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Abstract: 

Multi-staged R&D projects are copy-book cases of compound real options. Traditional compound option models 
assume a constant volatility over the lifetime of the project. Building on the n-fold compound option model of 
Cassimon et al. (2004), we extend this model to allow for phase-specific volatility estimates, while preserving 
the closed-form solution of the model. We illustrate the extended model with a case study of a real option 
valuation of a multi-stage software application project by a large mobile phone operator and we show how 
project managers can estimate phase-specific volatilities. 
 
Keywords: R&D, real options, compound option model, phase-specific volatility 

 

 
1. Introduction 

 
Research and development (R&D) and pilot projects constitute important resource allocation 
decisions within companies. They require considerable investment while their future payoff is 
highly uncertain. Yet they are crucial for future firm growth by opening up potential 
investment opportunities further down the road. It is now widely accepted in the literature that 
such projects should be valued and selected using real option methodology (Trigeorgis, 2000). 
More and more, real option models are becoming recognised as the alternative investment 
model that explicitly allows for incorporating strategic issues and operational flexibility in 
companies’ decision making (Guerrero, 2007). Real option modeling links the value of R&D 
and pilot projects with the market dynamics in which companies operate, with the way in 
which consumer demand for its products and services materializes and with its corporate 
strategy (Dai et al., 2007). In this article we focus on multi-stage R&D and pilot projects. 
 
Since a multi-staged project can be seen as a sequence of real options, it can be modeled as a 
compound option using the generalized n-fold compound option model of Cassimon et al. 
(2004). Since this compound option model assumes a constant volatility over the lifetime of 
the project, we extend this n-fold compound option model to allow for phase-specific 
volatility. At the same time we preserve the closed-form solution of the model. We then apply 
the model to value a project in the ICT sector that fits these characteristics, using an algorithm 
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developed in MatlabTM for computations. We zoom in on how project managers can 
practically estimate phase-specific volatilities in real-life business cases. In this way, this 
article contributes to the understanding of real option applications by showing that real option 
pricing formula are not just some fancy mathematical modeling, but can indeed be applied in 
reality. The case study therefore offers a valuable and practical toolbox for practitioners. 
 
The remainder of this paper is structured as follows. Section 2 provides a short literature 
review on the current stance of real option modeling of R&D investment decisions. The 
section also summarizes the literature on real option applications in the ICT sector as our case 
study is situated in this field. Section 3 extends the generalized n-fold compound option 
model to allow for phase-specific volatilities.  Section 4 applies the new model to a real-life 
case study to illustrate how the model works in practice. Section 5 concludes. 
 
2. Real Option Valuation of Corporate R&D Projects 

 
It is now standard literature that the use of a net present value (NPV) approach to allocate 
corporate resources through investment opportunities has inherent limitations. The now-or-
never decision of the NPV model assumes a firm to follow a rigid path once the investment 
decision is taken (Feinstein and Lander, 2002). In reality, in a competitive environment with 
uncertainty and change, projects will not materialize in the same shape as management 
expected initially. New information might arrive or certain sources of uncertainty might be 
resolved, making it valuable to companies to adjust their strategy along the way (Trigeorgis, 
1996). While the NPV model cannot handle operational flexibilities, real option models are 
well-equipped to incorporate more dynamic aspects in corporate decision-making (Guerrero, 
2007).  
 
Different theoretical types of real options have been developed in the early literature, such as 
options to delay (McDonald and Siegel, 1986), scale options (Trigeorgis and Mason, 1987), 
options to abandon (Myers and Majd, 1990) and growth options (Amran and Kulatilaka, 
1999). More recent literature applies real option models to project and company valuation in 
different sectors, such as to internet companies (Schwartz and Moon, 2000a), the service 
sector (Jensen and Warren, 2001), consumer electronics (Lint and Pennings, 2001), 
pharmaceutical R&D (Cassimon et al., 2004) or even criminal behavior (Engelen, 2004).  
 
An important field where real options can contribute significantly is in complex research and 
development decisions. Several papers therefore propose different solutions for modeling 
multi-phase R&D investment decisions. A first group of papers use numerical approximations 
to evaluate such investment projects. Kellog and Charnes (2000), Copeland and Antikarov 
(2001) and Shockley et al. (2003) use binomial lattice to value a multi-phase R&D investment 
decision. They use a constant volatility over all phases to calculate the upward and downward 
move of the underlying asset at each step, assuming a geometric Brownian motion for the 
underlying. Cortelezzi and Villani (2008) also consider R&D projects as multi-stage 
decisions, but they approach the valuation problem from a different angle. They model the 
R&D decision as a sequential exchange option, which allows the holder to exchange the 
underlying project for a stochastic exercise price, and solve the valuation problem by Monte 
Carlo simulations. Their model allows for uncertainty both in the gross project value and in 
the investment costs, each of which follows a geometric Brownian motion and assumes a 
constant volatility. Schwartz (2004) also uses a Monte Carlo simulation based on the 
Longstaff and Schwartz (2001) procedure to value pharmaceutical R&D projects with a 
constant volatility.  
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A second group of papers handles the multi-phase R&D valuation problem with closed-form 
models. Perlitz, Peske and Schrank (1999) and Jensen and Warren (2001) solve the valuation 
problem of a multi-phase R&D project by breaking down the complex R&D process in two 
simplified phases in order to be able to apply the two-period compound option model of 
Geske (1979). Cassimon et al. (2004) introduce a generalized n-fold compound option 
approach for multi-phase pharmaceutical R&D projects. This model provides the R&D 
manager with all decision points at each milestone where a decision can be taken whether it is 
worthwhile to invest further in the project. Instead of explicitly using multiple phases of an 
R&D project, Wu and Yen (2007) model the valuation problem as a jump-diffusion process. 
In contrast to a clearly structured R&D project with specific phases, the use of a Poisson 
model with random jumps over the lifetime of the project gives the decision-maker less 
control over the occurrence of the different phases and thus renders a more crude 
approximation of the exact timing of the different phases. All of the above closed-form 
models assume a constant volatility over the lifetime of the real option. 
 
Real options have also been applied to a wide range of ICT investment problems. Early 
applications include Dos Santos (1991) who applied real options to ISDN investment projects 
and Favaro et al. (1998) who examine the use of real options to evaluate software reuse 
investment. Taudes (1998) applies a real option framework on growth options of a software 
application, while Benaroch and Kauffman (1999, 2000) apply a simple Black-Scholes option 
model to analyze the optimal timing of introducing a point-of-sale debit service by the 
Yankee 24 shared electronic banking network of New England (US). 
 
Some papers focused on more general approaches. Erdogmus (1999) discusses the 
contributions of real options in the valuation of complex options in software development. 
Benaroch (2002) and Benaroch et al. (2006) use a binomial approach to value multi-stage IT 
investments and show that applying a simple Black-Scholes model does not correctly value a 
project because it does not handle all embedded multi-stage options. Schwartz and Zozaya-
Gorostiza (2003) develop a general approach to handle the valuation of IT investment projects 
under uncertainty. Dai et al. (2007) use some analytical approximation to value IT 
infrastructure projects, while Kumar (2002) uses a Margrabe (1978) type of model to manage 
risks of IT projects from a real options perspective. 
 
Other papers apply real options to different case studies. Basili and Fontini (2003) calculate 
the real option value of 3G telecom licences (UMTS) in the UK by means of a standard 
Black-Scholes model, while Taudes et al. (2000) apply real option modeling to a case study of 
a European car parts manufacturer to decide whether or not to upgrade its software platform 
from SAP R/2 to SAP R/3. In a similar way Elnegaard and Stordahl (2002) discuss the 
optimal timing to move from ADSL towards VDSL for a cable operator. Bardhan, Bagchi and 
Sougstad (2004) use a Margrabe model to value and choose among 31 IT projects of a large 
US-based energy utility company. 
 
Kenyon and Cheliotis (2002) use real option modeling to value so-called ‘dark fiber’. It refers 
to the capacity of existing optical fiber which is currently not in operational use. As it is an 
example of an asset that generates no revenue at the moment, but may do so in the future but 
only after a specified amount of extra investment, real option models are used to solve this 
business case. Iatropoulos et al. (2004) discuss the valuation of optical fiber investment as 
well. They analyze the economic potential and risks of establishing a broadband network 
along the longest motorway in Greece (680 km). D’Halluin et al. (2007) solve the problem of 
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the optimal timing to add capacity to a wireless network by a numerical real option approach. 
Angelou and Economides (2009) combine real option thinking and analytic hierarchy process 
to growth options provided by investments in broadband technology, while Kauffman and 
Kumar (2008) use a jump diffusion process to model network effects of technology 
investments. 
 
Typically, the above studies have in common that they show that traditional valuation models 
such as NPV undervalue IT investments and they subsequently demonstrate the added-value 
of using a real option model to solve the investment problem. They do differ in the choice of 
option-type models to handle the business case and use a wide range of models such as the 
Black-Scholes model (Benaroch and Kauffman, 1999; Elnegaard and Stordahl, 2002; Basili 
and Fontini, 2003; Iatropoulos et al., 2004), binomial trees (Favaro et al., 1998; Benaroch et 
al., 2006; Kenyon and Cheliotis, 2002), the Margrabe model (Dos Santos, 1991; Kumar, 
2002; Bardhan et al., 2004) and numerical and analytic approximations (Taudes et al., 2000; 

Dai et al., 2007; D’Halluin et al., 2007). However, all of the proposed approaches in the above 
literature have one thing in common: they all assume a constant volatility of the project return 
over the life time of the real option.  
 
Although it is understandable for reasons of simplicity to assume one constant volatility 
estimate over the lifetime of the project, in reality the volatility of a project will vary over its 
different development phases. In a real-life business case one often sees the case in which the 
volatility of the project return declines over time. This is the case when management will 
learn more about certain sources of uncertainty (e.g. the market potential) as time elapses and 
it will be translated into a decreasing volatility metric in the later phases of the project. If we 
experience such a volatility pattern over the lifetime of a project, assuming one constant 
volatility metric will overvalue the economic potential of the project. This valuation bias can 
be an important element in the selection of the project, especially for projects at the margin or 
for competing projects in a firm’s investment portfolio. It might also contribute to 
misevaluations of the value of the project and the company, for instance during new financing 
rounds with outside investors. 
 
Although some papers (e.g. Benaroch et al, 2006; Dai et al., 2007) try to mitigate this problem 
by performing a sensitivity analysis, it becomes clear that the best solution is to incorporate 
different volatilities per phase in the development process of the project. In this article, we 
add to the existing literature on multi-phase real options by including phase-specific volatility 
estimates in compound option valuation models. Our model is most closely related to 
contemporaneous papers as Agliardi and Agliardi (2005) and Lee et al. (2008). Agliardi and 
Agliardi (2005) develop a generalized formula for multi-fold compound option pricing with 
time-dependent parameters. They offer an explicit pricing formula solving N nested Black-
Scholes differential equations with multivariate normal integrals. Lee et al (2008) further 
explore the correlation among the multivariate normal integrations and allow both for put and 
call compound options. Our pricing formula with deterministic volatility measures per phase 
is a partial case of these more generalized cases of time-dependent volatility formulas. 
However, allowing managers to think in terms of average volatilities per phase is more 
realistic than demanding managers to incorporate a stochastic volatility. In this way, our 
pricing model is better suited for handling practical, real-life cases. Moreover, the nonlinear-
nested high-dimension integrals in the more generalized case make the practical computation 
very difficult. Especially when the fold number increases, the accuracy and convergence of 
the numerical solution stays an open issue.  
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3. Compound Real Options in Software Development 
 
The development of a new software application consists of several typical phases: it starts 
with the software design phase, followed by the programming or coding phase, a testing phase 
and ultimately the launch or commercialization phase (Wysocki, 2006; Rittinghouse, 2004; 
Stellman and Green, 2005). Software development can therefore be seen as a chain of options 
as is visualized in Figure 1. The initial project in which a new software tool is considered as a 
particular business solution, i.e. the conception phase, can be seen as an option on the 
software design phase. If this conception phase turns out to be successful, the software design 
phase is started; otherwise the project is being discontinued. Software design involves making 
a plan for the business solution, its aim, its specifications and the architecture of the 
programming. It will focus on elements such as the maintainability of the software 
application, the compatibility with other software applications within the company, the 
extensibility to allow for future software application opportunities, the user-friendliness, and 
security issues. 
 
The software design phase itself is an option on the coding phase. Software coding refers to 
the process of translating processes into a computer programming language in a way that a 
computer can execute specific orders. If the coding phase is successful the project moves to 
the testing phase; if not, the project is again abandoned. During software testing the new 
application is analyzed to see whether it performs as expected. Typically, during this phase 
software bugs and errors are detected and cured (Burnstein, 2003). This testing phase is again 
an option on the launch of the software.  
 
Therefore, analyzing a software application as a solution to a certain business case can be 
viewed as a chain of options: 

(a) decision to start design phase – first option; 
(b) decision to start coding phase – second option; 
(c) decision to start testing phase – third option; 
(d) decision to launch the new software solution – fourth option. 

When considering the software development process in this way, compound option analysis 
can be used for the valuation. The start-up of the project, being a 4-fold compound option on 
the launch or commercialization phase, cannot be valued using the traditional compound 
option model of Geske (1979), since it only offers a closed-form solution for a 2-fold 
compound option. Cassimon et al. (2004) developed a generalized compound option model to 
value compound options of the order higher than two. Such a closed-form solution for an n-
fold compound option is preferred over numerical approximations which are often used to 
value R&D or pilot projects1.  
 

                                                
1 A closed-form expression offers a mathematical solution in terms of functions and mathematical operations. 
This analytical solution has the form of x=f(a,b) and gives the theoretical solution for an option valuation 
problem within a set of assumptions. Numerical approximations, including lattice approaches and Monte Carlo 
simulations, only offer an approximation of the true theoretical value. In this way, a closed-form solution is 
preferred over numerical approximations since it gives the true value directly. Obviously, a closed-form solution 
is not always available to handle all real option valuations. In such cases, numerical approximations are 
preferred. For instance, lattice approaches are more flexible to handle more complicated, real-life cases. Monte 

Carlo simulations can also be helpful when estimating input parameters. 
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Figure 1. Typical compound option phases in software development  
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This compound option approach however assumes a constant volatility over the life-time of 
the real option. In reality this is usually not the case. It is more realistic to assume that the 
volatility of the project returns varies over the lifetime of the real option. Therefore we need 
to take into account phase-specific volatility measures. We therefore extend the basic n-fold 
compound option model of Cassimon et al. (2004) by incorporating phase-specific volatility 
measures. If C1(V,t) represents the n-fold compound call option, the closed-form solution of 
the compound option adjusted for phase-specific volatilities can be written as follows:  
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where 
ti: maturity date for the compound call option Ci, 
Ki: exercise price for the compound call option Ci, 
Ci: current value of the compound call option with the underlying compound option Ci+1 and 
with the boundary condition Ci(V,ti) = max(0,Ci+1(V,ti)-Ki), 
Nn(a1,…,an;R): n-variate cumulative normal distribution function with ai as upper limits and R 
as the correlation matrix,  
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2

iσ : variance of the project return for phase i, with i=1, …, n. 

r: risk-free interest rate, and  
V: current value of the underlying project. 
 
Appendix A offers the full mathematical proof to derive a closed-form solution for an n-fold 
compound option model with phase-specific volatilities. Subsequently, the model can be 
programmed for concrete calculations using computational software. As part of this paper, the 
authors programmed the model algorithm in MatlabTM to show the actual implementation of 
the extended model on a practical business case. Appendix B provides the full description of 
the algorithm in Matlab code. In this way, practitioners can not only replicate our calculations, 
but also apply the model to real-life valuation problems. 
 
In the next section we apply the n-fold compound option model with phase-specific 
volatilities on a real-life R&D case of a large ICT company and compare it to the standard 
case of the n-fold compound option model with constant volatility. 
 

4. Example of Compound Real Option Valuation 

 
In what follows, the generalized n-fold compound real option valuation model with phase-
specific volatilities is applied to a real-life R&D project of a large mobile phone operator in 
Europe. For reasons of confidentiality, its name, product references and figures are modified. 
 
The calculations examine the business case of a large European mobile phone operator 
developing a payment system through mobile phones. Instead of paying cash or with credit 
card, consumers are expected to increasingly use their mobile phones for payments. 
Especially in business-to-consumer mobile commerce mobile payment is expected to take off 
in the coming years (Chen and Nath, 2004; Hsieh et al., 2008; Laukkanen, 2007; Smith, 
2006). Broadly speaking, two forms of mobile payment systems can be distinguished: SMS-
based mobile payment and contactless mobile payment.2  
 
SMS-based mobile payment is a remote payment system in which the outcome of the 
transaction is communicated to the consumer as a text message (Chen, 2008).3 Panel a of 
Figure 2 shows that the mobile phone makes a long distance contact with a base station 
antenna. The transaction is usually billed through operator billing, credit card or direct debit 
billing. This payment method has been used intensively for mobile content such as ringtones, 
games, logos and online information retrieval. It is also used, for instance, for the purchase of 
tickets for public transport: in Belgium the public transport company De Lijn uses SMS-
ticketing for the purchase of a one-time bus ticket, while Deutsche Bahn uses MMS-ticketing 
for the purchase of train tickets in Germany.4 

                                                
2 Petrauskas and Zumaras (2008) use a similar classification of remote versus proximity mobile payment 
systems.  Juniper (2008a) classifies mobile payments in remote payments where the retailer is remote to the 
mobile phone user and Physical Point-of-Sale payments when the retailer is physical and the user is located at or 
near the retailer. The latter can be SMS-based or contactless. 
3 Alternatively, payments through WAP, GPRS, UMTS or other online mobile internet access are also used. 
4 See http://www.delijn.be/verkooppunten/sms_ticketing_copy.htm and 
http://www.deutschebahn.com/site/bahn/en/travelling/tickets/ticket__booking/ticket__booking.html. 
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Figure 2. SMS-based versus NFC-based mobile payment systems 
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Contactless mobile payment is a proximity payment system with an operating distance under 
20 cm and no contact with a base station antenna (Panel b of Figure 2). In Europe and the 
U.S. mainly the short-range wireless communication technology Near Field Communication 
(NFC) is used for this type of mobile payments (Kostakos and O’Neill, 2007).5 A mobile 
phone with an embedded contactless chip will make automatic or manual initiated 
communication with an NFC reader within a short distance (Chen, 2008). This is a convenient 
and fast payment system for low value transactions at manned Point-of-Sales such as kioks or 
fast food restaurants or unmanned Point-of-Sales such as soda vending machines, movie 
tickets, or parking tickets (Petrauskas and Zumaras, 2008). Early pilot projects of business 
applications might include mobile payment for car parking in cities, purchase of tickets for 
public transport, payment in cinemas and payment for sport events (Juniper, 2008c). For 
instance, in France telecom operator Bouygues Telecom launched a pilot project using mobile 
phones as travel passes on the metro network in Paris; in the U.K. Manchester City Football 
Club launched a similar pilot project.6 The commercial potential of NFC is important as NFC 
mobile payments are estimated to exceed $75 billion globally by 2013 (Juniper, 2008b). 
Ondrus and Pigneur (2007) discuss the market potential of NFC in more detail. 
 
Although the mobile phone operator in our case study believes in this business case, the 
company will only take a decision during or at the end of the development of the supporting 
software application. At the moment of starting the project the market potential and consumer 
adaptability is still uncertain. Chen (2008) and Gerpott and Kornmeier (2009) discuss critical 
issues in consumer acceptance of mobile payments. However, over time, the mobile phone 
operator will be able to learn more about the commercial viability of the project. At each stage 
of the process, the company has a clear decision moment to decide to abandon this project or 
to move ahead and finally launch the new payment service.  
 
At the moment of analysis (the start of 2008), the project was assumed to enter the software 
design phase in the third quarter of 2008, and, in case of success, move to the coding phase in 
the fourth quarter of 2008 and the testing phase in the second half of 2009, and, again in case 
of success, a commercial product launch starting in 2010. The project’s valuation accounts for 
a commercialization cycle lasting until 2015. The costs of the development phases and the net 

                                                
5 In Japan the alternative communication technology FeliCa is used. For more technical details, see Juniper 
(2008b). For more use of NFC in retail, see Resatsch et al. (2007). 
6See http://www.contactlessnews.com/2005/10/26/first-in-france-axalto-and-bouygues-telecom-integrate-navigo-
travelcard-into-mobile-phone/ and http://www.cardtechnology.com/article.html?id=200608306K5P5YCW.   
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cash flows of the commercialization phases are estimated using internal company 
information. Table 1 provides an overview of the different cash flows which project managers 
expect the project to generate at each phase of its development. The first two columns provide 
information of the phase and the year of occurrence. Column three presents summary 
information of these costs for the different phases (i), with estimates being calculated as 
beginning of period (t) present values (Ii,t). Column 4 presents information on the expected 
value of the project, i.e. the net operational cash flows of the project for the different phases i, 
calculated as beginning of period (t) present value, Vi,t. For this project, operational cash 
flows are only generated from the launch of the commercialization phase on.  
 
Table 1. Project characteristics  

Phase Year I i,t Vi,t 

Conception  2008 -1.4  

Software design 2008, 3Q -12.4  

Coding 2008, 4Q -21.6  

Testing 2009, 2H -10.1  

Launch 2010 -32.3 103.94 
Legend: Ii,t is the present value of the development cost or the commercialization cost for each project phase i, 

calculated as its present value at the start-of-period t, discounted at the firm’s weighted average cost of capital 

(wacc) of 10%. Vi,t is the expected project value, i.e. the operational cash flows for each project phase i, 

calculated as its present value at the start-of-period. I and V are in million EUR. 

 
While the generalized n-fold compound option approach assumes a constant volatility over 
the life-time of the real option, it is more realistic to assume that the volatility of the project 
returns varies over the lifetime of the real option. Therefore, section three extended the basic 
compound option model to allow for phase-specific volatilities. 
 
The estimation of the project’s volatility is not an easy task in the whole valuation exercise. 
To obtain a reliable estimate for this project a combination of expert opinions and matching 
the risk characteristics of the project with past projects of the mobile phone operator was 
used. We use a concrete methodology developed by Arnold and Shockley (2001) and 
Shockley (2007). In this methodology, the project management team is asked to provide a set 
of project value scenarios and is then asked to attach subjective probabilities to each of these 
scenarios, expressed as the likelihood that the realized project value is higher (for good cases), 
or lower (for the worst case scenario) than the particular scenario. These subjective 
probabilities are then compared to the computed theoretical probabilities under a normal 
distribution, using the project’s parameters, for a range of volatilities. The particular volatility 
selected is the one that provides the optimal match between both sets of probabilities. In this 
paper, this methodology is repeated for each of the phases, providing an optimal phase-
specific volatility. Appendix C provides a detailed overview of the methodology used to 
compute these specific phase-dependent volatilities.  
 
Applying the methodology to our case selects an estimate of 54% to be a realistic volatility of 
the project return at the early stage of the project. However, the project managers expect to 
learn more about the commercial profitability of the project in the second half of 2008. 
Therefore, they believe a volatility estimate of 42% for the coding phase accurately reflects 
the lower uncertainty. As time elapses and the company will learn more about the market 
potential of mobile payments, the input volatility metric will decrease to 37% during the 
testing phase and 35% during the launch phase. This declining volatility is more realistic for 
such projects than assuming a constant volatility. Note that even though the project team 
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assumes a decreasing volatility of the project return over the life-time of the project, 
obviously other volatility patterns can be incorporated in our model. 
 
Table 2. Valuation of the project according to the n-fold compound option model with phase-

specific volatility 

Phase Year ti Ki σσσσi V0 4-fold COV 

1.Software 
design 

2008, 3Q 0.5 12.4 0.54   

2.Coding 2008, 4Q 0.8 21.6 0.42   

3.Testing 2009, 2H 1.5 10.1 0.37   

4.Launch 2010 2 32.3 0.35 85.9 20.14 
Legend: ti is the maturity date for the compound call option Ci (expressed in years), Ki is the exercise price for 

the compound call option Ci,; V is the current value of the underlying project; σi is the phase-specific standard 

deviation of the project return and COV is the compound option value based on 4-fold compound option model. 

Ki,, V and COV in million EUR. The risk-free interest rate amounts to 3.5%. 

 
Table 2 summarizes the input parameters for the calculation of the 4-fold compound real 
option value of this project. The first column of Table 2 refers to each development phase, 
while the second column gives the estimated year of reaching that phase. For each phase, the 
fourth column gives its after-tax development cost. This is the exercise price of each real 
option in the chain of the compound options (Ki ). For instance, it is expected that the project 
moves to the coding phase in the fourth quarter of 2008 (t2 = 0.8) at a cost of EUR 21.6 
million. The current value of the underlying project net cash flows, measured in present value 
at the start of the project, V0, amounts to EUR 85.9 million7, and the risk-free interest rate is 
equal to 3.5%. The volatility estimates for each phase can be seen in column five of Table 2. 
As already indicated in the previous section, the model was programmed in MatlabTM 
(Appendix B provides the full description of the algorithm in Matlab code). Plugging all 
parameters in the extended n-fold compound option model yields a compound option value of 
EUR 20.14 million. Subtracting the cost of starting-up the project (EUR 1.4 million, see table 
1) yields a total project value of EUR 18.74 million. 
 
To what extent does using phase-specific volatilities changes the option value of the project, 
compared to using a single volatility? In order to answer this question, we also computed the 
real option value of the project using the standard single-volatility compound option model. 
Table 3 provides again an overview of the basic parameters, and the resulting option value. 
  
Table3. Valuation of the project according to the n-fold compound option model with constant 

volatility 

Phase Year ti Ki V0 4-fold COV 

1.Software 
design 

2008, 3Q 0.5 12.4   

2.Coding 2008, 4Q 0.8 21.6   

3.Testing 2009, 2H 1.5 10.1   

4.Launch 2010 2 32.3 85.9 22.19 
Legend: ti is the maturity date for the compound call option Ci (expressed in years), Ki is the exercise price for 

the compound call option Ci,; V0 is the expected value of the underlying project estimated as the start of the 

project (2008) value and COV is the compound option value based on 4-fold compound option model. Ki, V0 and 

                                                
7 This is equal to the expected value of the project V as expressed in present value terms at launch (103.94 
million, see column 4 of table 1) discounted to the beginning of 2008 at the firm’s wacc of 10%.   
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COV in million EUR. The constant standard deviation of the project return (σ) is estimated to be 54%. The risk-

free interest rate amounts 3.5%. 

 
In this case the volatility of the project return as measured by its standard deviation is 
assumed to be constant over the lifetime of the project and is estimated to be 54%. Using the 
different parameters in the 4-fold compound option renders a compound option value of EUR 
22.19 million. Since finishing the conception phase costs approximately EUR 1.4 million, the 
net project value amounts to EUR 20.79 million. This results seems logical compared to the 
EUR 20.14 million EUR project value of the phase-specific n-fold compound option model 
since this model involves lower volatility estimates in the later phases of development 
compared to the case that assumes the highest volatility estimate of 54% in all phases. This is 
normal as standard option theory predicts a lower option value given a lower volatility of the 
underlying asset. 
 
For this project, the valuation analysis shows that assuming one constant volatility metric over 
the lifetime of the project slightly overvalues the economic potential of the project. Whether 
this bias is serious enough to distort valuation and project selection procedures largely 
depends on the difference between the actual volatilities at each phase compared to the level 
of the assumed constant volatility. In our example using one constant volatility overestimates 
the real option value by more than 10%. Although it did not change the decision to invest in 
the project in our example, it might be an important issue in valuing the company (or the 
project) in a financing round with new outside investors. 
 
5. Conclusions  

 
In this article we apply compound option valuation methodologies to a specific multi-phase 
software development project in the ICT sector. In order to obtain a more realistic project 
evaluation tool to help management to control the software development process, we extended 
the basic generalized n-fold compound option model of Cassimon et al. (2004). The extended 
model allows volatility to vary along the different phases of the software development 
process. Such approach matches more real-life cases as most of the times the volatility of the 
project returns will vary over the lifetime of the real option. The extended model with time-
varying volatility measures was illustrated by a real-life case of a European mobile phone 
operator. In this particular case, using phase-specific volatilities resulted in a real option value 
of 18.74 million EUR, which is about 10% lower than the option value calculated using a 
fixed volatility over the lifetime of the project (20.79 million EUR). Although, in this case, 
the results did not alter the basic decision to go ahead with the project, this extended approach 
does provide us with a more accurate value of the project, which is crucial when one wants to 
accurately value the firm’s net worth. Furthermore, it developed a concrete methodology to 
calculate these phase-specific volatilities by calibrating subjective probabilities by the project 
management team under different project value scenarios to the theoretical probabilities under 
a normal distribution, and then selecting that particular volatility that provided the optimal 
match between both sets of probabilities. Furthermore, the application to a concrete case also 
shows that this extension can be easily integrated in existing software used to value these 
multi-stage compound option projects.        
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Appendix I. Proof of the valuation formula of the n-fold compound option with phase-

specific volatilities 
 
Let C1(V,t) be the price of a compound call option of order (k+1). Then the following formula 
is valid: 
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with C1(V,t1) = max (0, C2(V,t1)-K1) as boundary condition.  
 

Silverman (1999) shows that a PDE such as 
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Using the Green’s function as delta-function8, the expression for ( )spx ,~ can be written as: 
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A substitution of 
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In these calculations the new integration boundaries can be found as: 
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while for 1,...,3,2 += k� we get: 
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An application of theorem A.1 in the first integral leads to the final expression for ( )spx ,~ : 
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Lemma A.1. 
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by the use of the principle of partitioning. 
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Theorem A.1 

Let Nk be the k-variate normal distribution function and Nk-1 the (k-1)-variate normal 
distribution function, the following expression can be determined between Nk and Nk-1: 
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and where for convenience we put N0 = 1. 
 
Proof by induction: 

For k=1 the result is straightforward. 
For the second part of the proof we first rewrite the integral as 
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In this formula, we introduced the matrix: 
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Since we want to express the k-variate integration by means of a k-variate normal CDF, we 
now have to determine the correlation matric C with: 
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An application of lemma A.1 and A.2 leads to 
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Appendix B. Matlab function for the calculation of the n-fold compound option with 

phase-specific volatility 
 

function P=Price(V,r,vol_i,t00,t_i,K_i,init); 
% the function computes the price of an n-fold compound option 
% the input is:  
% 1)V - current price of the underlying asset 
% 2)r - interest rate (input as a log form) 
% 3)vol_i - (n,1) volatilities vector of the underlying assets 
% 4)t00 - today date 
% 5)t_i - (n,1) vector of exercise dates 
% 6)K_i - (n,1) vector of strikes 
% 7)init - number that adjusts initial values in finding the zeros of 
% the nonlinear functions below. This number is subject to change.  

% A rule of thumb is to put init to be equal to the number of digits in 

% K(n,1). If it does not work and the function collapses init or qq 

% below should be adjusted manually. 
format long 
t=t_i;K=K-i;vol=vol_i; 

n=length(t); %computes the dimension of the problem 
qq=init; 
C=zeros(n,1);initial=K(n,1)*qq; 
Vbar=zeros(n,1); 
N=zeros(n,n);N1=zeros(n,n); 
a=zeros(n,n);a0=-inf.*ones(n,n); 
b=zeros(n,n);b0=-inf.*ones(n,n); 
h=zeros(n,n);h1=zeros(n,n);  
Vbar(n,1)=K(n,1);  
for s=n:-1:2 %loop for finding Vbar_s 
    current=s-1; 
    t0=t(current,1); 
    options=optimset('Display','off'); 
    Vbar(s-1,1)=fzero(@Price_ss,initial,options,s,Vbar,r,vol,t0,t,K); 

%finding Vbar_s-1 
%the initial values change through the loop  
    initial=Vbar(s-1,1)*qq; 
    [c1,h1,a1,b1,N1,w2,w1]=Price_s(V,s,Vbar,r,vol,t0,t,K); 
    C(s,1)=c1;h(s,:)=h1;a(s,:)=a1;b(s,:)=b1;N(s,:)=N1; 
end     
k=1; %finding the price 
[c2,h2,a2,b2,N2,w4,w3]=Price_s(V,k,Vbar,r,vol,t00,t,K); 
C(k,1)=c2;h(k,:)=h2;a(k,:)=a2;b(k,:)=b2;N(k,:)=N2; 
P=C(k,1); 
% 

% end Price 
 

 

function ww=Price_ss(V,s,Vbar,r,vol,t0,t,K); 
ww=Price_s(V,s,Vbar,r,vol,t0,t,K)-K(s-1,1); 
% 
% end Price_ss 
 

 

function [P_s,hh,aa,bb,NN,w2,w1]=Price_s(V,s,Vbar,r,vol,t0,t,K); 
% this function computes P_s, given s,V,Vbar,r,vol vector,t0, t vector 

% and K vector 
rand('seed',0); 
nn=length(t);    
NN=zeros(1,nn); 
aa=zeros(1,nn);aa0=-inf.*ones(1,nn); 
bb=zeros(1,nn);bb0=-inf.*ones(1,nn); 



 25

hh=zeros(1,nn); 
   for j=nn:-1:s 
      hh(1,nn-j+1)=t(s+nn-j,1)-t0; 
      bb(1,nn-j+1)=(log(V/Vbar(s+nn-j,1))+(r-vol(s+nn-j,1)^2/2)*hh(1,nn-

j+1))/(vol(s+nn-j,1)*(hh(1,nn-j+1)^0.5)); 
      aa(1,nn-j+1)=bb(1,nn-j+1)+(vol(s+nn-j,1)*(hh(1,nn-j+1)^0.5)); 
      w2=F(s,nn-j+1,t,t0); 
      NN(1,nn-j+1)=qsimvn(nn-j+1,w2,bb0(1,1:nn-j+1),bb(1,1:nn-j+1)); 
   end 
w1=F(s,nn-s+1,t,t0); 
u=exp(-r*hh(1,1:nn-s+1)).*(K(s:nn,1))'; 
NK=u*(NN(1,1:nn-s+1))'; 
P_s=V*qsimvn(nn-s+1,w1,aa0(1,1:nn-s+1),aa(1,1:nn-s+1))-NK; 
% 

% end Price_s 

 
 
function [ p, e ] = qsimvn( m, r, a, b ) 
% uses a randomized quasi-random rule with m points to estimate an 
% MVN probability for positive semi-definite covariance matrix r, 
% with lower integration limits a and upper integration limits b.  
% Probability p is output with error estimate e. 
% 
% This function uses an algorithm given in the paper: 
% Alan Genz (1992), "Numerical Computation of Multivariate Normal 

% Probabilities", in J. of Computational and Graphical Stat., 1, 

% 141-149.  

% The primary references for the numerical integration are  
% H. Niederreiter (1972), "On a Number-Theoretical Integration Method", 
% Aequationes Mathematicae, 8 , 304-11, and 
% R. Cranley and T.N.L. Patterson (1976), "Randomization of Number 

% Theoretic Methods for Multiple Integration", SIAM J Numer Anal, 13, 

% 904-14. 
% Alan Genz is the author of this function and following Matlab 

% functions. 
% 
% Initialization 
[n, n] = size(r); [ ch as bs ] = chlrdr( r, a, b ); 
ct = ch(1,1); ai = as(1); bi = bs(1); 
if ai > -9*ct, if ai < 9*ct, c=phi(ai/ct); else, c=1; end, else c=0; end 
if bi > -9*ct, if bi < 9*ct, d=phi(bi/ct); else, d=1; end, else d=0; end 
ci = c; dci = d - ci; p = 0; e = 0; 
ns = 8; nv = max( [ m/( 2*ns ) 1 ] );  
q = 2.^( [1:n-1]'/n) ; % Niederreiter point set generators 
% 
% Randomization loop for ns samples 
for i = 1 : ns 
   vi = 0; xr = rand( n-1, 1 );  
   % 
   % Loop for 2*nv quasirandom points 
   for  j = 1 : nv 
      x = abs( 2*mod( j*q + xr, 1 ) - 1 ); % periodizing transformation 
      vp =   mvndns( n, ch, ci, dci,   x, as, bs );  
      vp = ( mvndns( n, ch, ci, dci, 1-x, as, bs ) + vp )/2;  
      vi = vi + ( vp - vi )/j;  
   end    
   % 
   d = ( vi - p )/i; p = p + d; e = ( i - 2 )*e/i + d^2;  
end 
% 
e = 3*sqrt(e); % error estimate is 3 x standard error with ns samples. 
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return 
% 
% end qsimvn 

 
function [ c, ap, bp ] = chlrdr( R, a, b ) 
% Computes permuted lower Cholesky factor c for R which may be 
% singular, also permuting integration limit vectors a and b. 
ep = 1e-100; % singularity tolerance; 
[n,n] = size(R); c = R; ap = a; bp = b; y = zeros(n,1); sqtp = sqrt(2*pi); 
for k = 1 : n 
   im = k; ckk = 0; dem = 1; s = 0;  
   for i = k : n  
       if c(i,i) > eps 
          cii = sqrt( max( [c(i,i) 0] ) );  
          if i > 1, s = c(i,1:k-1)*y(1:k-1); end 
          ai = ( a(i)-s )/cii; bi = ( b(i)-s )/cii; de = phi(bi) - phi(ai); 
          if de <= dem, ckk = cii; dem = de; am = ai; bm = bi; im = i; end 
       end 
   end 
   if im > k 
      tv = ap(im); ap(im) = ap(k); ap(k) = tv; 
      tv = bp(im); bp(im) = bp(k); bp(k) = tv; 
      c(im,im) = c(k,k);  
      t = c(im,1:k-1); c(im,1:k-1) = c(k,1:k-1); c(k,1:k-1) = t;  
      t = c(im+1:n,im); c(im+1:n,im) = c(im+1:n,k); c(im+1:n,k) = t;  
      t = c(k+1:im-1,k); c(k+1:im-1,k) = c(im,k+1:im-1)'; c(im,k+1:im-1) = 

t';  
   end 
   if ckk > ep*k^2 
      c(k,k) = ckk; c(k,k+1:n) = 0; 
      for i = k+1 : n 
         c(i,k) = c(i,k)/ckk; c(i,k+1:i) = c(i,k+1:i) - c(i,k)*c(k+1:i,k)'; 
      end 
      y(k) = ( exp( -am^2/2 ) - exp( -bm^2/2 ) )/( sqtp*dem );  
   else 
      c(k:n,k) = 0; y(k) = 0; 
   end 
end 
return 
% 

% end chlrdr 
 

 

function sigma=F(s,l,t,current); 

% computes the covariance matrix given s, l, the time vector t, and the 

% current moment                              
F=zeros(l,l); 
for i=1:1:l 
    for j=(i+1):1:l 
        F(i,j)=((t(i+s-1,1)-current)/(t(j+s-1,1)-current))^0.5; 
    end 
end   
sigma=F+F'+eye(l); 
% 

% end F 

 
 
function p = mvndns( n, ch, ci, dci, x, a, b ) 
% Transformed integrand for computation of MVN probabilities.  
y = zeros(n-1,1); s = 0; c = ci; dc = dci; p = dc;  
for i = 2 : n 
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   y(i-1) = phinv( c + x(i-1)*dc ); s = ch(i,1:i-1)*y(1:i-1);  
   ct = ch(i,i); ai = a(i) - s; bi = b(i) - s; 
   if ai > -9*ct, if ai < 9*ct, c=phi(ai/ct); else, c=1; end, else c=0; end 
   if bi > -9*ct, if bi < 9*ct, d=phi(bi/ct); else, d=1; end, else d=0; end 
   dc = d - c; p = p*dc;  
end  
return 
% 
% end mvndns 

 
 
function p = phi(z) 
%  Standard statistical normal distribution 
p = ( 1 + erf( z/sqrt(2) ) )/2; 
return 
% 
% end phi 

 
 
function z = phinv(w) 
%  Standard statistical inverse normal distribution 
z = sqrt(2)*erfinv( 2*w - 1 ); 
return 
% 
% end phinv 
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Appendix C. A methodology to estimate the phase-specific volatilities 

 
In this appendix, we show how we derived the estimations for the phase-specific volatilities 
used in the case study, as in section 4.  
 
The methodology uses a set of structured interview sessions with the project team that was 
responsible for conceptualizing and valuing the concrete project, which in our case was a 
team of five people. When jointly determining the phase-specific volatilities, the team felt 
very confident in agreeing on a volatility range for each of the phases; for that they relied on 
their experience and knowledge of past projects, and/or similar projects in the sector. More 
specifically, the ranges agreed upon were 50-60% for the first phase, 40-50% for the second 
phase, 35-45% for the third phase, and 30-40% for the last phase respectively. However, it 
was very difficult to narrow this range down to a specific volatility estimate, as needed within 
the lognormal distribution framework in which we base our model; furthermore we wanted to 
have a tool to make a consistency check of their estimates. In order to do that, we applied a 
calibrating exercise also used in Arnold and Shockley (2001) and Shockley (2007).     

 

As Shockley (2007, p.298) rightly states, many managers are much more confident thinking 
in terms of presenting a set of different scenarios regarding the operating cash flows of the 
project (the value of the project), and then attaching to those scenarios their subjective 
probabilities of how likely it is that the project value will indeed be at least this value, or in 
case of a bad scenario, will not reach this minimal value. As shown by Shockley (2001, 2007) 
this set up can than be translated into theoretical probabilities under a (log)normal 
distribution. If we apply this procedure for a range of possible volatilities, we derive a 
particular set of theoretical probabilities, one for each value of the volatility used. The best 
volatility estimate is then that one that provides an optimal match between the theoretical 
probabilities and the subjective probabilities of managers, attached to the different scenarios.     
 
We perform this calibrating exercise in table C.1. We start by deriving the volatility of the 
first phase, as in the upper panel of table C.1Similar to Shockley (2007, p.292), together with 
the project team, we constructed a set of four scenarios, labeled as the best case, good case, 
launch, and worst case scenario. The launch scenario refers to the case where the value of the 
project (V) would at least allow the company to cover all the investment and development 
costs of the project (i.e. all Iit of table 1 in section 4 of the paper), expressed at the moment of 
the launch (this corresponds to a conventional NPV analysis, where NPV is zero). In our case 
this is equal to 83.11 million EUR. The other three scenarios use the expected value of the 
project, expressed at the moment of the launch of the project as a base; in our case, this value 
is equal to 103.94 million EUR (see again table 1 of section 4). The good case scenario refers 
to a scenario where the project value is 1.5 times this expected value of the project (1.5 times 
103.94 equals 155.91 million EUR), while the best case scenario refers to project value 
exceeding twice the expected value of the project at launch (207.88 million EUR). Finally, the 
worst case refers to a scenario where the value of the project is lower than half of the expected 
value of the project (51.97 million EUR). The project values (Z) are presented in column 2 of 
table C.1.  
 
Project team members felt comfortable with the choice of the scenarios, and felt confident in 
attaching subjective probabilities to these 4 scenarios; most of the time, the five of them could 
easily agree on a particular probability estimate (often formulated as 1 out of six, or seven, or 
twenty projects). In cases where they could only agree on a narrow range but not on a specific 
number, everyone formulated its subjective probability and we took simple averages. The 
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values are presented in column 3 of table C.1. For the first phase the probabilities agreed upon 
were 10% for the best case, 18% for the good case, 45% for the launch scenario, and 30% for 
the worst case scenario.    
 
For each of the hypothesized project values (Z) under the four scenarios, we can then compute 
the (cumulative) probability, under a lognormal distribution, that the value of the project (VT) 
is higher than the value Z. This value is given by the following formula (see also e.g. 
Shockley, 2007): 
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In this formula, V0 equals the expected value of the project, calculated at the moment of the 
start of the project (2008); this value equals 85.9 million EUR (see also table 2 in section 4 of 
the paper); � equals the required rate of return on the project (the firm’s weighted average 
cost of capital, in our case equal to 10%), and t is the time period between the start of a 
particular phase and the time of launch of the project (2010). We apply this formula for a 
range of volatility estimates, �, focusing on the range of volatility estimates determined earlier 
by the project managers9. 
 
In doing so, we can first of all check to what extent the original volatility ranges given by the 
managers are in line with the theoretical probabilities under the normal distribution. 
Moreover, we can also decide in a more informed way on the exact estimate of the volatility 
for a given phase. In order to do so, we select that particular volatility estimate where there is 
an optimal match between the subjective probability measures of the managers for different 
scenarios with the calculated cumulative probabilities implied by a particular volatility, using 
formula [C.1-C.2]. In the case of our example, the upper panel of the table presents the 
estimates of these theoretical probabilities for a range of volatilities between 0.45 and 0.61. 
From this table, two concrete conclusions can be drawn. First of all, for the range of 
volatilities indicated by the project team members themselves, it can be seen that the 
theoretical probabilities are indeed in line with the subjective probabilities. As such, this can 
act as a validation that the project team estimates are consistent, as both approaches provide 
roughly the same results. Secondly, it allows us, within the range of volatilities indicated by 
the project team, to pick the optimal volatility. In the table, the shaded values give for each 
scenario the volatility for which there is a best match between the subjective and theoretical 
probabilities. In case of the first phase, best matches are 0.54, 0.5, 0.58, and 0.54-0.55 for the 
different scenarios respectively. Therefore, 0.54 was chosen as the optimal solution (again 
shaded in the table).      
 
This procedure is then repeated for the three other phases of the project to derive the other 
three phase-specific volatilities. In order to do so correctly, some parameters take different 
values. First of all, we adapt the project value figures (Z). More specifically, in the second 
phase, the investment cost (strike price) of the first phase is a sunk cost, and should be taken 
out of the calculation of the total investment and development cost that determines the value 

                                                
9 Note that for the worst case scenario, we have to calculate the cumulative probability that the project value is 
lower that Z, in which case the correct formula equals 
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of the launch scenario. Similarly, in order to keep scenarios comparable over phases, this sunk 
investment cost of the first phase needs to be deducted from the project values in other 
scenarios. The same adjustment is done for the third and fourth phase, deducting all sunk 
investment costs from previous phases. Moreover, obviously, also the subjective probabilities 
change: as the project team members now know that the project is in a further phase, this also 
changes their subjective view on the likelihood of each of the scenarios. To give one example, 
as we enter further phases, the likelihood of the launch scenario increases, reaching close to 1 
in the fourth phase; in contrast, the likelihood of the worst case scenario drastically reduces in 
consecutive phases. 
 
The calculations presented in the other panels of table C.1 show that the optimal matches 
were derived at a volatility of 0.42 for the second phase, a volatility of 0.37 for the third 
phase, and a volatility of 0.35 for the fourth phase. 
 



Table C.1: Determination of optimal phase-specific volatility estimates matching subjective and theoretical probabilities  

 
Panel 1: Theoretical cumulative probabilities under normal distribution for different volatility estimates for first phase (t=2) 

Scenarios Outcome (Z) 
Subjective 

probability 
Volatility estimates 

                            

      0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 

Best case � 207.88 0.1 0.081865 0.084357 0.086748 0.089039 0.091231 0.093326 0.095325 0.097230 0.099043 0.100765 0.102400 0.103949 0.105414 0.106798 0.108103 0.109331 0.110485 

Good case � 155.91 0.18 0.173458 0.175119 0.176641 0.178030 0.179293 0.180437 0.181466 0.182388 0.183207 0.183929 0.184557 0.185096 0.185551 0.185926 0.186224 0.186450 0.186606 

Launch � 83.11 0.45 0.519124 0.513133 0.507273 0.501539 0.495924 0.490420 0.485024 0.479730 0.474532 0.469427 0.464411 0.459478 0.454626 0.449851 0.445151 0.440521 0.435959 

Bad case < 51.97 0.3 0.216017 0.225230 0.234349 0.243368 0.252285 0.261096 0.269800 0.278395 0.286881 0.295257 0.303523 0.311680 0.319728 0.327667 0.335500 0.343227 0.350850 

Panel 2: Theoretical cumulative probabilities under normal distribution for different volatility estimates for second phase (t=1.5) 

Scenarios Outcome (Z) 
Subjective 

probability 
Volatility estimates 

                            

      0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 

Best case � 206.2 0.05 0.036587 0.039383 0.042170 0.044939 0.047681 0.050390 0.053059 0.055682 0.058254 0.060773 0.063233 0.065634 0.067973 0.070247 0.072457 0.074600 0.076676 

Good case � 154.21 0.13 0.121460 0.125099 0.128562 0.131853 0.134978 0.137941 0.140749 0.143406 0.145919 0.148292 0.150530 0.152639 0.154624 0.156490 0.158240 0.159881 0.161415 

Launch � 81.42 0.55 0.581134 0.574347 0.567759 0.561358 0.555130 0.549067 0.543158 0.537395 0.531770 0.526274 0.520900 0.515643 0.510495 0.505453 0.500509 0.495659 0.490900 

Bad case < 50.28 0.14 0.107382 0.115717 0.124115 0.132554 0.141016 0.149486 0.157948 0.166390 0.174801 0.183172 0.191494 0.199761 0.207965 0.216103 0.224169 0.232160 0.240073 

Panel 3: Theoretical cumulative probabilities under normal distribution for different volatility estimates for third phase (t=1.2) 

Scenarios Outcome (Z) 
Subjective 

probability 
Volatility estimates 

                            

      0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 

Best case � 191.9 0.03 0.016768 0.019133 0.021596 0.024141 0.026753 0.029417 0.032119 0.034847 0.037590 0.040337 0.043079 0.045808 0.048515 0.051194 0.053840 0.056447 0.059011 

Good case � 139.91 0.13 0.110378 0.115419 0.120247 0.124863 0.129270 0.133474 0.137480 0.141292 0.144916 0.148360 0.151629 0.154730 0.157668 0.160450 0.163083 0.165572 0.167923 

Launch � 67.11 0.75 0.808189 0.797874 0.787776 0.777897 0.768237 0.758796 0.749571 0.740558 0.731752 0.723150 0.714745 0.706531 0.698504 0.690657 0.682983 0.675478 0.668135 

Bad case < 35.97 0.0125 0.004020 0.005245 0.006696 0.008384 0.010320 0.012509 0.014952 0.017652 0.020605 0.023806 0.027251 0.030931 0.034838 0.038962 0.043291 0.047816 0.052525 

Panel 4: Theoretical cumulative probabilities under normal distribution for different volatility estimates for fourth phase (t=0.5) 

Scenarios Outcome (Z) 
Subjective

probability 
Volatility estimates 

                            

      0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 

Best case � 167.7 0.005 0.001252 0.001682 0.002202 0.002817 0.003531 0.004346 0.005264 0.006283 0.007402 0.008618 0.009928 0.011326 0.012809 0.014369 0.016003 0.017703 0.019464 

Good case � 115.69 0.125 0.101343 0.107524 0.113520 0.119324 0.124931 0.130342 0.135556 0.140575 0.145403 0.150043 0.154499 0.158777 0.162881 0.166816 0.170589 0.174204 0.177667 

Launch � 42.89 0.998 0.999667 0.999493 0.999256 0.998943 0.998542 0.998039 0.997423 0.996683 0.995809 0.994792 0.993625 0.992303 0.990820 0.989175 0.987366 0.985392 0.983255 

Bad case < 11.75 0.00001 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Legend: application of formula [C.1-C.2], with V0 =85.9and �=10%;V and Z in million EUR..t equals the period between the beginning of the phase and the launch (in 

years).  



 

 

 

 


