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Abstract

We propose a method to generate flexible mixture distributions that are

useful for estimating models such as the mixed logit model using simulation.

The method is easy to implement, yet it can approximate essentially any

mixture distribution. We test it with good results in a simulation study and

on real data.
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1 Introduction

This paper presents an easy yet powerful method for creating a mixture distribu-

tion for a random parameter in an econometric model that is estimated using sim-

ulation. The method is presented using maximum simulated likelihood estimation

of the mixed logit model as an example, but can be applied in a wide range of

circumstances. The advantages of the method are that essentially any distribution

can be represented arbitrarily well, while implementation is very simple.

Consider a model that specifies the likelihood P (y|x, β) of some outcome y
conditional on variables x and an unobserved random parameter β having distri-

bution F.1 Assuming that x and β are independent, the likelihood P (y|x) may be

simulated given R independent draws βr from F . This is the basis for estimation

by simulation (Train, 2003; McFadden, 1989), which can be applied when the

distribution F is considered as known.

Most applications of this method rely on the inversion method for generating

draws from F : If ur are draws from a standard uniform distribution, then F−1 (ur)
are draws from F. In order to use this method, it is necessary to compute the

inverse of F explicitly.2

There are many situations where it is not desirable to impose a specific func-

tional form on F. Generally, this is the case whenever the choice of F has impact

on the object of interest for the investigation but there is no a priori reason to

choose a particular F . It is particularly undesirable to impose a specific form on

F when F is the object of interest itself, e.g., when the purpose is to estimate

a distribution of willingness-to-pay. Then it is preferable if the shape of F can

be estimated. This can be accomplished by the method of sieves (see e.g. Chen,

2007; Gallant and Nychka, 1987), also known as series estimators. It is however

necessary to guarantee that the approximation of F is actually a CDF and then it

must be inverted in order to generate random draws from F using the inversion

method.

Another idea is to approximate F−1 directly. Then inversion is unnecessary.

It is however still necessary to ensure that F−1 is monotone, which might involve

somewhat complicated restrictions on the deep parameters of F−1 in a series ap-

proximation.

The key insight of this paper is that approximating F or F−1 is actually an un-

necessary complication for the present purpose. All that is required for simulating

the likelihood is draws βr from some distribution F that depends on some deep

1There will generally be other parameters to be estimated in the likelihood. They are sup-

pressed in the notation here as the focus lies elsewhere.
2Devroye (1986) provides a comprehensive treatment of techniques for random variable gen-

eration.
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parameters to be estimated. The simulated likelihood is simply

1

R

∑

r

P (y|x, βr) . (1)

It is not necessary that the draws βr are monotone functions of standard uniform

draws. It is not even necessary to know explicitly the distribution of the draws

βr in order to compute (1); the ability to generate draws from the distribution is

sufficient. Being able to obtain the draws, it is always possible to estimate their

distribution.

In this paper we take draws ur from some distribution and transform them

using a power series

f (u|α) =

K∑

k=0

αku
k (2)

to compute random draws βr = f (ur|α) that depend on deep parameters α =
(α0, ..., αK) to be estimated. The random draws are inserted into (1) and the

resulting expression is very easy to implement in software. For instance, if the

model contains a term βx, then that is replaced by
∑K

k=0
αk
(
xukr

)
. This is a

convenient form, since it is linear in deep parameters α that are multiplied by

easily computed variables xukr . In most cases the distribution of f (u|α) is not

easily derived analytically. The distribution is by construction, however, very

easy to simulate, which is all that is really needed.

A predecessor of our method is Fleishman (1978), who considers the problem

of generating random variables with prespecified moments. He generates a ran-

dom variable as a third-order polynomial in a standard normal random variable

and provides formulae for the coefficients of the polynomial such that specific

values of the first four moments are matched by such a variable. The present case

is similar, except we are not concerned with matching given moments, but esti-

mate coefficients in order to match a given dataset and may use polynomials of

any degree. We present results using both uniform and normal draws.

The following section 2 presents some properties of the proposed method. It

will also be argued that essentially any distribution can be approximated arbitrar-

ily well by (2) by choosing a sufficiently large number of parameters K. This

section also discusses extension to multivariate random parameter distributions.

Section 3 provides simulation results that illustrate the ability of the method to

recover various true distributions from binary discrete choice panel data. Section

4 presents an application to real data and section 5 concludes.
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2 Some properties of the method

Let α = (α0, ..., aK) ∈ R
K be a parameter vector and let u be a random variable.

Then β = f (u|α) =
∑K

k=0
αku

k is a random variable and it is convenient for use

as a random parameter. The following proposition summarises a few properties of

β.

Proposition 1 Let u follow a uniform distribution. Then the random parameter β

has compact support ranging between α0 and
∑K

k=0
αk, either of which may be

greatest; the mean is

Eβ =

K∑

k=0

αk
1 + k

,

and the m’th raw moment (m > 1) is

E (βm) =

K,...,K∑

k1=0,...,km=0

∏m

i=1
αki

1 +
∑m

i=1
ki
.

The variance of β is

V (β) = E
(
β2
)
− (Eβ)2

=

K,K∑

k=0,j=0

kjαkαj
(1 + k + j) (1 + k) (1 + j)

Proof. Immediate.

Remark 1 It is straightforward (but quite tedious) to show that with uniform u
and K = 2, then it is possible to attain any skewness while maintaining that

Eβ = 0 and E
(
β2
)
= 1.

Remark 2 If the first K moments are to be matched, it may be necessary to in-

clude more than K terms. The necessity of this has been shown for a third-order

polynomial in a standard normal random variable (Headrick, 2002).

Remark 3 By the Weierstrass approximation theorem, the set of functions
{
f (·|α) |α ∈ R(N)

}

uniformly approximates any continuous function on the unit interval. This com-

prises all inverse CDF of distributions that have densities.
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Remark 4 Consistency of series estimators has been established for a range of

cases (see e.g. Geman and Hwang, 1982; Chen, 2007; Bierens, 2008; Fosgerau

and Nielsen, 2010), but not formally for the present. Consistency of the proposed

estimator seems highly likely, meaning that the estimated distribution of β will

become arbitrarily close to the true distribution given a large enough dataset and

a correspondingly large value ofK. For a fixedK, the standard results regarding

consistency of maximum simulated likelihood apply (Newey and McFadden, 1994;

Hajivassiliou and Ruud, 1993).

Remark 5 Given R i.i.d. draws βr from some distribution, its CDF F can be

estimated by

F (t) = E (1 {β ≤ t}) '
1

R

∑

r

1 {βr ≤ t} .

As βr are the results of simulation, we are free to choose R and hence it can be

chosen to achieve any desired degree of precision of the estimate of F.

2.1 Multivariate distributions

The method can be extended to allow for a multivariate random parameter. The

extension is straightforward if the random parameters are independent, so in the

following we allow them to be dependent.

One way to go is to combine the proposed method with a copula. Let c be the

density of a bivariate copula function, i.e. a density on the unit cube with uniform

marginal distributions. A range of such are known (Joe, 1997; Nelsen, 2006). If

the conditional likelihood of an observation given (β1, β2) is P (β1, β2) , then we

could use ∫

I2
P (β1 (u1) , β2 (u2)) c (u1, u2) du1du2

to create dependence. This is however not a very attractive option, since it requires

the likelihood to be extended with a new term c (u1, u2) . Note also that while c
corrects the likelihood for dependence between uniform random variables u1 and

u2, it is not the copula for the random variables β1 (u1) , β2 (u2) since the functions

β1, β2 may not be inverse CDF.

A simpler way to go is the following. Say again for simplicity that we want

a two-dimensional random parameter β = (β1, β2) , extension will be straightfor-

ward. Let

βi =

K∑

j,k=0

αi,jku
j
1u
k
2.

This is as easy to implement as what we have discussed in the univariate case.

With this specification, β1, β2 will be dependent if αi,jk 6= 0 for some j > 0 or k >
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0. It is thus possible to allow for dependence by including such cross-parameters.

This is fully flexible in the limit, but in practice the curse of dimensionality will

quickly prevent inclusion of all cross-terms. It is still possible to include only

some cross-terms and obtain some forms of dependence.

3 Simulation exercise

This section presents the ability of the proposed method to recover various known

distributions from simulated panel binary choice data. Datasets were generated

using a range of distributions F , chosen to represent a challenging range of differ-

ent shapes. For every distribution, 50 datasets were generated for 1000 individuals

each making 8 standard binary logit choices with probability of alternative 1 given

by

P (1|β, x) =
1

1 + eσ(β−x)
,

where σ = 2 is a scale parameter, β is an individual-specific parameter following

a known population distribution F and x is an observed variable drawn from a

standard normal distribution. Datasets were generated for the following six dis-

tributions: a) Standard normal, b) Standard uniform (support [−1, 1]), c) Shifted

lognormal (constructed as X/2 − 1, where X is standard lognormal), d) Mix-

ture of two normals (equal weight, locations -1 and 1, standard deviations 1/2), e)

Beta(2, 5) , f) Asymmetric triangular (support [−1, 1], mode 1/2).

We observe (y, x) and estimate both σ and the distribution of β, specifying the

distribution of β as a third-order polynomial of a standard uniform random vari-

able in the way described in section 2. We apply maximum simulated likelihood

using 500 Halton draws.

We estimated the model on each of the 50 datasets and report plots showing

the true distribution together with the pointwise mean and 90% confidence band

for the estimated distribution.3 The results of this exercise are shown in Figure 1.

Overall, the results are very satisfactory. In all cases the confidence bands are

quite tight, showing that the estimated distributions do not vary much over the 50

generated datasets. The confidence bands track the true distributions quite closely

which shows that a third-order polynomial is sufficient to reproduce the main

features of the distributions considered. The mixture of normals does, however,

stretch the ability of the third power approximation to track its shape. Repeat-

ing the simulation exercise, basing the simulation of β on standard normal draws

rather than uniform, led to similar results.4

3Data generation and estimation were carried out in Ox (Doornik, 2001). The code is available

from the authors on request.
4These results are available from the authors on request.
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Figure 1: Simulation results using a third-order polynomial in a standard uniform

random draw. a: normal, b: uniform, c: lognormal, d: mixture of two normals,

e: beta, f: asymmetric triangular. For each simulation the figure shows the true

distribution, the pointwise mean of the estimated distributions over 50 repetitions

as well as the pointwise 5 and 95 percent quantiles of the estimates.
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4 Application to real data

We use a dataset collected with the purpose of estimating the willingness-to-pay

(WTP) for travel time savings (Fosgerau et al., 2007) and we adopt the data se-

lection and model specification of Fosgerau (2006), using observations of 2,197

car drivers choosing between two car trips distinguished by cost and time only.

Drivers made 8 choices each; with a few observations omitted for various reasons,

17,020 observations remained for estimation. We estimate a panel mixed binary

logit model with the dependent variable defined by

yit = 1⇔ δ′xit + βi + εit > λ ln vit,

where λ is a scale parameter to be estimated, vit is the trade-off value of travel

time implicitly presented for respondent i in choice occasion t, δ is a vector of

parameters to be estimated, xit is a vector of explanatory variables, the same as in

Fosgerau (2006), βi is an individual-specific parameter with an unknown distrib-

ution to be estimated and εit are i.i.d. standard logistic. The data are coded such

that we observe yit = 1 if the respondent prefers the faster and more expensive

alternative over the slower and less expensive alternative, which we take as an

indication that his individual-specific random WTP

exp

(
δ′xit + βi

λ

)

is greater than the price of time vit implicit in the offered choice.

We estimate nine different models using a standard off-the-shelf software for

estimation of discrete choice models.5 The first uses just a normal distribution for

β, such that the WTP becomes lognormal, which provided the best fit to the data

in Fosgerau (2006). The next four models use a polynomial in a standard uniform

random variable with powers up to 1, 2, 3 and 4, respectively.

The parameter estimates are shown in Table 1. The parameters in the linear

index δ′xit are relatively insensitive to the distribution of β that is imposed. Com-

pared on the loglikelihood to the model based on the normal distribution, the fit

of the models with a polynomial in a uniform is worse for first- and second-order

polynomials but better with third- and fourth-order polynomials. The Aikaike

information criterion (AIC) prefers the model with a third-order polynomial.

Table 2 shows the estimation results for the base model and four additional

models using a polynomial in the normal distribution. Again we find that para-

meters in the linear index are relatively insensitive to the distribution of β that

5The models were estimated in Biogeme 2.0 (Bierlaire, 2005) with 100 Halton draws. A test

with 500 Halton draws led to no significant change in the results. The code is available from the

authors on request.
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Table 1: ESTIMATION RESULTS FOR THE BASE AND FOUR MODELS BASED ON

THE UNIFORM DISTRIBUTION
ML normal Uniform 1 Uniform 2 Uniform 3 Uniform 4

Variables estimate z test estimate z test estimate z test estimate z test estimate z test

Age/10 0.02 0.12 -0.004 -0.02 -0.05 -0.25 -0.01 -0.07 -0.02 -0.10

Age squared/100 -0.03 -1.68 -0.03 -1.38 -0.02 -1.19 -0.03 -1.42 -0.03 -1.41

Commute dummy 0.34 3.49 0.34 3.22 0.42 4.00 0.35 3.66 0.36 3.71

ConShare 0.52 1.66 0.43 1.39 0.33 1.06 0.56 1.68 0.55 1.60

Education dummy 0.27 1.62 0.18 1.16 0.19 1.22 0.26 1.32 0.24 1.24

Female dummy -0.29 -3.41 -0.27 -3.05 -0.27 -3.18 -0.29 -3.39 -0.29 -3.43

Ln(income) 0.71 7.73 0.66 6.68 0.66 6.90 0.68 7.18 0.67 7.22

Income NA dummy 0.86 4.93 0.87 4.75 0.87 4.99 0.78 4.55 0.78 4.57

Time difference 0.37 8.81 0.34 8.04 0.33 7.89 0.37 9.10 0.38 9.12

Trip duration 0.44 8.17 0.40 7.39 0.43 8.07 0.42 7.54 0.42 7.52

Constant 1.18 2.43 -1.07 -2.15 -0.55 -1.10 -2.31 -4.05 -2.57 -3.98

α1 1.56 33.35 5.00 34.31 2.10 2.94 18.4 8.63 22.8 4.05

α2 - - - - 2.76 4.12 -34.2 -7.38 -52.4 -2.44

α3 - - - - - - 23.4 8.03 50.0 1.63

α4 - - - - - - - - -12.8 -0.87

λ 1.15 35.17 1.13 35.09 1.13 35.15 1.15 35.37 1.15 35.36

DoF 13 13 14 15 16

No. observations 17020 17020 17020 17020 17020

No. individuals 2197 2197 2197 2197 2197

Final LL -9051.9 -9102.9 -9088.6 -9045.5 -9045.1

Adjusted ρ2 0.232 0.227 0.228 0.232 0.232

AIC 18129.8 18231.8 18205.2 18121 18122.2

Table 2: ESTIMATION RESULTS FOR THE MODELS BASED ON THE NORMAL

DISTRIBUTION
ML normal Normal 2 Normal 3 Normal 4 Normal 5

Variables estimate z test estimate z test estimate z test estimate z test estimate z test

Age/10 0.02 0.12 0.001 0.00 0.001 0.01 -0.005 -0.02 0.003 0.01

Age squared/100 -0.03 -1.68 -0.03 -1.55 -0.03 -1.53 -0.03 -1.52 -0.03 -1.59

Commute dummy 0.34 3.49 0.38 3.83 0.35 3.63 0.36 3.73 0.36 3.81

ConShare 0.52 1.66 0.47 1.49 0.52 1.61 0.51 1.56 0.46 1.41

Education dummy 0.27 1.62 0.28 1.67 0.32 1.80 0.31 1.72 0.30 1.73

Female dummy -0.29 -3.41 -0.29 -3.46 -0.29 -3.43 -0.29 -3.51 -0.29 -3.58

Ln(income) 0.71 7.73 0.71 7.79 0.72 7.89 0.72 7.91 0.72 7.94

Income NA dummy 0.86 4.93 0.85 4.95 0.79 4.63 0.80 4.70 0.80 4.73

Time difference 0.37 8.81 0.36 8.74 0.38 9.09 0.38 9.15 0.38 9.14

Trip duration 0.44 8.17 0.45 8.43 0.44 8.07 0.44 8.08 0.44 8.10

Constant 1.18 2.43 1.11 2.31 1.13 2.33 1.10 2.27 1.04 2.19

α1 1.56 33.35 1.54 32.95 1.29 16.67 1.25 14.26 1.35 9.68

α2 - - 0.10 2.72 0.08 1.70 0.24 4.12 0.43 2.24

α3 - - - - 0.13 3.59 0.16 3.28 -0.01 -0.08

α4 - - - - - - -0.05 -4.67 -0.13 -1.59

α5 - - - - - - - - 0.05 1.06

λ 1.15 35.17 1.15 35.18 1.15 35.29 1.15 35.31 1.15 35.31

DoF 13 14 15 16 17

No. observations 17020 17020 17020 17020 17020

No. individuals 2197 2197 2197 2197 2197

Final LL -9051.9 -9047.6 -9038.9 -9036.7 -9035.9

Adjusted ρ2 0.232 0.232 0.233 0.233 0.233

AIC 18129.8 18123.2 18107.8 18105.4 18105.8
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is imposed. Of course, since the base model uses the normal distribution, now

the loglikelihood improves with each additional power of the normal distribution.

The AIC prefers the model with a fourth-order polynomial among all models esti-

mated. The models with four and five powers of the normal distribution required

many iterations to converge; this seems to be related to collinearity of the sec-

ond and the fourth powers of the normal. Our reason for using the powers of

the normal random variable is that we want to show that the simple implementa-

tion works. It is, however, possible to replace the powers of the normal random

variable by orthogonal polynomials in the normal random variable and this could

plausibly resolve the collinearity issue.

Figure 2 plots the estimated cumulative distributions for three models, namely

the base model, the third-order polynomial model which is the best model based

on the uniform distribution and the fourth-order polynomial model which is the

best model based on the normal distribution. The scale parameter changes only

little so the cumulative distributions are comparable. In this case, the deviations

from the normal distribution do not appear large, although the polynomial terms

clearly improve the model fit.
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Figure 2: Estimation results using a normal distribution (solid line), a third-order

polynomial in a standard uniform random draw (dots) and a fourth-order polyno-

mial in a standard normal random draw (dots and dashes).
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5 Conclusion

This paper has developed and applied a simple method for creating flexible mix-

ing distributions. It is easy to implement and the mixing distributions can be

arbitrarily flexible. The method has been applied successfully in a simulation

study as well as to real data, both using the mixed logit model estimated with

maximum simulated likelihood. The application to real data was carried out in

a freely available and much used package for estimation of discrete choice mod-

els, demonstrating that the method is readily applicable and does not require spe-

cialised programming.
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