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Abstract 

Currently, the financial institutions are exposed to different types of risks, including the market, 

credit and operational risks. Consequently, there has increased the need for new financial and 

analytical instruments for the risk management. 

Among the traditional ones we have the duration, which measures the bond price sensitivity to 

changes of interest rates. Nevertheless, it has two disadvantages: it assumes parallel changes 

in the yield curve and it is inaccurate if we consider large percentage changes. In this sense, a 

tool that allows correcting these disadvantages is The Key Rate Durations. The present work 

tries to provide an additional tool to the investment analysis, so the economic agents can adopt 

better decisions. 
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1 Introduction 

 

In the financial literature, risk is defined as the volatility of unexpected outcomes, generally the 

value of assets or liabilities of interest.  Financial Institutions are exposed to various types of 

risks, which can be broadly classified into financial and nonfinancial risks. The financial risks 

include: the market risk, the credit risk and operational risk. 

 

In the last five decades, the theory and the practice of risk management have developed 

enormously, it has developed to the point where risk management is now regarded as a distinct 

sub-field of the theory of finance and is one of the more intensely discussed topic not just for the 

finance agents or regulatory entities but also for specialists in the academic field. 

 

One factor behind the rapid development of risk management was the high level of instability in 

the economic environment within which firms operated. A volatile environment exposes firms to 

greater financial risk, and therefore provides an incentive for firms to find new and better ways of 

managing this risk. 

 

One of the most traditional used tools is the duration. Duration is given as the weighted-average 

time to maturity of the cash flows, where the weights are defined as the present values of the 

cash flows divided by the bond price. The duration assumes that the yield curve experiences 

infinitesimal and parallel shifts. However, normally we can expect that shorter maturity rates are 

more volatile than the longer maturity rates, so the assumption of parallel yield curve shifts is 

obviously false. 

 

Recently a new class of models called the key rate durations has become popular among 

practitioners. Similar to the duration models, key rate durations can manage interest rate risk 

exposure arising from arbitrary nonparallel shifts in the term structure of interest rates. They 

hedge against the changes in a finite number of key interest rates that proxy for the shape 

changes in the entire term structure. 

 

The key rate duration model describes the shifts in the term structure as a discrete vector 

representing the changes in the key zero-coupon rates of various maturities. Key rate durations 

are then defined as the sensitivity of the portfolio value to the given key rates at different points 

along the term structure.  



Therefore, this paper considers estimation of the key rate durations of a given portfolio and its 

corresponding benchmark and compares it with the traditional duration method, and finally 

analyzes its usefulness to the asset allocation problem.    

 

The document proceeds as follows: Section II discusses some theoretical issues on Risk 

Management and analyzes in detail various approaches to financial risk measurement. The 

results of the empirical work using a given portfolio data are presented in Section IV. Finally, 

Section V concludes. 

 

2 Measurement of Market Risk 

 

2.1 Duration 

One method traditionally used by financial institutions for measuring interest-rate risk is duration 

analysis. The Macaulay duration (McD) of a bond (or any other fixed-income security) can be 

defined as the weighted average term to maturity of the bond’s cash flows, where the weights 

are the present values of each cash flow relative to the present value of all cash flows (C): 
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Duration is a measure of the approximate sensitivity of a bond’s value to rate changes1. More 

specifically, it is the approximate percentage change in value for a 100 basis point change in 

rates. The following formula is used to approximate the percentage price change for a given 

change in yield and a given duration: 

�����������	����� ��!�	�����	�"� !� � #$%����� ∗ ∆� ∗ 100 

Graphically, the shape of the price/yield relationship for a bond (option-free) is convex (Figure N° 

1). In this graph, we also see a tangent line that touches the curve at the point where the yield is 

equal to y* and the price is equal to p*. The tangent line can be used to estimate the new price if 

                                                           
1
 Fabozzi (2005) 



the yield changes. Recall that duration tells us the approximate percentage price change, 

therefore, this estimation is on the tangent line. Notice that for a small change in yield, the 

tangent line does not depart much from the price/yield relationship, hence, the tangent line does 

a good job of estimating the new price. Nevertheless, the error in the estimate gets larger the 

further one moves from the initial yield, the estimate is less accurate the more convex the bond. 

Figure N°1  

 

 

 

 

 

 

 

Also note that regardless of the magnitude of the yield change, the tangent line always 

underestimates what the new price will be for a bond. 

We have two different measures of duration: 

a) Modified duration, measure in which it is assumed that yield changes do not change the 

expected cash flows (treasury bills) 

 

Modified duration can be written as: 
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b) Effective duration, measure in which yield changes may change the expected cash flow 

(callable bonds) 

A portfolio‘s duration can be obtained by calculating the weighted average of the duration of the 

bonds in the portfolio. The weight is the proportion of the portfolio that a security comprises. 

Mathematically, a portfolio’s duration can be calculated as follows: 

Estimation error 
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Where: D: Portfolio’s duration 

  wi: proportion of security i in the total portfolio 

  Di: individual duration of security i 

Likewise, the spread duration for a portfolio or a bond index is computed as a market-weighted 

average of the spread duration for each sector. 

Some portfolio managers look at exposure of a portfolio or a benchmark index to an issue or to a 

sector simply in terms of the market value percentage of that issue or sector in the portfolio. A 

better measure of exposure to an individual issue or sector is its contribution to portfolio duration 

or contribution to benchmark index duration. This is found by multiplying the percentage of the 

market value of the portfolio represented by the individual issue or sector by the duration of the 

individual issue or sector: 

	� ���/%��� 	��	����0�(��	$%����� � +1 ∗ �1	�0	�22%�	��	2����� 
Duration is often used for immunization of a stream of future cash flows. Christensen (1999) 

describes the immunization in the following manner: an investor has a liability at a given future 

date (the horizon) and wishes to construct a portfolio such that, regardless of a rise or a fall in 

the interest rate, the value of the portfolio at the horizon will be at least as large as the liability. 

This can be achieved if the portfolio is selected so that (a) the value equals the present value of 

the liability calculated by the current term structure of interest rates, and (b) its duration equals 

the length of the horizon. 

If a parallel shift in the term structure occurs immediately after this, the value of the portfolio and 

the present value of the liability are changed. However, the changes occur so that the value of 

the portfolio remains at least as large as the present value of the liability, whether the interest 

rate rises or falls. If no further unexpected changes in the term structure occur during the 

horizon, the value of the portfolio at the horizon will therefore be at least as large as the liability. 

The investor can hedge against new changes in the interest rate by constantly rebalancing the 

portfolio so that its duration is always equal to the duration of the liability. 

 

 



2.2 Convexity 

The duration measure indicates that regardless of whether interest rates increase or decrease, 

the approximate percentage price change is the same. Moreover, we saw that the duration is 

only a good approximation of the percentage price change for small changes in yield. 

The reason for this is that duration is in fact a first (linear) approximation for a small change in 

yield. The approximation can be improved by using a second approximation. This approximation 

is referred to as “convexity”. The convexity measure of a security can be used to approximate 

the change in price that is not explained by duration. 

The convexity measure of a bond is approximated using the following formula: 

	� 3�����	���2%�� � 12 ∗ $,5$�, ∗ 15 

Given the convexity measure, the approximate percentage price change adjustment due to the 

bond’s convexity is: 

	� 3�����	�$6%2��� � � �� 3�����	���2%�� ∗ �∆��, ∗ 100 

The approximate percentage price change based on duration and the convexity adjustment is 

found by adding the two estimates: 
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2.3 Disadvantages 

Even the Duration is the most commonly measure used to measure the interest rate risk 

exposure, it presents two limitations: 

i. According to the formula of the Macaulay Duration (McD), we assume that all cash flows 

are discounted at the same discount rate, which means that we are assuming that the 

yield curve is flat and all shifts are parallel. However, if a portfolio has bonds with 

different maturities, the duration measure my not provide a good estimate for unequal 

changes in interest rates of different maturities. 

 



ii. The accuracy of the duration diminishes if we consider large changes in the yield curve. 

In this case we have to consider a second order approximation, the convexity (Figure N° 

1).  

 

2.4 Key Rate Duration 

 

2.4.1 Definition 

Effective duration is a standard measure of the interest rate risk exposure of a bond or a 

portfolio, which has come to have many applications in managing interest rate risk. Its main 

assumption is that the spot yield curve shift is parallel. Parallel shifts of the spot curve can 

capture much of the nature of term structure movements, although the returns of two securities 

with the same effective duration can be significantly different if the yield curve undergoes non-

parallel shifts, such as steepness or curvature. 

In this sense Ho (1999) introduced a new measure of interest rate risk exposure called “key rate 

duration”. Key Rate Durations (hereafter KRD) is a vector representing the price sensitivity of a 

security to each key rate change; the market practice is to choose as key rates changes the 

yield curve movements. The sum of the key rate durations is identical to the effective duration. 

 

Figure N°2 

Linear Interpolation of a shift of the spot curve 

 

 

 

 

 

 

We denote these key rates by t(i) where i=1,…,m; and S[t(i)] as the shift at each key rate. Then 

the yield curve shift along the maturity range S(t) can be approximated by linear interpolation of 

the shifts of each key rate. Note that the linear interpolation is used to model the change of the 

t(i) t(i+1) t(i-1) 

term 

yield 
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yield curve, not the yields curve itself. Figure N° 2 depicts the linear interpolation as an 

approximation to the shift of the spot curve. 

2.4.2 Basic Key rate shift 

We say that the first key rate shifts x basis points if the first key rate (and all the spot rates with 

shorter terms than the first key rate) shifts x basis points, and the shifts decline linearly with the 

increase in term to zero at the second key rate, then remain zero for any maturity beyond the 

second key rate. That is to say, the first basic yield curve shift requires no spot curve shift 

beyond the second key rate, and the shift peaks at the first key rate. 

Other key rates shifts are defined similarly. In general, the ith key rate shift is defined to be zero 

shift for maturities shorter than the (i-1)th key rate and longer than the (i+1)th key rate. The shift 

between the (i-1)th key rate term and the (i+1)th key rate term is defined by the triangle with the 

peak at the ith key rate. These key rate shifts are depicted in Figure N° 3. 

Formally, let s(t,ti) be the ith basic key rate shift of term t, with the level of shift being �y(t). Then, 
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Figure N° 3 

Yield curve Shift as the sum of KRD 

 

 

 

 

 

 

 

 

It is clear that any linear approximation of the yield curve shift �y(t) can be represented by the 

sum of all these basic key rate shifts. Thus: 
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2.4.3 Key Rate Durations 

Now say that there is an infinitesimal shift in one specific key rate. This may induce a price 

change in the security. The price sensitivity to each key rate change is the key rate duration. 

Formally: 

∆5=5 � #GH�= ∗ ∆���=� 
Where KDRi is the ith key rate duration, in a continuous time we got: 

GH�= � # 15 I5I���=� 
Given that each infinitesimal change in a key rate contributes to the proportional change in price, 

and the shift of the yield curve can be approximated by the sum of all the basic key rate shifts, 

we have: 
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Key rate durations are in fact a linear decomposition of effective duration. Let the effective 

duration of a bond be KRDi , then we have: 

� ��GH�= 
2.4.4 Evaluation 

Key rate durations have several advantages over existing measures: 

i. They can identify the price sensitivity of a bond to each segment of the spot yield curve. 

Effective duration is the total risk exposure, and the key rate durations are the 

component parts of the effective duration. As is the case with effective duration, key rate 

durations aggregate linearly, so that portfolio analysis is straightforward 

 

ii. They recognize that the yield curve movement is driven by multiple market factors. The 

validity of the key rate durations does not depend on any equilibrium model of the yield 

curve movement. Key rate durations are applicable over a broad range of arbitrary yield 

curve movements 

 

iii. It is easy to use key rate durations to create a replicating portfolio of a bond with 

embedded options using zero-coupon bonds. Thus the cash flow of the replicating 

portfolio correctly represents the instantaneous expected cash flow of the option 

However, there are some areas of concern regarding to the use of the KRD: 

i. The choice of the key rates is subjective. A natural election will be to employ as key rates 

the most common used treasury rates in the markets. Nevertheless, the portfolio 

manager can reduce (increase) this group according to the structure of his portfolio. 

 

ii. The movements in the yield curve are not independent. For example: changes in the 8-

year and 10-year rates in the same direction; but a change in the 9-year rate in the 

opposite way is possible in the KRD model, but it is unlikely that this happen in the 

reality. 

 

iii. There is a lost of accuracy due to the fact that the KRD do not use the past yield curves 

changes to estimate the interest rate risk. 



3 Empirical application 

In this section, we proceed to compute the key rate durations of a portfolio composed by 

sovereign, mainly US treasuries bills, and non-sovereign securities. The total return of the 

portfolio is the weighted sum of the individual returns, where the weights are the percentage 

participation of each security in the total portfolio. 

As it was mentioned before, the traditional technique to measure the exposition of the portfolio to 

the variations of the interest rates was using the duration. The portfolio managers divide the 

portfolio into several pools according to the time to maturity in order to have an approximation of 

the exposition to the risk of change in specific sectors of the curve. 

However, these pools have some disadvantages: 

i. The decisions with respect to the pools (number and length) are too arbitrarily 

 

ii. We can observe a great variation from one day to the next one, produce by the fact that 

one security or a group of securities change from one to another pool 

 

iii. It is not an accurate measure of the exposition to a specific sector of the curve 

The application of the KRD model is very straightforward. First, we choose the key rates; in the 

case of the portfolio A, which establishes a maximum individual duration of 2 years, we choose 

five key rates: 

GH� �	 JGH��F GH�KF GH�LF GH��M GH�,MN 
Furthermore: 
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However, the choice of the key rates is made under the assumption that the cash flows of all the 

securities coincide with these key rates. Since it is an assumption that is not possible in all the 

cases, an essential second-step is to express the securities’ cash flows in terms of the limited 

number of rates, this procedure is known as mapping. 

The method selected is the one followed by RiskMetrics: Cash Flow Map. According to this 

method, fixed income securities can be easily represented as cash flows given their standard 



future stream of payments. In practice, this is equivalent to decomposing a bond into a stream of 

zero-coupon instruments. To map the cash flows, we use the key rate closest to the maturity and 

redistribute the actual cash flows as shown in the example of Figure N° 4. 

Figure N° 4 

Mapping actual cash flows onto key rates 

 

 

 

 

 

 

 

 

 

The methodology for mapping cash flows is detailed in Appendix A. 

The third step is to calculate the key rate duration following the formula: 

GH�= � # 15 I5I���=� 
The results for the portfolio and the benchmark are presented in the Figure N° 5. As we can 

observe in Figure N° 5 (a), the portfolio has the l arger expositions in the sector of 6 months and 

1 year, which means that it is more sensible to changes in the 6-month and 1-year rates of the 

yield curve, comparing to the others sectors. Regarding the Benchmark, as it was expected, the 

larger exposure is in the sector of 6 months; however, there is a considerable sensibility to the 3-

month rate change, something that is not taken into account by the traditional measure of 

duration. Therefore, the portfolio is expecting a flattening of the yield curve2. 

                                                           
2
 A Flattening of the yield curve indicates that the yield spread between the yield on the long-term and a short-term 

Treasury has decreased (Fabozz, 2005). 
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If we compare this expectation with the actual change in the yield curve (Figure N° 7), which 

remained practically unchanged in the sector of 1 and 2 years; but it moved upward in the sector 

of 1, 3 and 6 months; we can see that the benchmark was affected negatively, reflecting it in the 

daily return, with a portfolio’s daily return over the benchmark’s return of 4 bp. 

Figure N° 5 

(a)                                                                 (b) 

 

In Figure N° 5 (b), we have the same analysis, but now we decompose the portfolio into 

Sovereign and Non Sovereign securities. This Figure shows us that, the longer positions (6 

months – 2 years) were taken in the sector of Sovereigns, expecting the flattening of the yield 

curve. Regarding the shorter positions (0 – 6 months), they were composed entirely of Non 

Sovereigns, reflecting two characteristics: (i) the expectation of increasing short-term rates, and 

(ii) the proximity to maturity of these instruments. 

Additionally, in Figure N° 6, we present the analys is of KRD differentiating between Sovereign 

and Non Sovereign securities. In both cases, the analysis confirms the results found above. 

Moreover, in Figure N° 6 (b), we observe that the N on Sovereign securities with a duration 

between 1 and 2 years have a more sensitivity to the change of 1-year rate than the change of 

2-year rate. Once more, the analysis of the duration would not take into account this sensitivity 

and would have allocated the whole effect to the change in the 2-year rate. 

 

 

 

 



Figure N° 6 

(a)                                                                 (b) 

 

Figure N° 7 

 

4. Concluding remarks  

One of the most traditional used tools in the asset allocation process is the duration. The 

duration model assumes that the yield curve experiences infinitesimal and parallel shifts; 

however, we know that shorter maturity rates are more volatile than the longer maturity rates, so 

the assumption of parallel yield curve shifts is obviously false. 

 

In this sense, recently a new class of models called the key rate durations has become popular 

among investors. Similar to the duration models, key rate durations can manage interest rate 

risk exposure arising from arbitrary nonparallel shifts in the term structure of interest rates. The 

duration model hedges against the shape changes in the term structure of interest rates, while 



the key rate durations hedges against the changes in a finite number of key interest rates that 

proxy for the shape changes in the entire term structure. 

 

Key rate durations are then defined as the sensitivity of the portfolio value to the given key rates 

at different points along the term structure. These duration measures can be used in 

decomposing portfolio returns and identifying interest rate risk exposure. Therefore, key rate 

durations offer a better approach than the traditional duration to measure the interest rate risk, 

making easier to portfolio managers the asset allocation process. 

 

However, some authors consider that key rate models have three limitations: (i) the choice of the 

key rates is arbitrary, (ii) the unrealistic shapes of the individual key rate shifts, and (iii) loss of 

efficiency by not modeling the history of term structure movements. 
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6. Appendices 

Appendix A: RiskMetrics Mapping methodology 

For allocating actual cash flows to RiskMetrics vertices, RiskMetrics proposes a methodology 

that is based on the variance (σ2) of financial returns. The advantage of working with the 

variance is that it is a risk measure closely associated with one of the ways RiskMetrics 

computes VaR, namely the simple VaR method as opposed to the delta-gamma or Monte Carlo 

methods. 

In order to facilitate the necessary mapping, the RiskMetrics data sets provide users with 

volatilities on, and correlations across many instruments in 33 markets. For example, in the US 

government bond market, RiskMetrics data sets provide volatilities and correlations on the 2-, 3-, 

4-, 5-, 7-, 9-, 10-, 15-, 20-, and 30-year zero coupon bonds. 

Consider the following example: 

 

 

 

 

 

 

 

We denote the allocations to the 5- and 7-year vertices by α and (1- α), respectively. The 

procedure presented below is not restricted to fixed income instruments, but applies to all future 

cash flows. 

1. Calculate the actual cash flow’s interpolated yield:  

We obtain the 6-year yield, y6, from a linear interpolation of the 5- and 7-year yields 

provided in the RiskMetrics data sets. Using the following equation, 

 �L � �Q�P 
 �1 # �Q��R															0 > �Q > 1 

5                 6                 7 

5                 6                 7 

Actual Cash flow 

RiskMetric Cash Flow 



 

Where  y6: interpolated 6-year zero yield 

   �Q: linear weighting coefficient,  

  y5: 5-year zero yield 

  y7: 7-year zero yield 

If an actual cash flow vertex is not equidistant between the two RiskMetrics vertices, then 

the greater of the two values, â and (1-â), is assigned to the closer RiskMetrics vertex. 

2. Determine the actual cash flow’s present value: 

From the 6-year zero yield, y6, we determine the present value, P6, of the cash flow 

occurring at the 6-year vertex. (In general, Pi denotes the present value of a cash flow 

occurring in i years.) 

3. Calculate the standard deviation of the price return on the actual cash flow: 

We obtain the standard deviation, σ6, of the return on the 6-year zero coupon bond, by a 

linear interpolation of the standard deviations of the 5- and 7-year price returns, i.e., σ5 

and σ7, respectively. 

Note that σ5 and σ7 are provided in the RiskMetrics data sets as the VaR statistics 

1.65*σ5 and 1.65*σ7 respectively. Hence, 1.65*σ6 is the interpolated VaR. To obtain σ6, 

we use the following equation: 

 SL � �QSP 
 �1 # �Q�SR															0 > �Q > 1 

 

Where  �Q: linear weighting coefficient,  

σ5: standard deviation of 5-year return 

σ7: standard deviation of 7-year return 

 

4. Compute the allocation, α and (1-α), from the following equation: 

T���� ��U�LMVW � T���� ��XY�PMV 
 �1 # Y��RMVZ 
SL, � Y,SP, 
 2Y�1 # Y�[P,RSPSR 
 �1 # Y�,SR, 

where ρ5,7, is the correlation between the 5- and 7- year returns. (Note that ρ5,7 is 

provided in the correlation matrix in RiskMetrics data sets). This equation can be written 

in the quadratic form: 

�Y, 
 /Y 
 � � 0 



Where  � � SP, 
 SR, # 2[P,RSPSR 

  / � 2[P,RSPSR # 2SR,  

  � � SR, # SL, 

The solution to α is given by 

Y � #/ \ √/, # 4��2�  

5. Distribute the actual cash flow onto the RiskMetrics vertices:  

Split the actual cash flow at year 6 into two components, α and (1-α), where you allocate 

α to the 5-year RiskMetrics vertex and (1-α) to the 7-year RiskMetrics vertex. 


