Piracy incidence in our model is slightly lower than that in the restricted model at
the start of the period but exceeds it later by another small amount, with the point of
equality occurring quite early on at the end of 1988. Our model includes the extra term
accelerating new pirate acquisitions at high rates of past pirate adoptions, so that early
piracy tends to be lower and late piracy higher than in the absence of the extra coefficient.

The lower panel shows the corresponding curves for the spreadsheet data. Our model
and the restricted model again show similar shapes. The restricted model has a shallower
increase, so that our model again forecasts lower incidence of piracy when its prevalence is
low, but greater incidence when its prevalence is high. Our model’s forecasts exceed those
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Figure 1: Predicted and actual sales for word processors (top) and spreadsheets (bottom). Red dashes are
for the model with estimated ǫ, green dots are for the model with ǫ set at zero
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Figure 2: Pirate acquisitions, predicted sales, and actual sales for word processors (top) and spreadsheets
(bottom). Red dashes are for the model with estimated ǫ, green dots are for the model with ǫ set at zero
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of the restricted model from early 1990, and the gap is moderately large at high piracy
prevalence. The larger gap for spreadsheets than word processors is due to the higher
estimated ǫ coefficient for the spreadsheet data.

4.2 Out of sample performance

This section compares the predictive performance of our model with that of the restricted
model. To do so, we re-estimated our model using data from the first 58 periods, retaining
the last ten periods for assessing out of sample fit. For the word processor data, the out of
sample period is marked by a large sales jump, while for the spreadsheet data the period
saw a possible sales growth slowdown.

Table 2: Parameter estimates in-sample and MSEs out of sample

WP WP S S

a 0.00183 0.00242 0.00164 0.00161
0.00187 0.00179 0.00336 0.00207

b1 0.00252 0.00000 0.00075 0.00001
0.239 0.194 0.587 0.305

b2 0.0594 0.145 *** 0.0556 0.106 *
0.128 0.044 0.406 0.055

α 0.291 0.105 *** 0.199 0.105 **
0.449 0.0219 1.17 0.0411

σ2 0.00413 *** 0.0053 *** 0.00309 *** 0.00314 ***
0.000263 0.000419 0.000473 0.000477

ǫ 0.0843 0.056
0.136 0.462

MSE, o.o.s. (%) 119 100 83 100

Standard deviations are shown below the coefficients. *** denotes an p-
value of less than 0.01, ** of less than 0.05, * of less than 0.1. MSEs out
of sample are expressed as percentages of the MSE out of sample for the
corresponding restricted model. σ2 is reported in units of 109.

The results are in table 2. Column one shows the estimates for our model applied
to the word processor data. The a parameter of external influence is 0.00183, a little
higher than the estimate over the whole range. The b1 internal legal influence parameter is
economically and statistically inconsequential. The b2 internal pirate influence parameter
is 0.0594, slightly below the whole domain estimate. The legal share parameter α is 0.291,
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Figure 3: Predicted and actual sales for word processors (top) and spreadsheets (bottom), with ten out-
of-sample periods. Red dashes are for the model with estimated ǫ, green dots are for the model with ǫ set
at zero
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far above the whole period value. The variance estimate σ2 is 0.00413, under half of the
full period estimate that includes the sudden sales growth. The estimate of the marginal
propensity to pirate parameter ǫ is 0.0843 compared with the full sample ǫ estimate of
0.0226. The parameter significance is generally low except on σ2, and very low on b1.

Column two shows similar parameters for the restricted model estimated on the word
processor data, without ǫ. The pirate internal influence parameter is fifty percent higher
than its full period estimate. The legal share parameter is a little lower. Both these
parameters become significant at one percent, unlike the full period estimate or the estimate
for the model with variable propensity to pirate.

Our model has a much higher out of sample MSE than the restricted model. Including
the variable marginal propensity to pirate worsens fit in this case. The positive ǫ coefficient
results in the share of pirate acquisitions rising over time and the share of legal acquisitions
falling, which leads to a far better fit than the restricted model over the in sample period
(figure 3, top panel). However, the curvature in our predicted sales curve means they lie
below the predicted sales of the restricted model after the unprecedented sales jump in the
out of sample period.

Column three has the parameter estimates for our model using the spreadsheet data.
The external influence, internal legal influence, and legal share parameter are all close to
their full period estimates. The internal pirate influence parameter is even smaller than
for the full sample, and the error variance parameter is moderately lower. The marginal
propensity to pirate parameter is also similar to the value for the whole period, and is
positive. Except the variance parameter, significance is low.

The spreadsheet parameter estimates with the ǫ parameter set to zero are in column
four. The estimated volatility is twenty percent lower, but otherwise the parameters are
similar to their full period estimates in size and significance.

The mean squared error in spreadsheet sales projection for our model is only 83 percent
of the MSE for the restricted model. In our model, the positive ǫ parameter means that the
share of new piracy rises as the number of past pirates increases, so that legal sales’ share
declines. Legal sales are lower in our model than in the restricted model during the sample
period, tracking the decline in actual sales (figure 3, bottom panel). The ǫ parameter is
quite high at 0.056, so that the gap is quite large which accounts for the size of the MSE
forecast gain.

The non-additive functional form meant that we could not verify the error correlation
assumptions necessary to run Clark-West tests (Clark and West, 2007) of the extra variable
offering no predictive gains. When the tests were run under uncertain assumption validity,
the null of no gains was rejected at ten percent for spreadsheets (assuming no autocorre-
lation in the data). Significance fell a little on allowing for first order autocorrelation.

Our model seems to capture behaviour over periods without large sales jumps better
than the restricted model. However, the restricted model offers more robust predictions

18



when faced with shocks biased against the general direction of movement. It is unclear,
based on the available data, whether such shocks are inherent to the system and occur
frequently. If they are and do, then more extensive misspecifications may be preferable to
less misspecified models if the partial misspecification decreases predictive accuracy after
the shock.

4.3 Alternative error specifications

Our model in equation 2 describes the errors in the legal sales and pirate acquisition series
by a bivariate normal distribution. In order to achieve parameter identification, our base
estimations restricted the variance-covariance matrix Q to be a multiple of the identity
matrix. In this section, we compare our estimates under other error specifications.

We consider four Q specifications, applied to the word processor and spreadsheet series
in turn. The first specification puts the variance for the larger pirate series to be twice
the variance for the legal series, so q1,1 = σ2 for some constant σ2, q2,2 = 2σ2, and q1,2 =
q1,2 = 0. The second specification allows for positive correlation between the legal sales
and pirate acquisitions, setting q1,1 = q2,2 = σ2 and q1,2 = q1,2 = σ2/2. Thirdly, we specify
negative correlation between the two series, so q1,1 = q2,2 = σ2 and q1,2 = q1,2 = −σ2/2.
In the fourth specification, heteroscedastic errors are allowed so q1,1 = q2,2 = Ntσ

2 and
q1,2 = q1,2 = 0, recalling that Nt is market capacity at time t, which we express in millions.

Our model was re-estimated with each of these variance specifications. The coefficient
estimates are given in Table 3. The word processor results are presented in the first four
columns. With doubled pirate variance in column one, the coefficients are similar to the
base estimates in value and significance. The marginal propensity to pirate rises a little
more quickly. The AIC and MSE are no different. For positive correlation in column two,
the estimated effect of legal internal influence is much larger (b1 = 0.334) than in the base
model. The marginal propensity to pirate declines as the number of pirate copies rises
(ǫ = −0.0147), unlike in the base estimates. The positively correlation provides a route
by which pirate acquisitions influence legal sales, and which can therefore account for the
diminished importance of the direct influence of piracy on diffusion in this estimation. The
AIC is higher for this specification and the mean squared errors are the same.

Column three shows the estimates with negative correlation. Parameter estimates for
external influence and variance within series are similar to the base estimate. However, the
estimates of the legal internal influence and the legal share parameter are much larger, at
0.381 and 0.226 respectively. Thus, for small times t the proportion of past legal adopters
who induce new legal adoptions is 0.381 × 0.226/Nt = 0.086/Nt. The estimated effect of
pirate internal influence is negligible. Taking also into account the number of new adoptions
induced by past legal adoptions and the size of the external influence parameter, the early
legal diffusion looks like a standard univariate Bass diffusion. The marginal propensity to
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Table 3: Parameter estimates with alternative error specifications

WP WP WP WP S S S S

Err. × 2 Pos. cor. Neg. cor. Het. err. Err. × 2 Pos. cor. Neg. cor. Het. err.
a 0.00139 0.00163 0.00123 0.00217 0.00163 0.00161 0.00157 0.00169

0.0046 0.00579 0.00701 0.00163 0.00493 0.00443 0.00407 0.00183
b1 0.0911 0.334 0.381 0.00007 0.000104 0.000989 0.000366 0.00232

0.786 1.59 1.49 0.293 1.36 0.719 0.495 0.367
b2 0.0864 0.101 0.000769 0.0518 0.103 0.0597 0.044 0.0524

0.386 0.378 0.0999 0.176 0.831 0.458 0.318 0.28
α 0.175 0.103 0.226 0.317 0.109 0.188 0.259 0.207

0.483 0.178 0.472 0.74 0.724 1.18 1.52 0.896
σ
2 0.0108 *** 0.0108 *** 0.0103 *** 0.00242 *** 0.004 *** 0.00385 *** 0.00375 *** 0.000936 ***

0.00198 0.00209 0.00206 0.000491 0.000813 0.000754 0.000716 0.000213
ǫ 0.0283 -0.0147 0.0454 0.0924 0.00776 0.0535 0.0826 0.0624

0.202 0.116 0.216 0.224 0.454 0.477 0.494 0.354

AIC 1287.0 1287.5 1286.4 1261.1 1220.4 1217.9 1216.1 1197.3
MSE (%) 100 100 98 104 105 101 99 101

Standard deviations are shown below the coefficients. *** denotes an p-value of less than 0.01, ** of less than 0.05, * of
less than 0.1. MSEs are expressed as percentages of the MSE for the base estimations (columns one and three of table 1).
σ
2 is reported in units of 109.
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pirate rises much more quickly in this specification than in the base model (ǫ equals 0.0454
compared with 0.0226). The AIC and MSE are lower. In this specification, piracy acts
primarily to displace legal diffusion without promoting it.

Column four shows the parameters for the model with heterogeneous errors. Compared
with the base model parameters, the external diffusion parameter is moderately larger,
as is the estimate of the series error variance. The legal internal influence coefficient is
negligible, and the pirate internal influence coefficient is much the same. The marginal
propensity to pirate rises much more quickly in this specification (ǫ = 0.0924). The AIC
is lower, but the MSE increases by a larger percentage.

Parameter estimates for the spreadsheet data are shown in columns five to eight. The
parameters for the double pirate error specification are shown in column five. The external
influence and legal internal influence parameters are much the same. The variance coef-
ficient is similar at 0.004. The pirate internal influence parameter is almost doubled at
0.103, while the legal share parameter is halved at 0.109. The rise in marginal propensity
to pirate is positive and low, with ǫ at 0.00776 compared with 0.0684 in the base spec-
ification. Significance is generally low, the AIC is higher and the MSE increases by five
percent.

In column six, the results are shown for the positive correlation error specification. The
parameter estimates are not too dissimilar from the base specification. The AIC and MSE
are higher. The parameters for the negative correlation error specification are shown in
column seven. The parameters are similar to the base specification, with the marginal
propensity to pirate parameter a bit larger. The AIC and MSE are both a little lower.
The parameters for the heterogeneous error specification are in column eight. They are
again similar to the base specification. The AIC improves by two percent and the MSE
worsens by one percent.

In summary, the alternative error specifications broadly support an increasing marginal
propensity to pirate. For both the word processor and spreadsheet data, the negative
correlation specifications reduce the AIC and the MSE. For the word processor data,
the resulting model shows piracy growing rapidly and making little contribution to legal
diffusion. Parameter significance is generally low.

4.4 An alternative model

4.4.1 The alternative specification

We noted earlier that our model gives plausible values for the ǫ parameter and some
improvements in fit, but with low parameter significance. In this section, an alternative
specification is examined that exhibits the same broad type of qualitative behaviour. The
aim is to see if better fitting parameters can be produced, or at least verification of the
qualitative outcomes.
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The alternative specification makes the legal share α decline as the number of cumulative
pirate adopters rises. The share of new internally influenced adopters who buy is revised
to α/(1+max(Yt, 1)

ǫ), where Yt is the number of pirates. The remaining share, 1−α/(1+
max(Yt, 1)

ǫ), acquires a pirate copy. We omit the piracy multiplier max(Yt, 1)
ǫ described

in the model in section 2. In the new model, piracy has no accelerating effect unlike the
earlier model, and instead only displaces legal sales.

Algebraically, the model is

dXt = (

[

a+ α
1+max(Yt,1)ǫ

b1Xt+b2Yt

Nt

]

(Nt −Xt − Yt))dt+ dw1

dYt = (

[

(1− α
1+max(Yt,1)ǫ

) b1Xt+b2Yt

Nt

]

(Nt −Xt − Yt))dt+ dw2

(31)

where dw = (dw1, dw2) ∼ N(0, dt2Q), and Q = σ2I(2).
We repeat the state space representation in section 3.2.2. Now the vector f is given by

f1 =

[

a+
α

1 + max(Yt−1, 1)ǫ
b1Xt−1 + b2Yt−1

Nt

]

(Nt −Xt−1 − Yt−1) (32)

f2 =

[

(1−
α

1 + max(Yt−1, 1)ǫ
)
b1Xt−1 + b2Yt−1

Nt

]

(Nt −Xt−1 − Yt−1) (33)

and the components of the matrix F are given by the following expressions:
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F1,1 =

[

α

1 + max(Yt−1, 1)ǫ
b1
Nt

]

(Nt −Xt−1 − Yt−1)

−

[

a+
α

1 + max(Yt−1, 1)ǫ
b1Xt−1 + b2Yt−1

Nt

]

(34)

F1,2 =

[

− ǫmax(Yt−1, 1)
ǫ−1 α

(1 + max(Yt−1, 1)ǫ)2
b1Xt−1 + b2Yt−1

Nt

+
α

1 + max(Yt−1, 1)ǫ
b2
Nt

]

(Nt −Xt−1 − Yt−1)

−

[

a+
α

1 + max(Yt−1, 1)ǫ
b1Xt−1 + b2Yt−1

Nt

]

(35)

F2,1 =

[

(1−
α

1 + max(Yt−1, 1)ǫ
)
b1
Nt

]

(Nt −Xt−1 − Yt−1)

−

[

(1−
α

1 + max(Yt−1, 1)ǫ
)
b1Xt−1 + b2Yt−1

Nt

]

(36)

F2,2 =

[

ǫmax(Yt−1, 1)
ǫ−1 α

(1 + max(Yt−1, 1)ǫ)2
b1Xt−1 + b2Yt−1

Nt

+ (1−
α

1 + max(Yt−1, 1)ǫ
)
b2
Nt

]

(Nt −Xt−1 − Yt−1)

−

[

(1−
α

1 + max(Yt−1, 1)ǫ
)
b1Xt−1 + b2Yt−1

Nt

]

(37)
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4.4.2 Results for the alternative specification

Table 4: Parameter estimates for the alternative model form

WP WP S S

a 0.0016 0.00167 0.00115 0.00135
0.0039 0.00391 0.00525 0.00271

b1 0.167 0.283 0.000853 0.00000
1.27 1.25 0.932 0.551

b2 0.11 0.0857 0.112 0.113
0.237 0.229 0.18 0.0854

α 0.246 0.245 *** 0.33 0.208 **
0.628 0.0947 2.43 0.0903

σ2 0.0108 *** 0.0107 *** 0.00403 *** 0.00407 ***
0.00209 0.00203 0.000827 0.000752

ǫ 0.000467 0.0503
0.326 0.664

AIC 1287.0 1285.0 1220.8 1219.4
MSE (%) 100 100 99 100

Standard deviations are shown below the coefficients. *** de-
notes an p-value of less than 0.01, ** of less than 0.05, * of less
than 0.1. MSEs are expressed as percentages of the MSE for the
corresponding restricted model. σ2 is reported in units of 109.

Table 4 shows the results of estimation for the alternative model. In column one, we see
the model fitted to the word processor data. The external influence parameter is 0.0016,
comparable with our estimate for our main model. The legal internal influence parameter is
0.167, higher than the main model estimate but comparable with Givon et al. (1995). The
same is true for the pirate internal influence parameter. The α parameter is larger than for
the main model, but the two are not directly comparable. In our model and for low values
of the ǫ parameter, the α parameter is twice the legal share. Error variance estimates are
unchanged. The ǫ parameter is positive, indicating the pirate share of internally influenced
adoption rises as the number of pirate copies rises. Parameter significance is low except
for variance. Column two fixes the pirate share, and produces almost the same estimates
as column two of table 1 whose specification is identical. Differences arise from slight
variations in numerical convergence. Including the variable marginal propensity to pirate
raises the AIC and does not change the MSE.

Column three reports the fitted parameters for the spreadsheet data. The external
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influence parameter is comparable with that in the main model, as is the negligible legal
internal influence coefficient and the error variance estimate. The pirate internal influence
parameter is 0.112, which is twice as high as for the main model and comparable with
Givon et al. (1995). The legal share is 0.165 after adjustment for comparison with the
earlier work, making it lower than in the main model but a little higher than in Givon
et al. (1995). The ǫ parameter is moderately positive, indicating rising marginal propensity
to pirate. Its significance, as for the other parameters except error variance, is low. As
shown in column four, the model with ǫ set to zero has much the same parameters as
the constrained main model. Its AIC is slightly lower, but has higher MSE than the
unconstrained model in column three.

In summary, the alternative model also identifies a rising marginal propensity to pirate
in the word processor and spreadsheet data. The model performance is not quite as good
as for the main model. Perhaps the acceleration of pirate sales due to piracy, which is
present in the main model but missing from this specification, captures an aspect of the
data generating process.

5 Conclusion

This paper has examined diffusion of computer software in the presence of piracy. It
has generally found that the marginal propensity to pirate rises with the number of past
pirate copies. It has found that piracy is responsible for most of the internally influenced
diffusion in the spreadsheet market in the period under examination. In the word processor
market, an error specification with negative correlation outperformed other specifications
and indicated that only legal sales were responsible for internally influenced diffusion.

A number of avenues for future work are suggested. One of them follows from noting
that a rising propensity to pirate alters the timing of welfare and profit emergence. Further
work could examine their dynamics and strategic behaviour undertaken by legal sellers in
order to manage piracy.

Including the marginal propensity to pirate in the pirate diffusion model offers gains in
fit and assumption plausibility. However, they were not entirely functionally convincing,
with low parameter significance possibly indicating lack of parsimony. Better specifications
of the deterministic components of the model could be sought.

Our model’s predictive performance was mixed. It underperformed the restricted model
after a large shock contrary to the general sales curvature. Further work could clarify
whether these shocks form error corrections to drifts away from the restricted model, or
are not systemically related to the models here. In the latter case, analysing the frequency
of shocks and their direction would help to clarify the probability and severity of predictive
underperformance.

More general specification of stochastic components has allowed us to strengthen Givon
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et al. (1995)’s and Haruvy et al. (2004)’s findings on spreadsheets and contradict them
on word processors. For the latter point, it is conceivable that the difference between the
results is that our allowance of negative error correlation strips out a source of interaction
which is forced to be included in the deterministic components of their model. Further
work could further distinguish between deterministic and stochastic interactions. It could
also allow for serial correlation, for example in a revised state space formulation.

Our work finds contrasting effects of past piracy on the word processor and spreadsheet
market. Qualitative studies could examine the reasons for the difference. Conceivably it
arises because of the presence of a dominant but declining word processor product (Word
Perfect) over the period without an equivalent in the spreadsheet market, or due to different
corporate strategies by market leaders.
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