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ABSTRACT: The main purpose of the present study was to investigate the capabilities of two 

generations of models such as those based on dynamic neural network (e.g., Nonlinear Neural network 

Auto Regressive or NNAR model) and a regressive (Auto Regressive Fractionally Integrated Moving 

Average model which is based on Fractional Integration Approach) in forecasting daily data related to 

the return index of Tehran Stock Exchange (TSE). In order to compare these models under similar 

conditions, Mean Square Error (MSE) and also Root Mean Square Error (RMSE) were selected as 

criteria for the models’ simulated out-of-sample forecasting performance. Besides, fractal markets 

hypothesis was examined and according to the findings, fractal structure was confirmed to exist in the 

time series under investigation. Another finding of the study was that dynamic artificial neural 

network model had the best performance in out-of-sample forecasting based on the criteria introduced 

for calculating forecasting error in comparison with the ARFIMA model. 
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1.  Introduction 
Predicting macroeconomic variables has a high significance in scientific discussions related to 

economy. Different models have been developed for forecasting the future values in order to help 

economic policy-makers formulate and pursue appropriate monetary and financial policies. In 

addition, the issues related to Information Economics and the Asymmetric Information in financial 

markets and consequently, the complications involved in assessing the effects of different variables on 

the stock return under such conditions lend much further significance to the role of forecasting of 

variables (Sirucek, 2012; Asaolu and Ogunmuyiwa, 2011; Maysami and et al., 2004). On the other 

hand, one of the most important applications of different models can be forecasting future values of 

the variables; indeed, assessment of the accuracy of these forecasts is a means of comparing these 

models. Taking this fact into account, the very nature of forecasting and the tendency for making 
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profits in financial markets has led to an increase in the number of studies on models and forecasting 

techniques during the recent decades in a way that today there are many models and methods in the 

literature on Econometrics and Applied Economics (Gooijer and Hyndman, 2006). 

Although structural models have been rather successful in explaining the current situation, 

they have not been successful in forecasting; hence, during the recent years, economists have focused 

mainly on univariate time-series models rather than structural models for forecasting purposes (Haridy 

& Wu, 2009). In addition to univariate regression models, artificial intelligence network models have 

also become very popular because these models have yielded acceptable results in making accurate 

and reliable forecasts due to their identification and modeling of the complicated behavior of the 

financial markets . 

Predictability of the stock return has a close relationship with the Efficient Markets 

Hypothesis (EMH). Efficiency is a fundamental concept in financial markets proposed in 1965 in the 

field of finance and many studies have been conducted in this regard According to this issue. After 

presenting these empirical evidences, EMH stated in its more full-fledged form that if return was 

predictable, many of the investors would gain huge benefits. Accordingly, we would be faced with a 

“money making machine” that could build unlimited wealth; this is, however, impossible in a stable 

economy (Granger & Timmermann, 2004). 

EMH built based on Random Walk Models has been one of the basic challenges facing 

financial analysts since according to this hypothesis, the complex behavior of the financial markets 

cannot be modeled and predicted. By finding the roots of this issue, it can be found that the basic 

assumptions of the EMH cannot take into account all the elements involved in the financial markets. 

The most important assumption is that markets do not have memory in the sense that yesterday’s 

happenings will not influence today’s events and that investors are risk averse and always carefully 

consider all the information in the market (Burton, 1987). However, the results of many applied 

studies are indicative of the fact that majority of the investors are under the influence of the 

happenings in the market and form their expectations of the future stock prices in keeping with their 

experiences. This fact points to the conclusion that markets have memory (Granger and Joyeux, 1980). 

In addition, one cannot make a confident assertion that all the investors in the financial markets 

behave logically but that they may do trading and favor risking without paying attention to the market 

information because always some investors may make a profit and some may sustain losses. 

Therefore, although based on the assumptions of EMH, financial markets are apparently 

unpredictable, the fact is that this is not the case (Sowell, 1992). Thus, the assumptions of the EMH 

were faced with such criticisms and "Fractal Market Hypothesis" (FMH) was proposed which was 

able to provide a more comprehensive analysis of the markets. This hypothesis, in fact, implied the 

existence of a market composed of numerous investors pursuing their goals with different investment 

horizons. The types of information important to each one of these investors is different. On this basis, 

as long as the market sustains its fractal structure, it will stay stable without considering time scale of 
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the investment horizons. On the other hand, when all the investors in the market have the same time 

horizon, the stability of the market will be undermined because people will do trading drawing on 

similar market information (Baillie, 1996).  

Although rejecting the EMH implies non-randomness and, as a consequence, predictability of 

different series, this result is achieved because EMH has been formed based on the Random Walk 

Model and consequently the existence of a linear structure in the behavior of the market (Brock & et 

al., 1992). On the other hand, with regard to the financial markets which mainly have a complex and 

chaotic structure, FMH analyzes and assesses the issue of predictability from the perspective of 

nonlinear models (Vacha and Vosvrda, 2005). Although accepting the dependence of the behavior of a 

financial market on the FMH is a confirmation of the use of different non-linear models in consonance 

with the feature of long memory (e.g., Auto Regressive fractionally Integrated Moving Average or 

ARFIMA model) and also different types of neural network models (e.g., Nonlinear Neural network 

Auto Regressive or NNAR model as a dynamic model), it should also be noted that the fact that the 

inherent features of the mentioned markets (e.g., long memory) can improve the results of modeling 

should not be overlooked. Therefore, the present study attempts not only to consider fractal markets 

hypothesis in the return of TSE index but also compare different models based on the long memory 

(ARFIMA) and Dynamic Artificial Neural Network Model (NNAR) in terms of their out-of-sample 

forecasting performance using MSE and RMSE forecasting error measures. For this purpose, daily 

time series data were used from 25/3/2009 to 22/10/2011 (616 observations) out of which 555 

observations (about 90% of the observations) were used for modeling and 60 observations for out-of-

sample forecasting. 

 

2.  Methodology 

2.1. Long Memory 

After many important studies were conducted on the existence of Unite Root and 

Cointegration in time series starting in 1980, econometrics experts examined other types and subtypes 

of non-stationary and approximate persistence which explain the processes existing in many of the 

financial and economic time series. Today, different studies have been and are being conducted on 

these processes including "Fractional Brownian Motion" and "Fractional Integrated Process" and the 

"processes with long memory" (Lento, 2009). Hurst (1951) for the first time found out about the 

existence of processes with long memory in the field of hydrology. After that, in early 1980s 

econometricians such as Granger and Joyex (1980) and Hosking (1981) developed econometric 

models dealing with long memory and specified the statistical properties of these models. During the 

last three decades, numerous theoretical and empirical studies have been done in this area. For 

example, (Mandelbrot, 1999; Lee and et al. 2006; Onali and Goddard 2009)’s studies can be 

mentioned as among the most influential in this regard.  
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The concept of long memory includes a strong dependency between outlier observations in 

time series which, in fact, means that if a shock hits the market, the effect of this shock remains in the 

memory of the market and influences market activists’ decisions; however, its effect will disappear 

after several periods of time (in the long term). Thus, considering the nature and the structure of 

financial markets such as the stock market, which are easily and quickly influenced by different 

shocks (economic, financial and political), it is possible to analyze the effects of these shocks and in a 

way determine the time of their disappearance by observing the behavior of these markets (Los and 

Yalamova, 2004). Meanwhile, the long memory will be used as a means of showing the memory of 

the market. By examining the long memory, the ground will also be prepared for improvement of 

financial data modeling.  

 

2.2. ARFIMA Model 
One of the most popular and most flexible models dealing with the long memory is the 

ARFIMA model in which fractional cointegration degree (d) is representative of the long memory 

parameter because it is indicative of the features of the long memory in the time series of the related 

variable. After making sure about the existence of this feature in a time series using ACF
1
 tests, classic 

R/S
2
 analysis and also semi-parametric methods such as GPH

3
, MRS

4
, etc. (Xiu and Jin, 2007), the 

most important stage in the process of estimation of these models is the "fractional differencing" stage; 

economists, however, used first-order differencing in their empirical analyses due to its ease of use (in 

order to avoid the problems of spurious regression in non-stationary data and the difficulty of 

fractional differencing). Undoubtedly, this replacement (of first-order differencing with fractional 

differencing) leads to over- or under-differencing and consequently loss of some of the information in 

the time series (Huang, 2010). On the other hand, considering the fact that majority of the financial 

and economic time series are non-stationary and of the Differencing Stationary Process (DSP
5
) kind, 

in order to eliminate the problems related to over differencing and to obtain stationary data and get rid 

of the problems related to spurious regression, we can use Fractional Integration. Another interesting 

point is that Fractional Integration can assume different values, but a specific value for this parameter 

(d) is indicative the long memory feature. Two conditions need to be met for assuming these values. 

Firstly, if -0.5 d 0.5, a series exhibits a stationary and invertible ARMA process with geometrically 

bounded autocorrelations. In other words, when 5.00  d , the autocorrelation function decreases 

hyperbolically and the related process is a stationary long memory process meaning that the 

autocorrelations decay to zero and will not be summable. When 05.0  d , the long memory 

process will be invoked. The medium-term memory shows that the related variable has been over-

                                                           
1 Auto Correlation Function 
2 Rescaled Range Analysis 
3 Geweke and Porter-Hudak 
4 Modified Rescaled Range 
5 And some are also trend stationary processes 
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differenced and under such conditions, the reverse autocorrelation function decreases hyperbolically. 

The second condition is that a non-stationary is exhibited by the series if 0.5d1 (Hosking, 1981).   

Finally, it is worth mentioning that spurious long memory should not be overlooked; in fact, 

spurious long memory happens as the result of structural change and inattention to nonlinear 

transformations (Kuswanto and Sibbertsen, 2008). Therefore, based on the concepts introduced, we 

can correctly model the behavior of a variable using this model. The general form of the model 

ARFIMA(p,d,q) is as follows:  

(1)      TtLyLL ttt

d ,...,3,2,1)()()1)((   

In which )(L is polynomial autocorrelation, )(L represents moving average polynomial, L 

is Lag Operator, t is the mean of ty . Besides, in this equation, ttt yZ   and is cointegrated with 

rank d. Features of Z are dependent on the d value. If 5.0d , covariance of the model will be fixed 

and if 0d , it will have long memory feature (Hosking, 1981). p and q are integers and d  is a long 

memory parameter. 
d

L)1(  represents a fractional differencing operator which is calculated using the 

following formula:  
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In the above equation, it has been hypothesized that ),0(~ 2

t
Nt  and also ARMA section of 

the model are reversible (Aye and et al., 2012).  

  

2.3. Nonlinear Neural Network Auto Regressive Model (NNAR) 
 Forecasting the behavior of a time series using econometric nonlinear models is constrained 

by many limitations. New models, however, enjoy more flexible structures and can get a better fitting 

of linear and non-linear econometric models. These models are a parallel distribution process with a 

natural structure and their most important feature is their ability to model nonlinear and complicated 

relationships without a need for prior hypothesis about the nature of relationships among the data. 

Generally, neural networks include two groups of dynamic and static networks (Dase and Pawar, 

2010). Static networks such as the artificial neural network (ANN) do not have feedback factor; their 

output is calculated directly via inputs that have feedforward connections. But in dynamic neural 

networks (such as the Nonlinear Neural Network Auto Regressive (NNAR) and Nonlinear Neural 

Network Auto Regressive with exogenous variables (NNARX)), the value of the output is dependent 

on current and past input values, the outputs, and also the structure of the network (Georgescu and 

Dinucă, 2011; Khashei and Bijari, 2010).  

These models have numerous applications in different areas such as prediction of financial 

markets, communication systems, power systems, classification, error detection, recognizing voices, 

and even in genetics. One of the most frequently used models among dynamic neural network models 
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is the NNAR model. This model is developed by adding an AR process to a neural network model. 

Dynamic neural network (NNAR) has a linear and a nonlinear section; its nonlinear section is 

estimated by a Feed Forward artificial neural network with hidden layers and its linear section 

includes an autoregressive model (AR). The main advantage of using this model is that it is able to 

make more accurate long term predictions under similar conditions in comparison with the ANN 

model (Taskaya and Caseym 2005). The training approach in these models, which is consistent with 

Levenberg-Marquardt (LM) Training (Levenberg, 1944 and Marquardt, 1963) and the hyperbolic 

tangent activation function, is built on Error-Correction Learning Rule and starts the training process 

using random initial weights (Matkovskyy, 2012). After determining the output of the model for any 

of the models presented in the training set, the error resulting from the difference between the model 

output and the expected values is calculated and after moving back into the network in the reverse 

direction (from output to input), the error is corrected. The general form of the NNAR neural network 

models is:  

(3) )](),...,2(),1(),(),...,2(),1(),([)(ˆ
yu ntytytyntutututuftY 

 

In this formula, f represents a mapping performed by the neural network. The input for the 

network includes two u(t) exogenous variables (input signals) and target values (the lags of the output 

signals). The numbers for un and yn include output signals and actual target values respectively which 

are determined by the neural network (Trapletti, and et al., 1998).  

 

3. Empirical Results 

In the present study, we are going to investigate the long memory feature in the returns of TSE 

index and to compare the performance of ARFIMA and NNAR models in forecasting this series. It 

should be mentioned that the abbreviation for the variables used in this study include TEDPIX, which 

is indicative of price index and dividend, DLTED, which shows Logarithmic differential of TEDPIX 

series. 

3.1. Examining predictability of return of TSE 
In this section, in order to explain the reasons for using non-linear models, two tests will be 

analyzed; first the non-randomness (and consequently predictability) of stock return series will be 

considered using the Variance Ratio Test and then its non-linearity will be examined using the BDS 

test.  

3.1.1. Variance Ration test (VR Test) 

This test (Lo and MacKinlay's, 1988) is used to examine whether the behavior of the 

components of stock return series is Martingale. In this test, when the null hypothesis is rejected, it can 

be concluded that the tested series will not be i.i.d. Overall, rejection of the null hypothesis in the VR 
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test is indicative of the existence of linear or nonlinear effects among the residuals or the time series 

variable under investigation (Bley, 2011). 

       Table 1. The results of VR test in stock series 

            Test                          Probability                Value 

 Variance ratio test                  0.000                      6.38 

Source: findings of study 

The results of the above test show that there is no evidence that the mentioned series (and the 

lag series) is of the Martingale; thus, the process of the data is not random. Accordingly, predictability 

of this series is implied in this way. The interesting point is that one cannot find out whether the data 

process in the stock return series is linear or non-linear as suggested by the results of this test, but can 

conclude that it is non-Martingale and predictable. 

 

3.1.2. BDS Test 
This test which was introduced in 1987 by Brock, Dechert and Scheinkman (BDS) acts based 

on the correlation integral which tests the randomness of the process of a time series against the 

existence of a general correlation in it. For this purpose, the BDS method first estimates the related 

time series using different methods. Then it uses correlation integral to test the null hypothesis on the 

existence of linear relationships between the series. Indeed, rejection of the null hypothesis indicates 

the existence of non-linear relationships between the related time series.  

The statistics of this test (correlation integral) measures the probability that the distance 

between the two points from different directions in the fuzzy space is less than   and like the fractal 

dimension in the fuzzy space when there is an increase in  , this probability also changes in 

accordance with it (Olmedo, 2011). Accordingly, the general form of the test is

)(

])()([
)(

,

,1,
2

1

, 



Tm

m

TTm

Tm

CCT
BDS


 . In this equation, )(,  Tm  

is an estimation of the distribution 

of the asymptotic standard
m

TTm CC )()( ,1,   . If a process is i.i.d, the BDS statistics will be normal 

distribution of the asymptotic standard. In this equation, if the BDS statistics is large enough, the null 

hypothesis will be rejected and the opposite hypothesis on the existence of a non-linear relationship in 

the process under investigation will be accepted (Moloney and Raghavendra, 2011). This test can be 

usefully applied for assessing the existence of a non-linear relationship in the observed time series. 

The results of this test have been provided in Table 2.  

Table 2. The results of BDS test in the stock return series 

Dimension         BDS-Stat.      Standard division        Z-Stat.      Probability 

       2                 0.03678                0.003112             11.788           0.000 

       3                 0.05957                0.004954             12.025           0.000 

       4                 0.07071                0.005893             11.999           0.000 

       5                 0.07201                0.006136             11.738           0.000 

Source: findings of study 
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As it can be seen in Table 2, the null hypothesis, that means non-randomness of the stock 

return series, is rejected. So, this indicates the existence of a nonlinear process in the stock return 

series (there can also be a chaotic process as well). It is worth mentioning that whenever randomness 

of a series is rejected in more than two dimensions in the results of BDS test, the probability of the 

nonlinearity of this series will be high (because the opposite hypothesis is not clear in this test). So, 

this test can be a corroborative evidence of nonlinearity of the stock return series. Ergo, by confirming 

predictability and also nonlinearity of the related time series during the research, nonlinear models, 

i.e., ARFIMA and NNAR can be used for forecasting. 

 

3.2. Stationary Test 
As the next step, stationary of the dlted series (done to prevent creation of a spurious 

regression) will be assessed using different tests (see Table 3 for the results).  

Table 3. The results related to stationary of the stock return series 

Test  Critical Stat.          Accounting Value            Result 

ADF
1
             -1.9413               -16.586                 Stationary 

Ers
2
                 3.2600                            0.9403            Non-Stationary 

 Pp
3
     -1.9413               -17.543                 Stationary 

Kpss
4
      0.4630                          0.590                 Non-Stationary 

Source: findings of study 

If the long memory feature does not exist, it is expected that the series becomes stationary by 

first differencing, but the results of first differencing show that stock return series is stationary in ADF 

and PP tests while in the KPSS and also ERS test the results are indicative of non-stationary of the 

series (see Table 3 for the results). Such conditions might have been caused by the long memory 

feature in this series. For this reason, the long memory feature in the stock return series (by fractional 

differencing series) was further analyzed by the researchers. Besides, interpreting the Autocorrelation 

plot can also help to find if there is long memory in the stock return series; as shown in Fig. 1 below, 

the autocorrelation between different lags in the time series has not disappeared even after about 30 

periods and, in fact, these autocorrelations in the series are decreasing at a very slow rate. This is 

anomalous to the behavior of autocorrelation of the stationary series in which the autocorrelations 

between different lags in the series decrease exponentially.  

 

 

 

                                                           
1 Augmented Dickey–Fuller  
2 Elliott, Rothenberg and Stock 
3 Philips-Prone 
4 Kwiatkowski–Phillips–Schmidt–Shin 
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Fig. 1. ACF Graph for Stock Return Series 

 

Source: findings of study 

3.3. Examining the fractal market Hypothesis 
Generally, dependence of the behavior of a market on the Efficient Markets Hypothesis 

depends on the significance of long memory parameter in its time series. In general, models that are 

based on long memory are highly dependent on the value of long memory parameter and also 

attenuation of the autocorrelation functions. On this basis, in the following subsections, the values of 

long memory parameter are estimated using the GPH. On the whole, this test is conforms to the 

frequency domain analysis and uses the Log-Period gram technique; this technique is a means for 

differentiating short and the long memory processes. It should also mentioned that slope of the 

regression line resulting from applying the Log-Period gram technique gives us the long memory 

parameter and if significant, the significance of the related feature in the stock return series can be 

inferred and the fractal markets hypothesis is confirmed. The results of this test have been provided in 

Table 4 below.  

  Table 4. Estimation of d parameter using GPH test based on the NLS method 

    Series                                       d-Parameter              t-stat.                 Probability 

    Stock return series                     1.04695                   12.3                      0.000 

    Stock series                                0.14088                   3.13                      0.002 

Source: findings of study 

As shown in Table 4 above, the value for long memory parameter is non-zero (and also lower 

than 0.5) which is a confirmation of the existence of long memory in the stock return series. Therefore, 

two conclusions can be drawn from the above test: first, the fractal markets hypothesis is supported. 

The second conclusion is that this series should be fraction differenced once again so that modeling 

can be done in conformity with it. In the following sections, stock return series models will be focused 

upon using the models that are based upon long memory.  

 

3.4. Estimation of the ARFIMA Model  
There are different methods for estimation of the ARFIMA model and d parameter including 

Approximate Maximum Likelihood (AML), Exact Maximum Likelihood (EML), Modified Profile 

Likelihood (MPL), and Non Linear Least Square (NLS) (Ooms and Doornik, 1998). In the present 

study, EML, MPL, NLS methods have been selected for estimating these types of models using Ox-
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Metrics software. Furthermore, based on the Akaike information criterion, a comparison was made 

between different models of ARFIMA and the model that is found to have the lowest score of the 

information criterion, will be the best model for explaining mean equation of the stock return series.  

Table 5. The Results of Estimation of Different Models of ARFIMA 

         Models    Akaike Information Criterion  

        ML                       NLS                   EML 

    ARFIMA(1,0.14,1)       -7.2126                 -7.3241               -7.3235 

    ARFIMA(1,0.14,2)       -7.2153                 -7.3289               -7.3242 

    ARFIMA(2,0.14,1)       -7.2124                 -7.3234               -7.3226 

    ARFIMA(2,0.14,2)       -7.2125                 -7.3250               -7.3237 

Source: findings of study 

According to Table 5, it can be concluded that ARFIMA(1,0.14,2) has the lowest Akaike 

information criteria score and has the best performance (see Table 6 for specifications).  

Table 6. The results of estimation for ARFIMA(1,0.14,2) 

     Variables          Coefficient        t-Stat.            Probability 

     Constant                     0.0316             2.21                 0.002 

     d-ARFIMA                0.1408             3. 13                0.002 

     AR(1)                         0.8541             31.41               0.002 

     MA(1)                        0.6163             18.67               0.002 

     MA(2)                        0.2358             3.53                 0.002 

     Dummy(1)                 0.0796             7.28                 0.002 

     Dummy(2)                 0.0519             8.73                 0.002 

Source: findings of study 

It is worth mentioning that, the dummy variables introduced in the above equation can be 

defined as the following: )1(Dum are related to the financial crisis in 2007-2008 and )2(Dum is 

related to transferring the shares of Telecommunication Company of Iran in the stock in line with the 

implementation of Article 44. Additionally, considering the fact that diagnostic tests conducted on 

residuals of the related model are indicative of the existence of conditional variance heteroscedasticity 

effects, Robust Regression was used for estimating this model.  

3.5. Estimation of NNAR Model  
Basically, the first step in modeling all non-linear models which is based on neural networks, 

determining the optimal combination of design elements of neural network with the same “Network 

Architecture”. Hence, before comparing different models of dynamic neural network, some points 

related to the network architecture will be mentioned. First, for finding the number of optimal 

Neurons, an attempt was made to test and evaluate different networks using different neurons via 

encoding in the MATLAB software. Therefore, about 2 to 20 neurons were tested with two or three-

layered networks; in this way, each one was trained 30 times. For comparing their performance, errors 

of the test data, which included 30% of the whole data, were randomly set as criterion in different 

models. Finally, the number of optimal neurons was found to be 10 and there were also two optimal 

https://www.google.com/search?hl=en&tbo=d&biw=1525&bih=685&spell=1&q=conditional+variance+heteroscedasticity&sa=X&ei=YLgXUZqvKcWn4AS08oHoAQ&ved=0CCsQvwUoAA
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hidden layers. The summary of information related to the network architecture has been provided in 

Table 7 below.  

                            Table 7. Network Architecture 

Design factor                                                                 Value  

Network type    NNAR & NNARX 

Number of neurons in the first hidden layer                      10 

Number of neurons in the second hidden layer                  1 

Preprocessing function                                       Feed Forward Network 

Layer conversion function                                  Levenberg-Marquardt 

According to the network architecture explained in Table 7 above, different models of NNAR 

will be estimated and compared:  

Table 8. the results of estimation for different NNAR models 

Models                                 MSE                             RMSE 

    NNAR(1)                         5.65*10^(-5)                   7.52*10^(-3) 

    NNAR(2)                         5.58*10^(-5)                   7.47*10^(-3) 

    NNAR(3)                         5.40*10^(-5)                   7.35*10^(-3) 

    NNAR(4)                         5.35*10^(-5)                   7.31*10^(-3) 

    NNAR(5)                         5.28*10^(-5)                   7.26*10^(-3) 

    NNAR(6)                         5.37*10^(-5)                   7.33*10^(-3) 

    NNAR(7)                         5.46*10^(-5)                   7.39*10^(-3) 

    NNAR(8)                         5.55*10^(-5)                   7.45*10^(-3) 

    NNAR(9)                         5.63*10^(-5)                  7.50*10^(-3) 

    NNAR(10)                       5.78*10^(-5)                   7.60*10^(-3) 

    NNAR(11)                       5.89*10^(-5)                   7.67*10^(-3) 

    NNAR(15)                       5.97*10^(-5)                   7.73*10^(-3) 

    NNAR(20)                       6.42*10^(-5)                   8.01*10^(-3) 

    NNAR(30)                       7.04*10^(-5)                   8.39*10^(-3) 

Source: findings of study 

According to Table 8, NNAR(5) model (using 5 lags in stock series) had the best performance 

in comparison with other models based on the MSE and RMSE criteria.  

3.6. Comparing the performance of models in accuracy of forecasts  
MSE and RMSE are the most frequently used criteria for comparing models in accuracy of 

predictions among other criteria for assessing accuracy of prediction (Swanson & et al, 2011). 

Therefore, on the basis of the specified criteria, a comparison will be made between different models 

in their accuracy of out-of-sample forecasting (60 out-of-sample observations) (see Table 9 for the 

results of comparison).  

               Table 9. the results of comparison for ARFIMA and NNAR models 

       Models                                MSE                           RMSE 

  ARFIMA(1,0.14,2)              1.61*10^(-3)            4.01*10^(-2) 

   NNAR(5)                            5.28*10^(-5)            7.26*10^(-3) 

Source: findings of study 

As shown in Table 8, the performance of NNAR(5) model is better than ARFIMA(1,0.14,1) in 

forecasting  stock return series during the period under investigation.  
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4. Conclusions 
In this study, Nonlinear Neural Network Auto Regressive Model (NNAR) and Autoregressive 

Fractionally Integrated Moving Average (ARFIMA) model were used to forecast TSE’s Price and 

Dividend Index (TEDPIX). The results of this study showed that NNAR model yields more accurate 

forecasts about stock return index in the time series under investigation in comparison with the 

ARFIMA model. This result was not unexpected because considering the high flexibility of neural 

network models and especially dynamic neural network models in contrast the inflexible, imposed 

structure of regressive models such as ARFIMA model causes a change (adaptation) in their 

coefficients when there is a change in the time series under investigation. ARFIMA models might be 

inadequate for long memory time series as they might be both linear and nonlinear. This result has 

important implications for future studies in different fields. Therefore, future studies might be directed 

towards using Dynamic Neural Network models for forecasting purposes. Finally, these models can 

also be introduced to policy-makers and mass economy decision-makers and also investors as an 

appropriate method.  
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