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Abstract 

This paper studies the relationship between demand uncertainty—the key source of excess 

capacity—and capacity utilization in the U.S. airline industry.  We present a simple theoretical 

model that predicts that lower demand realizations are associated with higher demand volatility.  

This prediction is strongly supported by the results of estimating a panel GARCH framework 

that pools unique data on capacity utilization across different flights and over various departure 

dates.  A one unit increase in the standard deviation of unexpected demand decreases capacity 

utilization by 21 percentage points.  The estimation controls for unobserved time-invariant 

specific characteristics as well as for systematic demand fluctuations. 

Keywords: Demand uncertainty; capacity utilization; airlines; panel GARCH; GARCH-in-mean 
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1.  Introduction 

Sellers that need to decide production levels before demand is realized are likely to finish the 

selling season with unsold inventories.  This is a typical problem in industries such as airlines, 

automobile rentals, hotels, hospitals, restaurants, theaters, fashion apparel, and sporting events.  

These industries are characterized by having a highly volatile demand, capacity—or inventory—

is fixed or can only be modified at a relatively high marginal cost, and excess capacity that 

expires once the selling season is over.  Unsold inventories are, of course, an inefficient 

allocation of resources.  Based on data from the Bureau of Transportation and Statistics, 19.8% 

of U.S. domestic flights’ seating capacity was empty in 2009.  Dana and Orlov (2009) estimate 

that for the U.S. airline industry, a 6.7% increase in capacity utilization—the ratio of inventories 

sold to total inventory levels—translates into $2.7 billion in cost savings each year.1,2  It is easy 

to understand that the key source behind excess capacity is demand uncertainty; without demand 

uncertainty, airlines would simply choose the level of capacity for a particular flight to match 

perfectly the level of its demand.  Borenstein and Rose (2007) explain that large volatility in 

airlines’ profits comes mainly from large volatility in demand.  Hence, demand uncertainty and 

its effect on capacity utilization are particularly important issues in light of the recent turmoil in 

the industry (see Berry and Jia, 2010). 

  Despite its importance, there is relatively little empirical work on capacity utilization, 

mostly due to the difficulty in many industries of coming with an empirical measure.3  For the 

                                                 
1 For hospitals, Gaynor and Anderson (1995) estimated that increasing the occupancy rate from 65 percent to 76 
percent reduced costs by 9.5 percent. 
2 Capacity utilization is important for other industries as well.  Kim (1999) argues that it is an important issue in 
economic analysis, while Schultze (1963) explains that it serves as a productivity measurement and can be used as 
an indicator of the strength of aggregate demand. 
3 Nelson (1989) discusses practical problems in measuring capacity utilization and offers suggestions for estimating 
theoretical measures, while Shapiro (1993) describes how to estimate the capital utilization of an industry as a whole 
using the survey data of individual plants.  Kim (1999) argues that conventional capacity utilization measures (e.g., 
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airlines, however, the measure of capacity utilization is relatively straightforward.  Potential 

capacity is directly observed as the total number of available seats on a scheduled flight, whereas 

the utilized capacity equals the amount of seats sold.  While monthly data for calculating 

capacity utilization is available from the Bureau of Transportation Statistics T-100 database, 

these data are perhaps too aggregate to capture demand uncertainty.  In this paper we follow the 

recent work in Escobari (2009, 2012) and observe day-to-day fluctuations in capacity utilization 

across different flights and over various departure dates, which are more appropriate to capture 

demand uncertainty. 

Our work is motivated by a body of literature on capacity utilization.  Hubbard (2003) 

examines the extent to which the use of on-board computers, which reduces demand uncertainty, 

raises capacity utilization and thus productivity in the trucking industry.  Similarly, Dana and 

Orlov (2009) show that capacity utilization increases when the proportion of informed 

consumers in a market is larger.  Deneckere and Peck (2012) present a multiple-period price 

posting model that predicts no underutilized capacity because in the last period sellers set prices 

to clear the market.  Underutilized capacity, however, is possible in stochastic peak load pricing 

models; if demand realizations are known only after firms set capacity and prices, idle capacity 

can still exist during off-peak times (see e.g., Brown and Johnson, 1969; and Carlton, 1977).  

Underutilized capacity is also possible in Prescott’s (1975) competitive model, where capacity is 

costly and there are price commitments.  Dana (1999) extends this model to a monopoly and 

imperfect competition.   

Our findings are also related to the literature on irreversible investment and excess 

capacity.  Pindyck (1988) finds that in a market with volatile demand, firms should hold less 

                                                                                                                                                             
Nelson, 1989) appear to be biased and proposes a measure that incorporates information about production and 
demand. 
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capacity than if future demand is known otherwise.  Gabszewicz and Poddar (1997) also find that 

excess capacity exists in oligopolistic markets when demand is uncertain.  Alderighi (2010) 

extends the work of Belobaba (1989) to present theory and simulations that suggest a negative 

relationship between demand uncertainty and capacity utilization.  However, Bell and Campa 

(1997) study the chemical processing industry and find that volatility in product demand has no 

effect on capacity utilization.   

Against the above background, this paper reexamines—theoretically and empirically—

the relationship between demand uncertainty and capacity utilization.  Our theory builds on the 

market competition model developed by Prescott (1975).  We show that if prices are set in 

advance based on a distribution of demand uncertainty, then higher demand uncertainty is 

associated with a lower average demand realization and thus lower average capacity utilization.  

Our empirical work takes advantage of a unique panel data set from the U.S. airline industry.  

Demand uncertainty is assumed to follow a GARCH (Generalized Autoregressive Conditional 

Heteroskedasticity) framework, where we further extend the conventional GARCH model to the 

panel regression framework.4 As shown in Cermeño and Grier (2006) and Lee (2010), there is 

substantial efficiency gain in the estimation of the conditional variance and covariance processes 

in the GARCH model when the estimation also incorporates interdependence across different 

flights within each panel.   

In line with the theoretical prediction, our empirical results specifically indicate that a 

one-unit increase in the standard deviation of unexpected demand is associated with a 21 

percentage point decrease in capacity utilization.  This result is robust to cumulative ticket sales 

data at different points prior to the departure date as well as different sets of control variables.  

                                                 
4 The GARCH modeling approach is widely used in the financial economic literature to measure market uncertainty 
with conditional volatility over time. 
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Besides controlling for unobserved time-invariant flight-number-, route-, and carrier-specific 

characteristics, the estimation controls for systematic demand fluctuations associated with the 

different days of the week and major holidays. 

The organization of the paper is as follows.  In Section 2 we develop a simple theoretical 

model to illustrate the link between demand uncertainty and capacity utilization.  Section 3 

describes the data.  The empirical model and estimation methods are outlined in Section 4.  

Section 5 presents the estimation results.  Finally, Section 6 concludes. 

 

2.  Demand Uncertainty and Average Capacity Utilization 

This section presents a simple theoretical model based on Prescott (1975) to understand the link 

between demand uncertainty and capacity utilization.  Reflecting some key features of airline 

markets, this model explains price dispersion and underutilized capacity in perfect competition 

where there exists demand uncertainty and firms decide output in advance (i.e., capacity is 

costly).  We begin by providing motivation for the existence of an upward schedule of prices, as 

largely documented in the airline industry (see, e.g. Bilotkach et al., 2010; Escobari and Gan, 

2007; Mantin and Koo, 2009).  To this end, we follow Prescott (1975) and Dana (1999) and 

derive a price schedule by assuming that prices are set in advance based on the aggregate 

demand uncertainty distribution.  Next, we use this price schedule to show how the mean of the 

distribution of demand realizations is lower when the demand uncertainty is higher. 

 

2.1.  Price Schedule and Demand Realizations 

Consider a competitive model in which sellers that offer airline seats take the distribution of 

prices and quantities as given.  There is aggregate demand uncertainty in the form of H+1 
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demand states denoted by { }Hh ,,2,1,0 �= .  We use { }Hρρρ ,,, 10 �  to denote the probability 

associated with each of the demand states.   Let DEMANDh be the number of consumers who 

buy plane tickets at demand state h.  We assume that demand states are ordered, meaning that 

consumers who buy tickets at demand state h will also buy tickets at a higher-numbered demand 

state, i.e., DEMANDh+1  ≥ DEMANDh.  Hence, the probability that at least DEMANDh consumers 

buy tickets is obtained by adding the probabilities of all higher-numbered demand states, 

∑ =

H

hκ κρ . Of course, 1
0

=∑ =

H

h hρ . 

As in Prescott (1975) and Dana (1999), airlines face a unit cost of capacity equal to λ for 

all seats on a particular flight, whether they are sold or not.  In equilibrium and under the 

assumption of a competitive market, the expected (economic) profit is zero. Then, the model 

predicts dispersed prices given by: 

 

∑
=

=
H

h

h

p

ω

ω

ρ

λ
  for { }h,,2,1,0 �=ω ,      (1) 

over the range λ ≤ ωp  ≤ θ, where θ is the highest reservation value for a given seat.  There are 

{ }h,,2,1,0 �=ω  different batches of consumers who buy tickets at demand state h, and each of 

the batches pays a different price as given by equation (1).  This is the widely used Prescott 

(1975) spot market equilibrium (see also Eden, 1990; Dana, 1998; and Dana, 1999). 

 The intuition behind the dispersed prices in equation (1) is simple. Consider the following 

example in which the unit cost of capacity is λ = 1 and there are two equally likely demand 

states.  During low demand, only one consumer buys a ticket; during high demand, two 

consumers buy tickets.  The first consumer buys in both demand states; hence, she buys with 

probability 1 and pays a price of $1.  The second consumer buys only during the high demand 
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state, which occurs only half of the times, thus she pays $2.  Notice that in both demand states 

the expected profit is equal to the unit cost of capacity, hence complying with the zero expected 

profit condition.  

Even though the above setting is a one-period model because sellers are not allowed to 

update their prices during the selling season, it can have an interesting dynamic interpretation.5  

Different batches ω  can be thought of as arriving sequentially and because airline seats are 

homogeneous, consumers always prefer the cheapest remaining ticket.  Then the next batch of 

consumers arrives and buys at the next available lowest price.  There is price dispersion across 

consumers of different batches and those consumers who arrive in latter batches pay higher 

prices. 

Given the price schedule in equation (1), we now derive the corresponding equilibrium 

demand realizations.6  Suppose that airplane seats are homogeneous, and let consumers within 

each batch ω  have reservation values that are uniformly distributed ],0[ θ .  Therefore, the 

number of seats sold for each of the batches can be written as: 

 







−=− −

θ
ω

ωω

p
DEMANDDEMAND 11  for { }h,,2,1 �=ω ,   (2) 

where 00 =DEMAND . Hence, the realized aggregate demand at state h is obtained by summing 

across all batches in h: 

 ∑
=









−=

h

h

p
DEMAND

1

1
ω

ω

θ
.        (3) 

 

                                                 
5 The dynamic interpretation is in line with Hazledine (2010) and Kutlu (2012), although these papers work under 
demand certainty.  Deneckere and Peck (2012) present a generalization of Prescott’s (1975) one-period model to 
allow sellers to change prices over different periods. 
6 Notice that we keep track of two distributions that capture demand uncertainty. The first is the distribution of 
demand states h and the second is the distribution of demand realizations, DEMANDh. 
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2.2.  Link between Demand Uncertainty and Capacity Utilization 

As in Prescott (1975) and Dana (1999), one key characteristic of this model is that airlines set the 

schedule of prices based on the distribution of demand uncertainty, and those prices remain fixed 

throughout the selling period.  Now, to see the predictions of this model for the link between 

volatility in demand realizations and average demand realizations, we first derive the price 

schedule using equation (1) for a given distribution of demand uncertainty.  By keeping prices 

fixed a priori, we will then use equation (3) to show the effects of a change in the mean of the 

distribution of demand uncertainty on both the mean and variance of the demand realizations. 

Suppose the demand uncertainty that a flight faces when deriving its price schedule 

follows a discrete uniform distribution with H = 20, i.e., { }20,,2,1,0 �=h .  Hence, 

)1/(1 += Hhρ .  Furthermore, let λ = 1 and θ = 10.  Using the price schedule derived from 

equation (1), we fix the mean of h at 10 and present in Table 1 the means and standard deviations 

of the demand realizations DEMANDh for different standard deviations of the distribution of 

demand uncertainty.  The results show that a higher volatility in the realizations of demand, as 

measured by standard deviation of DEMANDh, is associated with lower average demand 

realizations. 

 

[Table 1, about here] 

 

[Figure 1, about here] 

 

The intuition behind this negative relationship is illustrated in Figure 1.  Based on the 

previous example the fourth quadrant plots two different distributions of h i.e., { }18,,2 �=h  and 
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{ }15,,5 �=h .  The solid line in the first quadrant is the DEMANDh schedule used in Table 1, 

which maps the two distributions of h into the distributions of  DEMANDh  presented in the 

second quadrant.  Along with the distributional assumption of h, equation (1) generates a 

nondecreasing convex schedule of prices, which translates into a nondecreasing concave 

DEMANDh  function.  Hence, a larger volatility in the distribution of demand states causes the 

last batches of consumers that arrive at higher demand states to face relatively higher prices.  

Because individual consumers have their own downward sloping demand schedules, these higher 

prices translate into lower ticket sales and hence a lower mean in the demand realizations.  This 

can be appreciated in the second quadrant at higher demand realizations, where the frequencies 

get closer together.7  Notice that while the derivation of the DEMANDh schedule draws on the 

particular models found in Prescott (1975) and Dana (1999), our main conclusion does not need 

to rely on the specifics of these models or the functional form of the demand.  Figure 1 shows 

that similar settings that result in a nondecreasing concave function for DEMANDh can have the 

same empirical implication. 

Notice that if we abstract prices from the analysis, a simplified setup can also illustrate 

the negative link between demand uncertainty and capacity utilization.  Assume that two 

distributions of demand states share the same mean but one distribution has a larger variance.  If 

the plane capacity contains the two distributions entirely, then the mean is the same for both.  

However, this is not the case if an aircraft’s limited capacity does not fully contain those 

                                                 
7 At the highest demand state when h={2,...18}, the last batch of consumers faces a price larger than θ and so does 
not buy any tickets.  This explains why the highest demand realization of DEMANDh = 13.59 is twice as likely—
during the two highest demand states of h = 17 and h = 18. 
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distributions so that truncations occur.  As a result of truncation, the observed (conditional) mean 

will be smaller for the distribution with higher variance.8 

 

3.  Data 

For empirical analysis, we collected U.S. airlines’ realized demand data from the popular online 

travel agency expedia.com.  Following Escobari (2009, 2012), we looked up data on the map of 

seats on each aircraft and counted the total number of seats in the aircraft (total aircraft’s 

capacity) and the number of seats sold up to 15 days, 8 days and 1 day prior to departure, 

respectively. Because overbookings are usually a small fraction of ticket sales, we assume that 

our measure is proportional to bookings.9  For the production of nonperishable goods, 

inventories can be used to absorb demand shocks that can lead to deviations between production 

and sales.  In the case of perishable goods such as airline seats, however, cumulative ticket sales 

are a measure of realized demand, so that unsold inventories are a measure of idle capacity.  

Realized demand, which is capacity utilization for a specific flight, is calculated as the ratio of 

occupied seats to the total number of available seats on an aircraft.10 

We collected three sets of panel data by the number of days prior to departure.  Each data 

set is a panel that pools seat inventories of 20 flights (N=20) across a fixed period of 126 days 

(T=126).  More specifically, the first set measures seat inventories at one day prior to departure 

for the 20 specific flights over 126 consecutive days between Tuesday, June 2 and Monday, 

October 5, 2009.  Correspondingly, the second dataset consists of inventories at 8 days prior to 

                                                 
8 We thank an anonymous referee for raising this point.  In the empirical work below, the effects of truncated 
conditional means will be taken into consideration. 
9 Seats protected for later purchases (usually labeled as preferred or prime seats) are counted as available seats.  This 
is consistent with serial nesting of booking classes.  In this case, for booking classes within the same cabin seats 
from a higher booking class (e.g., prime seats) are ready to be released into a lower booking class if needed (e.g., in 
an expected off-peak fight), see Escobari (2012, p. 719). 
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departure for the same 20 flights and over 126 consecutive days between Tuesday, June 9, and 

Monday, October 12, 2009.  The third consists of corresponding data at 15 days to departure for 

flights departing from Tuesday, June 16, to Monday, October 19, 2009.  Accordingly, each 

dataset contains a total of 2,520 observations, where each cross-sectional unit is a non-stop, one-

way flight-number from a carrier on a particular domestic route in the U.S.  Each flight-number 

(e.g. American Airlines Flight 637 from Miami, FL to New Orleans, LA) is offered every day 

with the same aircraft size.  A route is defined as a pair of departure and destination airports, and 

the carriers with flights in the data sample are Alaska, American, Delta, United and US Airways.  

In model estimation, the panel structure of the data will allow us to control for unobserved time-

invariant flight-number-, carrier-, and route-specific characteristics that may affect demand 

realizations.  Time invariant characteristics include the distance between airports, the aircraft 

type, and the unit cost of capacity λ. 

 

[Table 2, about here] 

 

Table 2 displays some descriptive statistics for the airline data across the panel of 20 

flights over the different sample periods of 126 days.  The 20 flights had an average capacity of 

103 seats.  The smallest aircraft carried a capacity of 50 seats, and the largest aircraft carried a 

capacity of 166 seats.  The columns in the panel of utilized capacity show the statistics for the 

proportions of seats sold to total seats in the aircraft at 15-days, 8-days, and 1-day prior to flights 

departures.  An average of 74% of seats were sold 15 days prior to departure, compared to 82% 

for 8 days and 89% for one day prior to departure.  The dispersion of utilized capacity across 

                                                                                                                                                             
10 Bilotkach et al. (2011) use similar information on seat capacity availability to see how yield management affects a 
flight's load factors. 
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flights, as measured by the standard deviation, ranges from 0.18 in the 15-days-to-departure 

panel to 0.14 in the 1-day-to-departure panel. 

 

4.  Empirical Model 

In this section, we present the empirical model for estimating the relationship between demand 

uncertainty and capacity utilization in the airline industry.  Realized demand for air travel is 

measured by cumulative ticket sales for a particular flight.  A flight’s capacity utilization is the 

ratio of purchased seats to the total number of seats in the aircraft.  Given the panel nature of our 

dataset and our focus on demand uncertainty, we consider GARCH-type models that also take 

into account interdependence across flights.   For a cross-section of N flight-numbers, T 

departure dates and a fixed number of days to departure, the conditional mean equation for air 

travel realized demand (DEMANDit) can be expressed as a dynamic panel model with fixed 

effects: 

 ,
1

,
K

it k i t k it i it
k

DEMAND DEMAND −
=

= + + +Σ xα µ εββββ  i = 1,…, N; t = 1,…, T, (4) 

where the subscript i refers to a specific flight-number and the subscript t refers to a given 

departure date.  Notice that the definition of the variable DEMANDit in this section is analogous 

to DEMANDh in the theoretical model of Section 2.  The subscript h is replaced by the subscripts 

i and t because, for simplicity, the theoretical section presents a single period model, while the 

empirical model in this section identifies demand uncertainty through different demand 

realizations DEMANDit across flights i and over time t.  The term 
it

x  is a vector of exogenous 

variables with coefficients captured by the vector β.  The term 
i

µ  captures possible time-
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invariant effects associated with the given routes, carriers, airports and flights; and 
it

ε  is a 

disturbance term with the following conditional moments: 

 [ ] 0
it js

E ε ε =   for i ≠ j and t ≠ s,      (5) 

[ ] 0
it js

E ε ε =   for i = j and t ≠ s,      (6) 

2

,[ ]it js ij tE ε ε σ=   for i ≠ j and t = s,       (7) 

 2[ ]it js itE ε ε σ=   for i = j and t = s.      (8) 

 
The first condition assumes no non-contemporaneous cross-sectional correlation, and the second 

condition assumes no autocorrelation.  The third and fourth assumptions define the general 

conditions of the conditional variance-covariance process. 

Demand uncertainty is captured by conditional volatility in the disturbance term in the 

condition mean equation (4).  Due to its popularity and parsimony, the conditional variance and 

covariance processes of 
it

ε are assumed to follow a GARCH(1,1) process: 

 2 2 2

, 1 , 1it i i t i tσ φ γσ δε− −= + + ,  i = 1,…, N,         (9) 

 , , 1 , 1 , 1ij t ij ij t i t j t
σ ϕ ησ ρε ε− − −= + + , i ≠ j      (10) 

Using matrix notation, equation (4) can be written as: 

 
t t t

DEMAND = + +Z θ µ εθ µ εθ µ εθ µ ε         (11) 

where DEMANDt and εεεεt  are N × 1 vectors,  μμμμ is the corresponding N × 1 vector of individual-

specific effects, s and 1[ ... ]
t t t

DEMAND −=Z x�  is a matrix with their corresponding coefficients in 

[ ... ']'.
k

α β= �θθθθ   The disturbance term has a multivariate normal distribution ( , ).
t

N 0 ΩΩΩΩ    

Because the disturbance term 
t

εεεε is conditional heteroskedastic and cross-sectionally 

correlated, the least-squares estimator for this model is no longer efficient even though it is still 

consistent.  Alternatively, Cermeño and Grier (2006) and Lee (2010) suggest the application of the 

maximum-likelihood (ML) method, which maximizes the following log-likelihood function: 
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L
1

1 1

1
{ log(2 ) log | | [( ) ' )]}

2

−

= =

= − + + − − × − −∑ ∑
T T

t t t t t t
t t

NT DEMAND DEMANDπ Z ( ZΩ θ µ Ω θ µΩ θ µ Ω θ µΩ θ µ Ω θ µΩ θ µ Ω θ µ . 

(12) 

However, there is yet another issue in the estimation.  Because capacity utilization is constrained 

to be less than 100%, the disturbance term 
t

εεεε has a truncated normal distribution.  As a result, 

estimation with the log-likelihood function of equation (12) would result in biased coefficient 

estimates.  To estimate the dependent variable that is truncated from above, we adopt 

Wooldridge’s (1999) quasi-conditional maximum likelihood (QCML) method, which essentially 

augments the log-likelihood function with a condition that depends on the truncation.   

 

5.  Estimation Results 

Our empirical work begins with specifying a baseline model for estimating realized demand for 

airline tickets.  For each of the alternative 1-day, 8-days and 15-days-in-advance tickets, the 

conditional mean equation is expressed as an AR(7), meaning that 7 autoregressive lagged values 

of the dependent variables are included in .
t

Z   This model specification is determined in light of 

the Bayesian Information Criterion, which suggests a rather long lag structure.  The particular 

autoregressive model specification is also in line with the number of days within a week.  As 

pointed out above, realized demand— DEMANDit in equation (4)—is measured as the ratio of 

occupied seats to the total number of available seats. 

 

[Table 3, about here] 

 

 Table 3 presents the estimation results for the AR(7) model of airline ticket demand 

estimated with OLS along with heteroskedasticity and autocorrelation-consistent (HAC) standard 
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errors.  The different columns show the individual regression results of 1-day-, 8-days-, and 15-

days-in-advance tickets for the 20 particular flight-numbers in the sample.  Except for the second 

lag, most coefficient estimates are statistically significant.  The positive coefficients for the first 

and seventh lags—which are the largest—imply that demand is positively correlated with the 

demand the previous day and the demand the same way of the week from the week before.  The 

negative coefficient for the second lag is only significant at a 10% level for the 1-day-in-advance 

specification.  As discussed below, the statistical significance of this lag disappears once we 

include the GARCH process in the model.  The R2 statistics indicate that the three regressions 

explain 50% to 65% of variations in the measures of realized demand. 

 

[Table 4, about here] 

 

Given the OLS regression results for the AR(7) specification of the conditional mean 

equation, Table 4 reports diagnostic statistics for testing serial correlation.  The Ljung-Box Q-

statistics and partial correlations are computed for both the residuals and squared residuals in 

orders up to 7 autoregressive lags.  In the case of residuals, most partial correlations are not 

statistically significant.  The only exceptions are the estimates for the seventh lag.  The 

significant estimates reflect correlation between ticket sales during the same day of the week. 

The negative estimates may reflect airlines’ increased efforts in reducing any idle capacity 

observed in the past.  There is scant evidence of serial correlation in the residuals, meaning that 

the condition in (6) is satisfied.  However, the partial correlations for squared residuals suggest a 

rather high-order ARCH process.  These statistics support the application of a GARCH-type 

model. 
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[Table 5, about here] 

 

 Next, we evaluate flight-specific effects in the variance and covariance equations by 

applying likelihood-ratio (LR) tests based on the log-likelihood values of the panel GARCH(1,1) 

model estimated separately with and without individual effects.  The complete model is captured 

by equations (4) through (10).  The conditional mean equation is the AR(7) as described above.  

Table 5 shows the LR statistics for testing individual effects in the variance and covariance 

equations.  All test statistics are statistically significant, supporting the presence of flight-specific 

effects for the 1-day-, 8-days- and 15-days-in-advance tickets. 

Motivated by the test results in Table 5, we report in Table 6 the estimates for the panel 

GARCH(1,1) model with individual effects in the variance and covariance equations.  Again, the 

results are displayed for the 1-day-, 8-days- and 15-days-in-advance tickets alternatively.  For all 

three datasets, the log-likelihood values of the QCML estimation are appreciably higher than 

their OLS counterparts shown in Table 3, even though the coefficient estimates in the conditional 

mean equation are quite similar.  For the 1-day-in-advance cumulative ticket sales, the estimated 

coefficients on the autoregressive terms in the conditional variance and covariance equations are 

0.60 and 0.54, respectively.  These estimates indicate that demand volatility in individual flights 

and their comovements across flights follow moderately persistent GARCH processes.  By 

comparison, the measure of persistence in demand volatility is higher at 0.73 for the 8-days-in-

advance realized demand, but lower at 0.42 for the 15-days-in-advance realized demand.  For the 

covariance equation, the corresponding measure of persistence is higher for both 8-days- and 15-

days-in-advance data.   
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In the variance equation, the estimate for the lagged squared disturbance term, 2

, 1i tε − , is the 

highest (0.93) for seats sold one day prior to departure.  This highlights the greater impact of a 

shock to market demand on a flight’s utilized capacity one day prior to departure than 8 or 15 

days prior to departure.  Similarly, the estimate for the second term in the covariance equation, 

εi,t-1 εj,t-1, is statistically significant only in the case of the 1-day-in-advance tickets.  The negative 

estimate indicates that a shock to one flight reduces its covariance, or interdependence, with 

another flight. 

 

[Table 6, about here] 

 

To explore the possible association between realized demand and demand uncertainty in 

air travel, we augment the conditional mean equation with the conditional standard deviation of 

shocks to the dependent variable (σit), which captures demand uncertainty.  This term is 

equivalent to the standard deviation of the demand realizations, DEMANDh, presented in the 

third column of Table 1 from the theoretical model in Section 2.  Extending Engle et al.’s (1987) 

model to a panel setting, we add σit as an additional explanatory variable in the conditional mean 

equation (4).  The resulting regression model is regarded as a GARCH-in-mean process.   

The first column of Table 7 shows the estimation results for the panel GARCH-in-mean 

model for the 1-day-in-advance realized demand.  The coefficient estimate for the conditional 

standard deviation term enters with a negative sign and it is statistically significant at the 1% 

level.  This estimated coefficient indicates that, all else being equal, a one unit increase in the 

standard deviation of unexpected demand decreases capacity utilization by 21 percentage points.  

While the inclusion of the GARCH term in the conditional mean equation does not noticeably 
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affect any of the estimates previously reported in Table 6, this GARCH-in-mean specification is 

preferable given its higher log-likelihood value over the basic GARCH parameterization. 

Similarly, the regression results for the 8-days-in-advance tickets (second column) and 

15-days-in-advance tickets (third column) reaffirm a negative correlation between conditional 

volatility and mean realizations in demand for airline tickets.  In comparison with the estimate 

for the 1-day-in-advance tickets, the absolute size of the coefficient estimate is about half as 

large for the 8-days-in-advance tickets, but rather similar for the 15-days-in-advance tickets.  

While it is intuitive to argue for lower demand uncertainty and higher capacity utilization during 

a date closer to the flight departure, our theoretical model does not have any predictions on how 

the link between these two variables changes as the departure date nears.  The point estimates 

suggest  non-monotonicity in the effect.  The differences in the point estimates across columns 

could be a result of consumer heterogeneity at different points prior to departure.  

 

[Table 7, about here] 

 

 Given the above findings, we further carry out some sensitivity analysis.  In particular, it 

is well known that air travel demand is typically higher during weekends and holidays (e.g., 

Escobari, 2009).  To evaluate whether our findings are robust to the presence of the day of the 

week and holiday effects, we also estimate the panel GARCH-in-mean model along with some 

day-dependent dummy variables.  The first four dummy variables take the value of 1 for flights 

departing on a Tuesday, Wednesday, Thursday and Friday, respectively, and the value of 0 

otherwise.  These variables control for unobserved effects associated with the specific day of the 

week in comparison with Monday.  Another dummy variable is WEEKEND, which takes the 
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value of 1 for Saturdays and Sundays.  The final dummy variable, HOLIDAYS, takes the value of 

1 for the days before and after the Independence Day and the Labor Day. 

Table 8 shows the results for the three datasets estimated with the addition of those 

dummy variables within the panel GARCH-in-mean framework.  All the dummy variables enter 

with the expected signs and they are also statistically meaningful.  More specifically, the 

coefficient estimates suggest that airline demand is relatively lower on flights departing on 

Tuesdays in comparison with Mondays, but higher during weekends and national holidays.  The 

estimates are positive for Thursday and Friday in the cases of the 8-days- and 15-days-in-

advance tickets, but not the 1-day-in-advance tickets.  These results suggest that the day of the 

week matters only for travelers who purchase airline tickets well in advance. 

 

[Table 8, about here] 

 

Despite the consideration of weekday and holiday effects, the estimates on the coefficient 

of the conditional volatility variable (σit) reaffirm our previous finding about the relationship 

between realized demand and demand uncertainty.  Their quantitative estimates are largely 

unaffected by the inclusion of additional control variables.  Overall, the results in Table 8 lend 

strong support to the robustness of our main conclusion. 

One dimension that we control in our empirical framework is the effect that days to 

departure may have on capacity utilization and demand volatility.  This is important because as 

Table 2 suggests, capacity utilization is higher and demand volatility is lower when it is closer to 

departure; hence, the correlation between capacity utilization and demand uncertainty can be 

driven by days to departure.  Such identification in this paper comes from observing demand 
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realizations across different flights and departure dates, keeping days to departure fixed at 1, 8, 

or 15 days.  This strategy, however, does not consider ticket prices.  This would be a concern if 

the observed demand realizations are correlated with the prices of the tickets that have been sold 

for the same flight during previous dates.  If that is the case, then our estimates may be biased 

due to the omitted price variable.  However, two possible conditions about prices can exist 

conceptually.  First, a seller may lower prices to boost sales, suggesting a negative correlation 

between prices and demand realizations.  Second, the seller may only want to lower prices if 

sales are falling short, which suggests a positive correlation.  Thus, is in not clear whether we 

should expect a positive or a negative sign for the price variable that enters the regression 

models.  Moreover, there are various prices for each level of capacity utilization and ultimately 

the correlation between previous prices and capacity utilization depends on the sequences of 

prices and sales as the departure date nears.  This in turn depends on the degree of price 

flexibility and how airlines use advance sales to learn about the aggregate demand.  Such issues 

are beyond the scope of this study.11  Notice that while we do not have ticket prices in equation 

(4), including flight-number fixed effects allows for systematic price differences across flight-

numbers.  Moreover, the day-dependent and holiday dummies control for price differences 

across different days of the week and holidays.12 

Other variables that can potentially affect capacity utilization are, for example, 

managerial capacity, whether the flight departs or lands in the carrier’s hub, and the size of the 

                                                 
11 Escobari (2012) empirically studies the dynamics of prices and inventories as the departure date nears. 
12 An alternative specification that included contemporaneous posted prices showed that estimates for the key 
variable σit remain close to those reported in Table 8.  Because of the potential endogeneity of posted prices we have 
included the ticket price variable in an IV model for the conditional mean equation using a sequential procedure 
(rather than the simultaneous estimation), in which the GARCH-in-mean term is included along with the ticket price 
variable in the second step.  The instruments include the lagged values of the explanatory variables.  We do not 
report those results partly due to a lack of theoretical motivation for such a specification.  In addition, Deneckere and 
Peck (2012) suggest that airlines post prices based on beginning-of-period cumulative bookings and not really 
cumulative bookings as a function of posted prices. 
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aircraft.  These features can be regarded as time-invariant and thus are controlled for with the 

flight-number fixed effects.  Furthermore, capacity decisions are usually made months in 

advance and modifying the size of the aircraft comes at a relatively high marginal cost.  We did 

not observe any change in aircraft size for the same flight-number in our sample. 

Because perishable inventories such as airline seats are an inefficient allocation of 

existing resources, our empirical findings have significant implications for the airlines.   Dana 

and Orlov (2009) estimate that a 6.7% increase in capacity utilization in the airline industry 

translates into a $2.7 billion in cost savings each year.  Against the backdrop of the tremendous 

turmoil in the U.S. airline industry in recent years, with bankruptcies and decreased profits 

among major airlines (see Berry and Jia, 2010), Borenstein and Rose (2007) explain that large 

volatility in airlines’ profits comes from large volatility in airline ticket demand.  Our results 

provide a better understanding of the airline industry performance by documenting the effect of 

demand volatility on capacity utilization. 

 

6.  Conclusion 

This paper contributes to the existing literature by exploring both theoretically and empirically 

the effect of demand uncertainty on capacity utilization in the airline industry.  Unlike other 

industries, some unique characteristics of airlines make this an ideal place for examining this 

relationship: Capacity is set in advance when there is uncertainty about the demand, and unsold 

inventories perish once a plane leaves the gate.  In our simple theoretical model, airlines set 

dispersed prices in advance based on a distribution of demand states.  The main empirical 

implication is that a larger variance in demand realizations is associated with lower average 

capacity utilization rates. 



 

- 22 - 
 

 

 Our empirical work focuses on testing the theoretical prediction about the link between 

demand uncertainty and capacity utilization.  The analysis has benefited from the collection of 

unique panel datasets, which allowed us to observe fluctuations in capacity utilization levels over 

a large number of departure dates and across different flights.  Another contribution of our 

empirical work stems from the estimation of the data with GARCH-type models under the panel 

setting rather than the conventional time-series setting.   

We collected data panels with flight-level seat inventories at three points prior to the 

departure date covering a total of 140 departure days.  The data are used to estimate GARCH-in-

mean models that allow for fixed-effects as well as time-varying conditional variance-covariance 

processes.  In line with our theoretical prediction, the empirical results indicate a negative link 

between demand uncertainty and capacity utilization.  More specifically, a one unit increase in 

the standard deviation of unexpected demand for a particular flight is associated with a 21 

percentage point decrease in its capacity utilization.  The estimate for this key relationship is 

robust to cumulative ticket sales data at different points prior to departure.  This empirical 

relationship has also been found to be robust to the presence of various control variables, 

including systematic demand fluctuations over days of the week and holidays, as well as 

unobserved flight-, carrier-, and route-specific characteristics. 
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Figure 1. Demand States h and Demand Realizations DEMANDh 
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Table 1: Demand Uncertainty and Mean Demand Realizations. 

h  Std. Dev. of h  Std. Dev. of DEMANDh  Mean of DEMANDh 

{ }20,,0 �   5.774  4.305  8.662 

{ }19,,1 �   5.196  3.901  8.858 

{ }18,,2 �   4.619  3.568  8.996 

{ }17,,3 �   4.041  3.214  9.111 

{ }16,,4 �   3.464  2.826  9.194 

{ }15,,5 �   2.887  2.414  9.256 

Price schedule derived with { }20,,2,1,0 �=h . 
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Table 2: Data Descriptive Statistics. 
 Capacity (seats)  Utilized Capacity 

   At 1 Day At 8 Days At 15 Days 
Mean 103  0.89 0.82 0.74 
Std. dev. 39.52  0.14 0.16 0.18 
Minimum 50  0.20 0.17 0.14 
Maximum 166  1.00 1.00 1.00 
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Table 3: OLS Estimation Results. 

 1 Day  8 Days  15 Days  

Mean Equation:          
Intercept 0.09 ***  0.08 ***  0.07 ***  
 (0.02)   (0.02)   (0.02)   
DEMANDi,t-1 0.39 ***  0.33 ***  0.30 ***  
 (0.03)   (0.03)   (0.02)   
DEMANDi,t-2 -0.06   -0.03   -0.01   
 (0.03)   (0.03)   (0.03)   
DEMANDi,t-3 0.08 **  0.06 **  0.05 **  
 (0.04)   (0.03)   (0.02)   
DEMANDi,t-4 0.05   0.06 **  0.001   
 (0.03)   (0.03)   (0.02)   
DEMANDi,t-5 0.12 ***  0.08 **  0.08 **  
 (0.03)   (0.03)   (0.03)   
DEMANDi,t-6 0.09 **  0.10 ***  0.13 ***  
 (0.03)   (0.03)   (0.03)   
DEMANDi,t-7 0.27 ***  0.31 ***  0.32 ***  
 (0.03)   (0.03)   (0.03)   
σ

2 0.08   0.12   0.13   
Log-likelihood 2707.14   1738.93   1546.45   
R2 0.65   0.51   0.50   
          

HAC standard errors are in parentheses.  The number of observations is 2520. 
* denotes statistical significance at the 10% level.  
** denotes statistical significance at the 5% level. 
*** denotes statistical significance at the 1% level. 

 

 



 

- 31 - 
 

 

 

Table 4: Autocorrelation Diagnostics. 

 Partial Correlation 

Lag Residuals  Squared Residuals 

  1 Day  8 Days  15 Days    1 Day  8 Days  15 Days  

              

1 -0.01  0.00  -0.02   0.25 *** 0.23 *** 0.22 *** 

2 0.01  0.01  -0.01   0.28 *** 0.25 *** 0.19 *** 

3 0.02  0.02  0.03   0.23 *** 0.17 ** 0.18 ** 

4 0.02  0.03  0.03   0.18  0.19 *** 0.15 *** 

5 0.01  0.01  0.01   0.19 *** 0.19 *** 0.18 *** 

6 -0.02  -0.03  -0.02   0.21 *** 0.21 *** 0.23 *** 

7 -0.04 * -0.06 * -0.07 *  0.20 *** 0.22 *** 0.23 *** 

              

Q(7) 7.14  13.17  19.83   832.28 *** 737.99 *** 657.98 *** 

              

* denotes statistical significance at the 10% level.  
** denotes statistical significance at the 5% level. 
*** denotes statistical significance at the 1% level. 
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Table 5. LR Tests for Individual Effects 

 1 Day  8 Days  15 Days  

          
Variance Equation (9) 72.01 ***  128.72 ***  265.79 ***  
Covariance Equation (10) 720.46 ***  421.81 ***  434.61 ***  
          

*** denotes statistical significance at the 1% level. 
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Table 6: Panel GARCH Estimation Results. 
 1 Day  8 Days  15 Days 

Mean Equation:          
Intercept 0.09   0.08 ***  0.07 ***  
 (0.02)   (0.02)   (0.02)   
DEMANDi,t-1 0.39 ***  0.32 ***  0.30 ***  
 (0.03)   (0.03)   (0.02)   
DEMANDi,t-2 -0.06   -0.03   -0.01   
 (0.03)   (0.03)   (0.03)   
DEMANDi,t-3 0.08 **  0.05 **  0.05 *  
 (0.04)   (0.03)   (0.02)   
DEMANDi,t-4 0.05   0.06 *  0.001   
 (0.03)   (0.03)   (0.02)   
DEMANDi,t-5 0.12 ***  0.08 **  0.08 **  
 (0.03)   (0.034)   (0.03)   
DEMANDi,t-6 0.09 **  0.09 **  0.13 ***  
 (0.03)   (0.03)   (0.03)   
DEMANDi,t-7 0.27 ***  0.31 ***  0.32 ***  
 (0.03)   (0.03)   (0.03)   
Variance Equation:         

2

, 1i tσ −  0.60 ***  0.73 ***  0.42 ***  
 (0.06)   (0.03)   (0.11)   

2

, 1i tε −  0.93 ***  0.46 **  0.82 **  
 (0.11)   (0.06)   (0.18)   
Covariance Equation:         
σij,t-1 0.54 ***  0.83 ***  0.47 ***  
 (0.02)   (0.02)   (0.02)   
εi,t-1 εj,t-1 -0.02 ***  0.02   -0.01   
 (0.01)   (0.01)   (0.01)   
          
Log-likelihood 2738.53   1772.23   1581.27   
          

Standard errors are in parentheses.  The number of observations is 2520. 
* denotes statistical significance at the 10% level.  
** denotes statistical significance at the 5% level. 
*** denotes statistical significance at the 1% level. 
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Table 7: Panel GARCH-in-Mean Estimation Results. 
 1 Day  8 Days  15 Days 

Mean Equation:          
Intercept 0.09 ***  0.15 ***  0.16 ***  
 (0.02)   (0.04)   (0.03)   
DEMANDi,t-1 0.36 ***  0.32 ***  0.29 ***  
 (0.03)   (0.03)   (0.02)   
DEMANDi,t-2 -0.07   -0.04   -0.02   
 (0.04)   (0.03)   (0.03)   
DEMANDi,t-3 0.06 **  0.04 **  0.04 *  
 (0.03)   (0.03)   (0.02)   
DEMANDi,t-4 0.03   0.05 *  -0.001   
 (0.03)   (0.03)   (0.02)   
DEMANDi,t-5 0.10 ***  0.07 **  0.07 **  
 (0.03)   (0.03)   (0.03)   
DEMANDi,t-6 0.07 **  0.10 **  0.13 ***  
 (0.03)   (0.03)   (0.03)   
DEMANDi,t-7 0.25 ***  0.31 ***  0.31 ***  
 (0.03)   (0.03)   (0.03)   

σit -0.21 ***  -0.10 ***  -0.14 **  
 (0.04)   (0.04)   (0.04)   
Variance Equation:         

2

, 1i tσ −  0.58 ***  0.73 ***  0.76 ***  
 (0.06)   (0.03)   (0.04)   

2

, 1i tε −  0.37 ***  0.46 **  0.82 **  
 (0.04)   (0.06)   (0.18)   
Covariance Equation:         
σij,t-1 0.53 ***  0.82 ***  0.47 ***  
 (0.02)   (0.02)   (0.02)   
εi,t-1 εj,t-1 -0.02 **  0.02   -0.01   
 (0.01)   (0.01)   (0.01)   
          
Log-likelihood 2745.60   1784.43   1592.11   
          

Standard errors are in parentheses.  The number of observations is 2520. 
* denotes statistical significance at the 10% level.  
** denotes statistical significance at the 5% level. 
*** denotes statistical significance at the 1% level. 
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Table 8: Panel GARCH-in-Mean (with Controls) Estimation Results. 

 1 Day  8 Days  15 Days  

Mean Equation:          
Intercept 0.09 ***  0.09 ***  0.15 ***  
 (0.03)   (0.04)   (0.03)   
DEMANDi,t-1 0.39 ***  0.32 ***  0.27 ***  
 (0.03)   (0.03)   (0.02)   
DEMANDi,t-2 -0.05   -0.03   -0.001   
 (0.03)   (0.03)   (0.03)   
DEMANDi,t-3 0.09 ***  0.04 **  0.07 ***  
 (0.03)   (0.02)   (0.02)   
DEMANDi,t-4 0.06   0.05 *  0.03   
 (0.03)   (0.03)   (0.02)   
DEMANDi,t-5 0.19 ***  0.07 **  0.08 **  
 (0.03)   (0.03)   (0.03)   
DEMANDi,t-6 0.08 **  0.10 *  0.10 ***  
 (0.03)   (0.03)   (0.03)   
DEMANDi,t-7 0.24 ***  0.31 ***  0.26 ***  
 (0.03)   (0.03)   (0.04)   

σit -0.20 ***  -0.11 **  -0.15 **  
 (0.04)   (0.03)   (0.04)   
TUESDAY -0.02 **  -0.03 ***  -0.01 *  
 (0.01)   (0.01)   (0.005)   
WEDNESDAY -0.02 **  -0.01   -0.01   
 (0.01)   (0.01)   (0.01)   
THURSDAY -0.01   0.03 ***  0.04 ***  
 (0.01)   (0.01)   (0.01)   
FRIDAY 0.01 **  0.05 ***  0.06 ***  
 (0.006)   (0.01)   (0.01)   
WEEKEND 0.01 ***  0.03 ***  0.04 ***  
 (0.005)   (0.01)   (0.01)   
HOLIDAYS 0.03 **  0.05 **  0.07 **  
 (0.01)   (0.03)   (0.03)   
Variance Equation:         

2

, 1i tσ −  0.59 ***  0.73 ***  0.43 ***  
 (0.06)   (0.03)   (0.11)   

2

, 1i tε −  0.37 ***  0.46 **  0.86 **  
 (0.04)   (0.06)   (0.19)   
Covariance Equation:         
σij,t-1 0.58 ***  0.83 ***  0.76 ***  
 (0.06)   (0.02)   (0.04)   
εi,t-1 εj,t-1 -0.04 ***  0.02   -0.01   
 (0.01)   (0.01)   (0.01)   
 

         

Log-likelihood 2801.60   1824.21   1681.96   
          

Standard errors are in parentheses.  The number of observations is 2520. 
* denotes statistical significance at the 10% level.  
** denotes statistical significance at the 5% level.  
*** denotes statistical significance at the 1% level. 


