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Preface

This book summarizes ongoing research introducing probability space isomorphic map-

pings into the strategy spaces of game theory.

This approach is motivated by discrepancies between probability theory and game

theory when applied to the same strategic situation. In particular, probability theory and

game theory can disagree on calculated values of the Fisher information, the log likelihood

function, entropy gradients, the rank and Jacobian of variable transforms, and even

the dimensionality and volume of the underlying probability parameter spaces. These

differences arise as probability theory employs structure preserving isomorphic mappings

when constructing strategy spaces to analyze games. In contrast, game theory uses weaker

mappings which change some of the properties of the underlying probability distributions

within the mixed strategy space. Here, we explore how using strong isomorphic mappings

to define game strategy spaces can alter rational outcomes in simple games .

Specific example games considered are the chain store paradox, the trust game, the

ultimatum game, the public goods game, the centipede game, and the iterated prisoner’s

dilemma. In general, our approach provides rational outcomes which are consistent with

observed human play and might thereby resolve some of the paradoxes of game theory.

0.1 Acknowledgments

The author gratefully acknowledges a fruitful collaboration with Kae Nemoto.
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Chapter 1

Strong isomorphisms in strategy

spaces

1.1 Introduction

1.1.1 Irreducible complexity of strategic optimization

The essential problem of economics and the rational for game theory was first posed

by von Neumann and Morgenstern [1]. They described the fundamental economic opti-

mization problem by contrasting the non-strategic single player case with the strategic

multi-player situation. In particular, they stated the non-strategic case is “an economy

which is represented by the ‘Robinson Crusoe’ model, that is an economy of an isolated

single person, or otherwise organized under a single will.” In this economy, “Crusoe faces

an ordinary maximization problem, the difficulties of which are of a purely technical—and

not conceptual—nature”. This non-strategic case was contrasted with a strategic “social

exchange economy [where] the result for each one will depend in general not merely upon

his own actions but on those of the others as well. . . . This kind of problem is nowhere

dealt with in classical mathematics. . . . this is no ordinary maximization problem, no

problem of the calculus of variations, of functional analysis, etc” [1].

Thus, von Neumann and Morgenstern essentially claimed that strategic optimization

problems were irreducibly more complex than non-strategic optimization problems. And

yet, after learning a few new techniques, the solution of strategic games turns out to be

not significantly more complex than the solution of non-strategic decision trees—larger

and more difficult certainly, but not irreducibly more complex. In this work, we claim

that the proposed solution to strategic analysis is incomplete. We will argue that strategic

optimization is indeed irreducibly more complex than non-strategic optimization, and this

irreducible complexity is missing from current formulations of strategic optimization.

We will look for this missing irreducible complexity by applying probability theory

and game theory to the same strategic situation, and examining any differences that

arise. We will show that when applied to the same strategic game, probability theory

1
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and game theory can disagree on calculated values of the Fisher information, the log

likelihood and entropy gradients, the rank and Jacobian of variable transforms, and even

the dimensionality and volume of the underlying probability parameter spaces. These

differences arise as probability theory employs structure preserving, isomorphic mappings

when constructing a mixed strategy space to analyze games. In contrast, game theory

uses weaker mappings which change some of the properties of the underlying probability

distributions within the mixed strategy space. We will explore how using strong iso-

morphic mappings to define mixed strategy spaces can alter rational outcomes in simple

games, and might resolve some of the paradoxes of game theory.

1.1.2 Strategy spaces of game theory

One possibly fruitful way to gain insight into the paradoxes of game theory is to show

that probability theory and game theory analyze simple games differently. It would be

expected of course that these two well developed fields should always produce consistent

results. However, we will show in this paper that probability theory and game theory

can produce contradictory results when applied to even simple games. These differences

arise as these two fields construct mixed strategy spaces differently.

The mixed strategy space of game theory is constructed, according to von Neumann

and Morgenstern, by first making a listing of every possible combination of moves that

players might make and of all possible information states that players might possess. This

complete embodiment of information then allows every move combination to be mapped

into a probability simplex whereby each player’s mixed strategy probability parameters

belong to “disjoint but exhaustive alternatives, . . . subject to the [usual normalization]

conditions . . . and to no others.” [1]. The resulting unconstrained mixed strategy space

is then a “complete set” of all possible probability distributions that might describe the

moves of a game [1, 2, 3, 4, 5]. Further, the absence of non-normalization constraints

ensures “trembles” or “fluctuations” are always present within the mixed strategy space

so every possible pure strategy probability distribution is played with non-zero (but

possibly infinitesimal) probability [6]. Together, these properties of the mixed strategy

space—a complete set of “contained” probability distributions, no additional constraints,

and ever present trembles—lead to inconsistencies with probability theory.

1.1.3 Isomorphic probability spaces

In constructing a mixed strategy space, probability theory first examines how subsidiary

probability distributions can be “contained” within a mixed space and whether the prop-

erties of the probability distributions are altered as a result. Probability theory uses

isomorphisms to implement mappings of one probability space into another space. An

isomorphism is a structure preserving mapping from one space to another space. In

abstract algebra for instance, an isomorphism between vector spaces is a bijective (one-

to-one and onto) linear mapping between the spaces with the implication that two vector
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spaces are isomorphic if and only if their dimensionality is identical [7]. When the preser-

vation of structure is exact, then calculations within either space must give identical

results. Conversely, if the degree of structure preservation is less than exact, then dif-

ferences can arise between calculations performed in each space. It is thus crucial to

examine the fidelity of the “containment” mappings used to construct the mixed spaces

of game theory. Probability theory defines isomorphic probability spaces as follows. We

give two definitions for completeness, see Refs. [8, 9, 10].

Definition 1: A probability space P = {Ω, σ, P} consists of a set of events Ω, a

sigma-algebra of all subsets of those events σ, and a probability measure defined over

the events P . Two probability spaces P = {Ω, σ, P} and P ′ = {Ω′, σ′, P ′} are said to be

strictly isomorphic if there is a bijective (1-to-1 and onto) map f : Ω → Ω′ which exactly

preserves assigned probabilities, so for all e ∈ Ω we have P (e) = P ′[f(e)]. A slight

weakening of this definition defines an isomorphism as a bijective mapping f of some

unit probability subset of Ω onto a unit probability subset of Ω′. That is, the weakened

mapping ignores null event subsets of zero probability.

Definition 2: Two probability spaces P = {Ω, σ, P} and P ′ = {Ω′, σ′, P ′} are

isomorphic if there are null event sets Ω0 ∈ Ω and Ω′0 ∈ Ω′ and an isomorphism

f : (Ω−Ω0) → (Ω′−Ω′0) between the two measurable spaces (Ω−Ω0, σ) and (Ω′−Ω′0, σ′)

with the added properties that P ′(F ) = P [f−1(F )] for F ∈ σ′ and P (G) = P ′[f(G)] for

G ∈ σ. In other words, an isomorphism exists if there is an invertible measure-preserving

transformation between the unit probability events in each space, (Ω − Ω0) ∈ Ω and

(Ω′ − Ω′0) ∈ Ω′. This also implies that the null probability event sets of each space are

mapped to each other.

In particular, we note that strong isomorphisms between source and target probability

spaces require they have identical dimensionality and tangent spaces [11].

1.1.4 Isomorphism choice alters optimization outcomes

The mixed strategy space of game theory “contains” different probability distributions

many possessing different dimensionality (according to probability theory). Their altered

dimensionality within the mixed space can alter those computed outcomes dependent on

dimensionality. A simple illustration of this process can make this clear.

A 1-dimensional function f(x) can be embedded within a 2-dimensional function

g(x, y) in two ways: using constraints g(x, y0) = f(x), or limits limy→y0 g(x, y) = f(x).

In either case, many of the properties of the source function f(x) are preserved, but not

necessarily all of them. In particular, these different methods alter gradient optimization

calculations. That is, the gradient is properly calculated when constraints are used,

f ′(x) = g′(x, y0), but not when a limit process is used, f ′(x) ̸= limy→y0 ∇g(x, y) (where

∇ indicates a gradient operator).

We note our use of gradient operators is unusual in game theory. In lieu of gradient

operators, the rational players of game theory generally simply compare the values of
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expected payoff functions at different points within a probability space. However, we

remind ourselves that every comparison of an expected payoff function over a probability

space is equivalent to evaluating a gradient. Specifically, a function Π(x, y) with expec-

tation ⟨Π(a)⟩ compared at the points a1 and a2 within a probability space employs the

identity

⟨Π(a2)⟩ − ⟨Π(a1)⟩ = ∇⟨Π(a)⟩.d21, (1.1)

where the distance vector is d21 = â(a2 − a1). This results as all expectations are poly-

linear in each probability parameter.

1.1.5 Mismatch between probability and game theory

In this paper, we will show that exactly the same discrepancies arise when probability

theory and game theory are applied to simple probability spaces, and that these discrep-

ancies can be significant. It is useful to indicate the magnitude of these discrepancies

here to motivate the paper (with full details given in later sections below). We con-

sider a simple card game with two potentially correlated variables x, y ∈ {0, 1} with

joint probability distribution Pxy. In the case where x and y are perfectly correlated,

probability theory (denoted by P) and game theory (denoted by G) respectively assign

different dimensions to both the Fisher information matrix (F ) and the gradient of the

log Likelihood function (∇L), and can disagree on the value of the gradient of the joint

entropy at some points (∇Exy):

P G

dim(F ) 1 3

dim(∇L) 1 3

|∇Exy| 0 ∞.

(1.2)

These fields also disagree on the probability space gradients of both the normalization

condition (P00 + P11 = 1) and the requirement that the joint entropy equates to the

marginal entropy (Exy − Ex = 0):

P G

∇ (P00 + P11) 0 ̸= 0

∇ (Exy − Ex) 0 ̸= 0.

(1.3)

Should these fields model a change of variable within this game, they further disagree

on the rank of the transform matrix (A), and on the invertibility of the Jacobian matrix

(J):

P G

Rank(A) 1 2

J Singular Invertible.

(1.4)
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These fields even disagree on the dimension (d) and volume (V ) of the minimal probability

space used to analyze the game:

P G

d 1 3

V 1 1
6
.

(1.5)

The differences between game theory and probability theory arise due to the different

use of isomorphic mappings to construct mixed strategy spaces.

We now show the necessity for considering isomorphic probability spaces using exam-

ples ranging from simple dice games to bivariate normal distributions.

1.2 Optimization and isomorphic probability spaces

In this section, we introduce the need to use isomorphic mappings when embedding

probability spaces within mixed spaces.

1.2.1 Isomorphic dice

Consider the three alternate dice shown in Fig. 1.1 representing a 2-sided coin, a 3-sided

triangle, and a 4-sided square. Faces are labeled with capital letters and the probabilities

of each face appearing are labeled with the corresponding small letter. The corresponding

probability spaces defined by these die are

Pcoin = {x ∈ {A,B}, {a, b}}
Ptriangle = {x ∈ {A,B,C}, {a, b, c}}
Psquare = {x ∈ {A,B,C,D}, {a, b, c, d}}. (1.6)

Here the required sigma-algebras are not listed, and each of these spaces are subject

to the usual normalization conditions. For notational convenience we sometimes write

(p1, p2, p3, p4) = (a, b, c, d) and denote the number of sides of each respective die as n ∈
{2, 3, 4}. In each respective die space, the gradient operator is

∇ =
n−1
∑

i=1

p̂i
∂

∂pi
(1.7)

where a hatted variable p̂i is a unit vector in the indicated direction and we resolve the

normalization constraint via pn = 1−∑n−1
i=1 pi.

We now wish to optimize a nonlinear function over these spaces, and we choose a

function which cannot be optimized using standard approaches in game theory. The

chosen function is

f = V 2Ex, (1.8)
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A, a

B, b

C, c

D, d

A, a

B, bC, c

A, a

B, b

Figure 1.1: Three alternate dice with different numbers of sides. A coin with sides A

and B appearing with respective probabilities a and b, a triangle with faces A,B and C

occurring with respective probabilities a, b and c, and a square die with faces A,B,C and

D each occurring with respective probabilities a, b, c and d.

with

V =
∫

space
dv

Ex = −
n
∑

i=1

pi log pi, (1.9)

where V is the volume of each respective probability parameter space and Ex is the

marginal entropy of each space [12]. We will complete this optimization in three different

ways, two of which will be consistent with each other and inconsistent with the third.
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As a first pass at optimizing the function f , we simply maximize f within each prob-

ability space and then compare the optimal outcomes to determine the best achievable

outcome. As is well understood, the entropy of a set of n events is maximized when those

events are equiprobable giving a maximum entropy of Ex,max = log n. In addition, for

the coin we have

V =
∫ 1

0
da
∫ 1

0
db δa+b=1

=
∫ 1

0
da

= 1

Ex = −[a log(a) + (1− a) log(1− a)]

∇Ex = −â log
a

1− a
. (1.10)

For the triangle, the equivalent functions are

V =
∫ 1

0
da
∫ 1

0
db
∫ 1

0
dc δa+b+c=1

=
∫ 1

0
da
∫ 1−a

0
db

=
1

2
Ex = −[a log(a) + b log(b) + (1− a− b) log(1− a− b)]

∇Ex = −â log
a

1− a− b
− b̂ log

b

1− a− b
. (1.11)

Finally, for the square, we have

V =
∫ 1

0
da
∫ 1

0
db
∫ 1

0
dc
∫ 1

0
dd δa+b+c+d=1

=
∫ 1

0
da
∫ 1

0
db
∫ 1−a−b

0
dc

=
1

6
Ex = −[a log(a) + b log(b) + c log(c) + (1− a− b− c) log(1− a− b− c)]

∇Ex = −â log
a

1− a− b− c
− b̂ log

b

1− a− b− c
− ĉ log

c

1− a− b− c
. (1.12)

Consequently, the function f takes maximum values in the three probability spaces of

fcoin, max = log 2

ftriangle, max =
log 3

4

fsquare, max =
log 4

36
. (1.13)

Comparing these outcomes makes it clear that the best that can be achieved is to use a

coin with equiprobable faces.
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The second method uses isomorphisms to map all of the three incommensurate source

spaces into a single target space. We choose our mappings as follows:

P ′
coin = {x ∈ {A,B,C,D}, {a, b, c, d}}|(cd)=(00)

P ′
triangle = {x ∈ {A,B,C,D}, {a, b, c, d}}|d=0

P ′
square = {x ∈ {A,B,C,D}, {a, b, c, d}} . (1.14)

Here, while all probability spaces share a common event set and probability distribu-

tion, the isomorphic mappings impose constraints on the P ′
coin and P ′

triangle spaces. The

constraints arise from mapping the null sets of zero probability from each source space

to the corresponding events of the enlarged target space. The target probability space

is shown in Fig. 1.2 where the normalization condition d = 1 − a − b − c is used. The

points corresponding to the probability spaces of the coin P ′
coin are mapped along the line

a + b = 1 with constraint (c, d) = (0, 0). Those points corresponding to the probability

spaces of the triangle P ′
triangle are mapped along the surface a+ b+ c = 1 with constraint

d = 0. Finally, the probability spaces corresponding to the square P ′
square fill the volume

a+ b+ c+ d = 1 and are not subject to any other constraint.

The interesting point about the target space is that many points, e.g. (a, b, c, d) =

(1
2
, 1
2
, 0, 0), lie in all of the probability spaces of the coin, triangle, and square die and are

only distinguished by which constraints are acting. That is, when this point is subject to

the constraint (cd) = (00), then it corresponds to the probability space P ′
coin (and not to

any other). Conversely, when this same point is subject to an imposed constraint d = 0

then it corresponds to the probability space P ′
triangle. Finally, when no constraints apply

then, and only then does this point correspond to the probability space of the square

P ′
square. This means that it is not the probability values possessed by a point which

determines its corresponding probability space but the probability values in combination

with the constraints acting at that point.

It is now straightforward to use the isomorphically constrained target space to max-

imize the function f over all embedded probability spaces using standard constrained

optimization techniques. For instance, to optimize f over points corresponding to the

coin and subject to the constraint (c, d) = (0, 0) then either simply resolve the constraint

via setting c = d = 0 before the optimization begins, or simply evaluate the gradient

of f at all points (a, b, 0, 0) in the direction of the unit vector 1√
2
(1,−1, 0, 0) lying along

the line a + b = 1. In more detail, the function f(a, b, c) has a directed gradient in the

direction 1√
2
(1,−1, 0) of

∇f(a, b, c).
1√
2
(1,−1, 0) = V 2 1√

2
log

b

a
(1.15)

using Eq. 1.12. The rate of change of f with respect to the only remaining variable a is

given by
df

da
=

√
2∇f.

1√
2
(1,−1, 0). (1.16)
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0

0.5

1

a

0

0.5

1

b

0.5

1

c

0

0.5

1

a

Figure 1.2: The target space containing points corresponding to the probability spaces

respectively of the coin P ′
coin along the line a+ b = 1 with constraint (c, d) = (0, 0) (heavy

line), of the triangle P ′
triangle along the surface a+ b+ c = 1 with constraint d = 0 (hashed

surface), and of the square P ′
square filling the volume a + b + c + d = 1 (filled polygon).

Note that points such as (a, b, c) = (0.5, 0.5, 0) correspond to all three probability spaces

and are only distinguished by which constraints are acting.

Altogether, at points where (a, b, c) = (a, 1− a, 0) this gives a directed gradient of

df

da
= V 2 log

1− a

a
(1.17)

which is optimized at (a, b, c) = (1
2
, 1
2
, 0). An optimization over all three isomorphic

constraints leads to the same outcomes as obtained previously in Eq. 1.13 with the same

result. This completes the second optimization analysis and as promised, it is consistent

with the results of the first.

The same is not true of the third optimization approach which produces results in-

consistent with the first two. The reason we present this method is that it is in common

use in game theory. The third optimization method commences by noting that the prob-

ability space of the square is complete in that it already “contains” all of probability
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spaces of the triangle and of the coin. This allows a square probability space to mimic

a coin probability space by simply taking the limit (c, d) → (0, 0). Similarly, the square

mimics the triangle through the limit d → 0. In turn, this means that an optimization

over the space of the square is effectively an optimization over every choice of space

within the square. Specifically, game theory discards constraints to model the choice

between contained probability spaces. This optimization over the points of the square

has already been completed above. When optimizing the function f over the uncon-

strained points corresponding to the square, the maximum value is f = log(4)/36 at

(a, b, c, d) = (1
4
, 1
4
, 1
4
, 1
4
), and according to game theory, this is the best outcome when

players have a choice between the coin, the triangle, or the square.

The optimum result obtained by the third optimization method, that used by game

theory, conflicts with those found by the previous two methods as commonly used in

probability theory. The difference arises as game theory models a choice between proba-

bility spaces by making players uncertain about the values of their probability parameters

within any probability space. Consequently, their probability parameters are always sub-

ject to infinitesimal fluctuations, i.e. c > 0+ or d > 0+ always. These fluctuations alter

the dimensions of the space which impacts on the calculation of the volume V and alters

the calculated gradient of the entropy. Game theory eschews the role of isomorphism con-

straints within probability spaces on the grounds that any such constraints restrict player

uncertainty and hence their ability to choose between different probability spaces. The

probability parameter fluctuations mean that players have access to all possible proba-

bility dimensions at all times so a single mixed space is the appropriate way to model the

choice between contained probability spaces. In contrast, probability theory holds that

the choice between probability spaces introduces player uncertainty about which space to

use, but specifically does not introduce uncertainty into the parameters within any indi-

vidual probability space. As a result, probability theory employs isomorphic constraints

to ensure that the properties of each embedded probability space within the mixed space

are unchanged.

The upshot is that a game theorist cannot evaluate the Entropy (or uncertainty)

gradient of a coin toss while considering alternate die because uncertainty about which

dice is used bleeds into the Entropy calculation. However, the probability theorist will

distinguish between their uncertainty about which face of the coin will appear and their

uncertainty about which dice is being used.

1.2.2 Alternate coin probability spaces

The preceding section has shown the importance of using isomorphism constraints to

preserve the properties of the coin probability space Pcoin when embedded within larger

spaces. However, isomorphism constraints must also be used in the very definition of

a probability space. If a probability space is to be defined to match some physical

apparatus, then a structure preserving isomorphic mapping must be established between
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the physical apparatus and the probability space. We illustrate this now by adopting

several different probability spaces for a coin.

In the preceding sections, we have the physical coin as shown in Fig. 1.1 and its

corresponding probability space as defined in Eq. 1.6. To reiterate,

Pcoin = {x ∈ {A,B}, {a, b}}. (1.18)

After taking account of the normalization constraint b = 1− a, the gradient operator in

this space is

∇ = â
∂

∂a
. (1.19)

If we define a payoff via the random variable Π(A) = 0 and Π(B) = 1, then a gradient

optimization gives

∇⟨Π⟩ = ∇P (B)

= −â (1.20)

indicating that expected payoffs are maximized by setting a = 0 as expected.

There are many very different formulations possible for the probability space of a

simple two sided coin, and these are considered to be functionally identical only after the

appropriate structure-preserving isomorphisms have been defined. Every alternative in-

troduces a different parameterization which alters dimensionality and gradient operators

and modifies the optimization algorithm. We illustrate this now.

Our coin could be optimized using a probability measure space P2
coin involving two

uncorrelated coins, namely

P2
coin = {(x, y) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, {(1−p)(1−q), (1−p)q, p(1−q), pq}}. (1.21)

An isomorphism can be defined by mapping event A onto the event set (x, y) ∈
{(0, 0), (1, 1)} and B onto (x, y) ∈ {(0, 1), (1, 0)}. In this space, the gradient operator is

∇ = p̂
∂

∂p
+ q̂

∂

∂q
(1.22)

and a gradient optimization of the expected payoff gives

∇⟨Π⟩ = ∇P (B)

= p̂(1− 2q) + q̂(1− 2p). (1.23)

This shows that when q < 1
2
then payoffs are maximized by setting p = 1 and conversely,

when p < 1
2
then payoffs are maximized by setting q = 1.

Alternatively, the binary decision could be optimized using a continuously param-

eterized probability measure space P3
coin. In this space, the choices A and B might be

determined using a continuously distributed variable u ∈ (−∞,∞) possessing a normally

distributed probability distribution

P (u) =
1√
2πσ

e−
1
2

(u−ū)2

σ2 , (1.24)
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with mean ū, standard deviation σ, and variance σ2. We introduce a new parameter, p,

so outcome A occurs with probability

P (A) =
1√
2πσ

∫ p

−∞
du e−

1
2

(u−ū)2

σ2 , (1.25)

while outcome B occurs with probability

P (B) =
1√
2πσ

∫ ∞

p
du e−

1
2

(u−ū)2

σ2 . (1.26)

This space has only one probability parameter p so the gradient operator is

∇ = p̂
∂

∂p
, (1.27)

and optimizing the expected payoff gives

∇⟨Π⟩ = ∇ 1√
2πσ

∫ ∞

p
du e−

1
2

(u−ū)2

σ2

= −∇F (p), (1.28)

where F (p) is the cumulative normal distribution. As the cumulative normal distribution

is monotonically increasing, ∇F (p) > 0, so the expected payoff is maximized by setting

p → −∞ giving P (B) = 1 as expected.

For a more extreme alternative, consider a quantum probability measure space P4
coin

in which event A corresponds to a measurement finding a two-state quantum system

in its ground state, and event B occurs when the measurement finds the system in its

excited state. Writing the quantum system state as

|Ψ⟩ =









a

b









, (1.29)

where a and b are complex numbers satisfying |a|2 + |b|2 = 1, then we have P (A) = |a|2
and P (B) = |b|2. In this space, the payoff is an operator

Π =









0 0

0 1









, (1.30)

giving the expected payoff as

⟨Π⟩ = ⟨Ψ|Π|Ψ⟩
= |b|2

= r2, (1.31)

where in the last line we write b = reiθ with real 0 ≤ r ≤ 1 and 0 ≤ θ < 2π. Here,

the expected payoff depends only on the single real variable r so optimization is via the

gradient operator

∇ = r̂
∂

∂r
(1.32)
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giving

∇⟨Π⟩ = 2r. (1.33)

As required, maximization requires setting r = 1, with θ arbitrary.

For a last example, consider a probability space P5
coin which selects a number u in the

Cantor set C with uniform probability P (u) such that when u ≤ p then event A occurs

while when p < u then event B occurs. The Cantor set C is interesting as it has an

uncountably infinite number of members and yet has measure zero [13]. In this space,

the expected payoff is

⟨Π⟩ =
∑

u∈C
P (u)Π(u)

=
∑

u>p∈C
P (u)

= 1− C(p), (1.34)

where C(p) is the cumulative probability distribution termed the Cantor function. Inter-

estingly, the Cantor function is an example of a “Devil’s staircase”, a function which is

continuous but not absolutely continuous everywhere, and is differentiable with deriva-

tive zero almost everywhere, and which maps the measure zero Cantor set continuously

onto the measure one set [0, 1] [13]. As with the normal distribution example above,

the Cantor function is nondecreasing allowing an intuitive maximization of the expected

payoff via the gradient operator

∇ =
∂

∂p
(1.35)

giving

∇⟨Π⟩ = −dC(p)

dp
. (1.36)

As the cumulative normal distribution is nondecreasing, we have dC(p)
dp

≥ 0 so the expected

payoff is maximized by setting p = 0. This intuitive ansatz suffices for our purposes here.

Lastly, the player is of course, not restricted to using only simple probability mea-

sure spaces, and more complicated spaces can be considered. In fact, players will most

likely use a pseudo-random number generator consisting of the correlated dynamical in-

teractions of some millions (or more) of electronic components in a computer. It is only

the correlations of these millions of variables that allows a dimensionality reduction to

the few variables required to model the player’s chosen probability space. Isomorphisms

underlie the dimensionality reductions of random number generators.

To summarize, optimizing an expected payoff first requires the adoption of a suit-

able probability measure space, and it is only the adoption of such a space that permits

the definition of gradient operators and the expected payoff functions allowing the op-

timization to be completed. These steps involve establishing an isomorphic mapping

from the physically modeled space to the probability space which is property conserving.

Of course, should the probability space then be embedded within any other probability

space, these properties must still be conserved, and this will require additional isomorphic

constraints.
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H00L, a

H01L, b

H10L, c

H11L, d

Figure 1.3: A four-sided square probability space where joint variables x and y take values

(x, y) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} with respective probabilities (a, b, c, d).

1.2.3 Joint probability space optimization

We will briefly now examine isomorphisms between the joint probability spaces of two

arbitrarily correlated random variables. In particular, we consider two random variables

x, y as appear on the square dice of Fig. 1.3 with probability space

Psquare = {(x, y) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, {a, b, c, d}}. (1.37)

The correlation between the x and y variables is

ρxy =
⟨xy⟩ − ⟨x⟩⟨y⟩

σxσy

=
ad− bc

√

(c+ d)(a+ b)(b+ d)(a+ c)
. (1.38)

Here, σx and σy are the respective standard deviations of the x and y variables.

The space Psquare of course contains many embedded or contained spaces. We will

separately consider the case where x and y are perfectly correlated, and where they are

independent. As noted previously, there are two distinct ways for these spaces to be

contained within Psquare, namely using isomorphism constraints or using limit processes.

These two ways give the respective definitions for the perfectly correlated case

Pcorr = {(x, y) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, {a, b, c, d}}|b=c=0

P ′
corr = lim

(bc)→(00)
{(x, y) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, {a, b, c, d}} (1.39)

and for the independent case

Pind = {(x, y) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, {a, b, c, d}}|ad=bc

P ′
ind = lim

ad→bc
{(x, y) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, {a, b, c, d}} . (1.40)
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Here, all spaces satisfy the normalization constraint a+ b+ c+ d = 1, which we typically

resolve using d = 1 − a − b − c. The gradient operator in the probability space of the

square dice with probability parameters (a, b, c) is

∇ = â
∂

∂a
+ b̂

∂

∂b
+ ĉ

∂

∂c
, (1.41)

where a hat indicates a unit vector in the indicated direction. Evaluating any function

dependent on a gradient or completing an optimization task using either isomorphic con-

straints or limit processes can naturally result in different outcomes as we now illustrate.

Perfectly correlated probability spaces

We first consider the case where the x and y variables are perfectly correlated in the

spaces Pcorr with isomorphism constraints or P ′
corr using limit processes.

The maximum achievable joint entropy [12] for our two perfectly correlated variables

obviously occurs at the point where they are equiprobable. This can be found by evalu-

ating the gradient of the joint entropy function

Exy(a, b, c) = −
∑

xy

Pxy logPxy (1.42)

= −a log a− b log b− c log c− (1− a− b− c) log(1− a− b− c)

giving respective gradients in the Pcorr and P ′
corr spaces of

∇Exy|b=c=0 = −â log
(

a

1− a

)

∇Exy = −â log
(

a

1− a− b− c

)

− b̂ log

(

b

1− a− b− c

)

− ĉ log
(

c

1− a− b− c

)

lim
(bc)→(00)

∇Exy = undefined. (1.43)

Equating these gradients to zero locates the maximum at (a, b, c) = (1
2
, 0, 0) in Pcorr and

at (a, b, c) = (1
4
, 1
4
, 1
4
) in P ′

corr.

The Fisher Information is defined in terms of probability space gradients as the

amount of information obtained about a probability parameter from observing any event

[12]. Writing (a, b, c) = (p1, p2, p3), the Fisher Information is a matrix with elements

i, j ∈ {1, 2, 3} with

Fij =
∑

xy

Pxy

(

∂

∂pi
logPxy

)(

∂

∂pj
logPxy

)

. (1.44)

When isomorphically constrained in the space Pcorr, the Fisher Information is Fij|b=c=0

with the only nonzero term being

F11 = (1− a)

[

â
∂

∂a
log(1− a)

]2

+ a

[

â
∂

∂a
log a

]2

=
1

a(1− a)
(1.45)
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This means that the smaller the Variance the more the information obtained about a. In

the unconstrained space P ′
corr, the Fisher Information is a very different, 3× 3 matrix.

Probability parameter gradients also allow estimation of probability parameters by

locating points where the Log Likelihood function is maximized ∇ logL = 0 [12]. This

evaluation takes very different forms in the isomorphically constrained space Pcorr and the

unconstrained space P ′
corr. The likelihood function estimates probability parameters from

the observation of n trials with na appearances of event (x, y) = (0, 0), nb appearances of

event (x, y) = (0, 1), nc appearances of event (x, y) = (1, 0), and nd appearances of event

(x, y) = (1, 1). We have na + nb + nc + nd = n, giving the Likelihood function

L = f(na, nb, nc, n)a
nabnbcnc(1− a− b− c)n−na−nb−nc (1.46)

where f(na, nb, nc, n) gives the number of combinations. The optimization proceeds by

evaluating the gradient of the Log Likelihood function. When isomorphically constrained

in the space Pcorr, the gradient of the Log Likelihood function is

∇ logL|b=c=0 = â
[

na

a
− n− na

1− a

]

, (1.47)

which equated to zero gives the optimal estimate at a = na/n and nb = nc = 0 as

expected. Conversely, when unconstrained in the space P ′
corr, the gradient of the Log

Likelihood function evaluates as

∇ logL = â
[

na

a
− n− na − nb − nc

1− a− b− c

]

+ b̂
[

nb

b
− n− na − nb − nc

1− a− b− c

]

+ĉ
[

nc

c
− n− na − nb − nc

1− a− b− c

]

. (1.48)

This is obviously a very different result. However, in our case the same estimated out-

comes can be achieved in both spaces. For example, if an observation of n trials shows na

instances of (x, y) = (0, 0) and n − na instances of (x, y) = (1, 1) then both constrained

and unconstrained approaches give the best estimates of the probability parameters of

(a, b, c, d) = (na

n
, 0, 0, 1− na

n
).

Finally, when x and y are perfectly correlated it is necessarily the case that expecta-

tions satisfy ⟨x⟩− ⟨y⟩ = 0, that variances satisfy V (x)−V (y) = 0, that the joint entropy

is equal to the entropy of each variable so Exy −Ex = 0, and that finally, the correlation

between these variables satisfies ρxy−1 = 0. In the unconstrained probability space P ′
corr,

the expectation, variance, and entropy relations of interest evaluate as

⟨x⟩ − ⟨y⟩ = c− b

V (x)− V (y) = (c− b)(a− d) (1.49)

Ex = − [(a+ b) log(a+ b) + (1− a− b) log(1− a− b)]

Exy = − [a log a+ b log b+ c log c+ (1− a− b− c) log(1− a− b− c)] .

These functions lead to gradient relations in the Pcorr and P ′
corr spaces of:

∇ [⟨x⟩ − ⟨y⟩] |b=c=0 = 0
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lim
(bc)→(00)

∇ [⟨x⟩ − ⟨y⟩] = −b̂+ ĉ

∇ [V (x)− V (y)] |b=c=0 = 0

lim
(bc)→(00)

∇ [V (x)− V (y)] = (1− 2a)b̂− (1− 2a)ĉ

∇ [Exy − Ex] |b=c=0 = 0

lim
(bc)→(00)

∇ [Exy − Ex] ̸= undefined

∇ρxy|b=c=0 = 0

∇ρxy ̸= 0. (1.50)

Obviously, taking the limit (b, c) → (0, 0) does not reduce the limit equations to the

required relations.

Independent probability spaces

We next consider the case where the x and y variables are independent using the spaces

Pind with isomorphism constraints or P ′
ind with limit processes.

When random variables are independent, then their joint probability distribution is

separable for every allowable probability parameter of Pind or P ′
ind. This means the gradi-

ent of this separability property must be invariant across these probability spaces. That

is, we must have Pxy = PxPy and hence ∇ [Pxy − PxPy] = 0. Similarly, separability re-

quires we also satisfy ∇ [⟨xy⟩ − ⟨x⟩⟨y⟩] = 0. Further, every independent space must have

conditional probabilities equal to marginal probabilities and so satisfy ∇
[

Px|y − Px

]

= 0.

Finally, two independent variables have joint entropy equal to the sum of the individual

entropies so every independent space must satisfy ∇ [Exy − Ex − Ey] = 0. These rela-

tions evaluate differently in either Pind with isomorphism constraints or P ′
ind with limit

processes. For the square die under consideration, we have probabilities and expectations

of

Pxy(00)− Px(0) = ad− bc

⟨xy⟩ − ⟨x⟩⟨y⟩ = ad− bc

Px|y(0|0)− Px(0) =
ad− bc

a+ c
, (1.51)

and entropies of

Ex = −(a+ b) log(a+ b)− (1− a− b) log(1− a− b)

Ey = −(a+ c) log(a+ c)− (1− a− c) log(1− a− c)

Exy = −a log a− b log b− c log c− d log d. (1.52)

The resulting gradients are

∇ [Pxy(00)− Px(0)Py(0)] |ad=bc = 0

lim
ad→bc

∇ [Pxy(00)− Px(0)Py(0)] = lim
ad→bc

∇(ad− bc) ̸= 0
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∇ [⟨xy⟩ − ⟨x⟩⟨y⟩] |ad=bc = 0

lim
ad→bc

∇ [⟨xy⟩ − ⟨x⟩⟨y⟩] = lim
ad→bc

∇(ad− bc) ̸= 0

∇
[

Px|y(0|0)− Px(0)
]

|ad=bc = 0

lim
ad→bc

∇
[

Px|y(0|0)− Px(0)
]

= lim
ad→bc

∇
[

ad− bc

a+ c

]

̸= 0

∇ [Exy − Ex − Ey] |ad=bc = 0

lim
ad→bc

∇ [Exy − Ex − Ey] = (1.53)

lim
ad→bc

∇
{

a log

[

d

a

a− ad+ bc

d− ad+ bc

]

+ b log

[

d

b

b+ ad− bc

d− ad+ bc

]

+

c log

[

d

c

c+ ad− bc

d− ad+ bc

]

+ log

[

d− ad+ bc

d

]}

̸= 0.

1.2.4 Entropy maximization

The joint entropy Exy reflects the uncertainty between the x and y variables. Accord-

ing to probability theory, this uncertainty does not include any uncertainty about which

probability space is being chosen, while conversely, according to game theory the uncer-

tainty between these variables increases when it includes additional uncertainty about

which probability space is being chosen.

We now present a numerical investigation of how to determine the maximum joint

entropy Exy of embedded probability states featuring possibly correlated variables x and

y as depicted in Fig. 1.3. The joint entropy is

Exy(a, b, c) = −
∑

xy

Pxy logPxy. (1.54)

Using isomorphism constraints, the maximization problem is

max Exy|ρxy=ρ̄
(1.55)

for all ρ̄ ∈ [−1, 1]. Here, the correlation function between x and y is given by the later Eq.

2.11. This equation can be inverted to solve for the variable r as a function of p, q, and

the constant correlation ρ̄, and the result r+(p, q, ρ̄) is given in Eq. 3.10. A numerical

optimization then generates the maximum entropy value for every correlation state ρ̄

with the results shown in Fig. 1.4. As expected, the presence of isomorphism constraints

ensures the entropy ranges from a minimum of log 2 up to a maximum of 2 log 2.

In contrast, when the joint entropy is maximized over the entire space using the tech-

niques of game theory, then a single maximum outcome is achieved giving the maximum

entropy in the absence of isomorphism constraints. This line is also shown in Fig. 1.4 as

the constant at Exy,max = 2 log 2.
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Figure 1.4: Maximizing the joint entropy of two correlated random variables x, y ∈ {0, 1}.
Without isomorphism constraints, the maximum entropy is equal to 2 log 2 (dashed line).

However, when subject to isomorphism constraints, the simplex will exactly reproduce the

different maximum entropy states of each of its embedded probability spaces (solid line).

1.2.5 Continuous bivariate Normal spaces

The above results are general. When source probability spaces are embedded within

target probability spaces, then the use of isomorphic mapping constraints will preserve

all properties of the embedded spaces. Conversely, when constraints are not used then

some of the properties of the embedded spaces will not be preserved in general. We

illustrate this now using normally distributed continuous random variables.

Consider two normally distributed continuous independent random variables x and y

with x, y ∈ (−∞,∞). When independent, these variables have a joint probability distri-

bution Pxy which is continuous and differentiable in six variables, Pxy(x, µx, σx, y, µy, σy)

where the respective means are µx and µy and the variances are σ2
x and σ2

y . The marginal

distributions are Px(x, µx, σx) and Py(y, µy, σy). In particular, we have

Pxy =
1

2πσxσy

e
− 1

2

[

(x−µx)2

σ2
x

+
(y−µy)2

σ2
y

]

Px =
1√
2πσx

e
− 1

2
(x−µx)2

σ2
x

Py =
1√
2πσy

e
− 1

2

(y−µy)2

σ2
y . (1.56)

The conditional distribution for x given some value of y is

Px|y =
1√
2πσx

e
− 1

2
(x−µx)2

σ2
x . (1.57)
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These independent joint distributions can now be embedded into an enlarged distri-

bution representing two potentially correlated normally distributed variables x and y.

This enlarged distribution P ′
xy(x, µx, σx, y, µy, σy, ρ) differs from Pxy in its dependence on

the correlation parameter ρxy = ρ with ρ ∈ (−1, 1). This distribution is continuous and

differentiable in seven variables. The joint distribution is

P ′
xy =

1

2πσxσy

√
1− ρ2

e
− 1

2(1−ρ2)

[

(x−µx)2

σ2
x

− 2ρ(x−µx)(y−µy)

σxσy
+

(y−µy)2

σ2
y

]

. (1.58)

The marginal distributions for the correlated case are identical to those of the independent

space so P ′
x = Px and P ′

y = Py. The conditional distribution for x given some value of y

is

P ′
x|y =

1
√

2π(1− ρ2)σx

e
− 1

2(1−ρ2)

(x−µ̄x)2

σ2
x , (1.59)

where the new conditioned mean is

µ̄x = µx + ρ
σx

σy

(y − µy). (1.60)

An isomorphic embedding requires that the unit probability subset of Pxy be mapped

onto the unit probability subset of P ′
xy and this is achieved by imposing an external

constraint that ρ = 0 in the enlarged space. Hence, we expect P ′
xy

∣

∣

∣

ρ=0
= Pxy. It is readily

confirmed that when the isomorphism constraint is imposed on the enlarged distribution

all properties are preserved, while this is not the case in the absence of the constraint.

The gradient operator ∇ is now a function of seven variables

∇ =
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂µx

µ̂x +
∂

∂µy

µ̂y +
∂

∂σx

σ̂x +
∂

∂σy

σ̂y +
∂

∂ρ
ρ̂. (1.61)

The probability distributions must satisfy a number of gradient relations, but we have:

∇
[

P ′
xy − P ′

xP
′
y

]
∣

∣

∣

ρ=0
= 0

lim
ρ→0

∇
[

P ′
xy − P ′

xP
′
y

]

= ρ̂ lim
ρ→0

∂

∂ρ
P ′
xy ̸= 0

∇
[

P ′
x|y − P ′

x

]
∣

∣

∣

ρ=0
= 0

lim
ρ→0

∇
[

P ′
x|y − P ′

x

]

= ρ̂ lim
ρ→0

∂

∂ρ
P ′
x|y ̸= 0. (1.62)

Similarly, the expectations of functions of the x and y variables must also satisfy a number

of gradient relations. As expectations integrate over the x and y variables, the gradient

operator is a function of only five variables now,

∇ =
∂

∂µx

µ̂x +
∂

∂µy

µ̂y +
∂

∂σx

σ̂x +
∂

∂σy

σ̂y +
∂

∂ρ
ρ̂. (1.63)

We have

∇ [⟨xy⟩′ − ⟨x⟩′⟨y⟩′]|ρ=0 = 0

lim
ρ→0

∇ [⟨xy⟩′ − ⟨x⟩′⟨y⟩′] = ρ̂ lim
ρ→0

∂

∂ρ
⟨xy⟩′ ̸= 0.
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1.2.6 Quantum probability spaces

As noted above, the use of isomorphic mappings to preserve the properties of probability

spaces is general. As a last illustration, we show the use of isomorphic mappings when

applied to quantum probability spaces.

Suppose a quantum probability space is to be embedded within another enlarged

quantum probability space. (See [14] for an overview of quantum information theory

including quantum information geometry.) AnN level quantum system has von Neumann

entropy defined as

EN = −trR̂N log R̂N (1.64)

where here R̂N is the quantum density matrix and tr indicates a trace operation applied

to a matrix. Supposing that matrix D diagonalizes the density matrix so DR̂ND
† is

diagonal, and that its eigenvalues are λi for 1 ≤ i ≤ N , we have

EN = −
N
∑

i=1

λi log λi. (1.65)

The eigenvalue λi specifies the occupancy probability of the ith level. Hence, maximizing

the N -level system entropy requires that λi = 1/N for all i. Consequently, a two level

quantum system maximizes its entropy E2 when the density matrix is an equiprobable

mixture equal to half of the two level identity matrix, R̂2 = 1/2I2, while a three level

quantum system maximizes its entropy E3 when the density matrix is an equiprobable

mixture of R̂3 = 1/3I3.

Now, if the two level system were isomorphically embedded within a three level system,

then the two level system entropy E2 is properly maximized only when isomorphism

constraints are used to decouple the third level so that it plays no part in the optimization.

This is achieved by using an isomorphism constraint λ3 = 0 to decouple and remove the

third level from the system. That is, the optimization taking account of an isomorphism

constraint ∇3E3|λ3=0 = 0 will determine the correct maximum value for E2. However,

a failure to use an isomorphism constraint will locate an incorrect maximum point via

limλ3→0∇3E3. We have

∇2E2 = ∇3E3|λ3=0 ̸= lim
λ3→0

∇3E3. (1.66)

Isomorphism constraints must be used to properly embed one quantum probability space

within another.

1.2.7 Perfect correlation reduces dimensionality

Standard probability theory holds that when two variables x and y are known to be

perfectly correlated, then P (x, y) = P (x)P (y|x) = P (x). That is, any optimization which

involves the joint distribution P (x, y) does not involve two dimensions but only one as

x = y. Perfect correlation reduces dimensionality which alters the gradient operators

which in turn can alter optima.
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Figure 1.5: (a) An affine transformation of correlated variables x and y generates new

orthogonal variables u = x + y and v = x − y which are uncorrelated. (b) When x and

y are perfectly correlated, v = 0 and u is the only free variable and dimensionality is

reduced. Optimization solutions must lie on the u-axis satisfying the constraint x = y.

Probability theory takes account of this dimensionality reduction when using Affine

variable transforms. Typical presentations of probability theory hold that “any two

real-valued random variables x and y whose mean values and variances exist may be

represented as an Affine transformation of a pair of uncorrelated random variables” [15].

Such statements, carelessly interpreted, would indeed suggest that perfect correlations

involve no reduction in the number of variables. Writing the respective mean values as

⟨x⟩ and ⟨y⟩, and defining the translated variables

x∗ = x− ⟨x⟩
y∗ = y − ⟨y⟩, (1.67)
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then an affine transformation can always be used to define two new variables

u = x∗ + y∗

v = x∗ − y∗. (1.68)

These variables each have mean zero, ⟨u⟩ = ⟨v⟩ = 0, and are uncorrelated as

cov(u, v) = ⟨uv⟩ = 0. (1.69)

The zero covariance results from the orthogonality of the random variables u and v in

a suitable L2 vector space, while the possibly correlated original variables are generated

from the inverse affine transformation

x = σxx
∗ + ⟨x⟩ =

σx

2
(u+ v) + ⟨x⟩

y = σyy
∗ + ⟨y⟩ =

σy

2
(u− v) + ⟨y⟩, (1.70)

where here, σz is the standard deviation of variable z ∈ {x, y}.
If the x and y variables are perfectly correlated, then v is identically zero and u is the

only surviving variable. Perfect correlations reduce the dimensionality of the optimization

space and probability theory preserves the dimensionality of perfectly correlated variables

when using Affine transforms. (See Fig. 1.5.)

A similar preservation of dimensionality occurs in the Hotelling transform, a discrete

version of the Karhunen-Loève transform [16]. This transform can also be used to map

the probability space of two uncorrelated centered variables (u, v) into the probability

space of two correlated centered variables (x, y). If the state of correlation between x and

y is ρ, then the Hotelling transform is implemented via





x

y



 =





1 0

ρ
√
1− ρ2









u

v



 . (1.71)

Then, whenever the x and y variables are not perfectly correlated both the (u, v) and (x, y)

probability spaces are two dimensional. However, when ρ = 1 and x and y are perfectly

correlated, then the mapping matrix becomes singular and non-invertible ensuring that

x = y = u so that the x and y probability space is one dimensional even while the u

and v probability space is two dimensional. Probability theory again acts to preserve the

dimensionality of the joint probability space of perfectly correlated variables.

1.2.8 Example isomorphic functions

There are different ways to embed a smaller source function within an enlarged target

function which can preserve different amounts of the structure of the source function

within the target function. Consider for example, mapping a 1-dimensional function

f(x) into a 2-dimensional function g(x, y) along the line y = x so that f(x) = g(x, x).
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One way to implement this assignment is to use limit processes constraining most of the

neighbourhood of g(x, y) in the vicinity of the line y = x to satisfy

lim
y→x

g(x, y) = f(x). (1.72)

Another way to do this is to ignore the values of g(x, y) away from the line y = x and

simply use externally imposed constraints forcing the assignment on the line via

g(x, y)|y=x = f(x). (1.73)

This approach does not care about values g(x, y) when x ̸= y. The question then is, under

what circumstances can limy→x g(x, y) or g(x, y)|y=x be used to examine the properties

of f(x).

Hereinafter, for concreteness we will consider the simplified example functions f(x) =

x2 and g(x, y) = xy. Each of the implementations, limy→x g(x, y) or g(x, y)|y=x, have

different domains (dom) in each space, and hence different integration volume elements

(dv)

f(x) limy→x g(x, y) g(x, y)|y=x

dom ℜ ℜ× ℜ ℜ
dv dx dx dy dx.

(1.74)

The different dimensionalities of the domains impacts on any attempt to change vari-

ables within each space. The rank of the change of variable transforms (A) and the

dimensionality of the Jacobian matrices (J) in each space are

f(x) limy→x g(x, y) g(x, y)|y=x

rank(A) 1 2 1

dim(J) 1 2 1.

(1.75)

These differences impact on the evaluation of other properties such as gradients, which

should evaluate as

∇f(x) = 2xx̂ (1.76)

where a hatted variable denotes a unit vector in the indicated direction. In contrast, the

gradient evaluated using a limit assignment gives

∇g(x, x) = lim
y→x

∇g(x, y) = x(x̂+ ŷ), (1.77)

which does not satisfy the required relation. Conversely, the use of an externally imposed

constraint ensures

∇g(x, y)|y=x = ∇g(x, x) = 2xx̂ (1.78)

as required.

In summary, the definitions

f(x) = g(x, y)|y=x = lim
y→x

g(x, y), (1.79)
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do not generally carry over to the gradient relations, as

∇f(x) = ∇g(x, y)|y=x ̸= lim
y→x

∇g(x, y), (1.80)

This results as the limit process f(x) = limy→x g(x, y) treats the x and y variables as

being independent and simply evaluates desired quantities at points (x, y) lying on the

line y = x. In contrast, the constraint f(x) = g(x, y)|y=x enforces a functional relation

between the x and y variables which preserves all the structures of f(x) within g(x, x).

It is well understood that any functional relation between the variables of a function will

impact on the properties of that function. Such functional relations must be preserved

whenever that function is mapped into a different space. The need to take account

of such functional relations is a standard part of routine optimization techniques such

as differentiation via any of the chain rule, Lagrangian multipliers, or directed vector

gradients.

A number of standard techniques exist for evaluating the gradient f ′(x) using the

constrained function g(x, y)|y=x. For instance, the chain rule can be applied to the

functions g(x, y) and y(x) = x giving

f ′(x) =
∂g

∂x
+

∂g

∂y

dy

dx

= 2xx̂. (1.81)

Another common alternative is by using Lagrange multipliers in which f ′(x) = L′(x)

with

L(x, y, λ) = xy − λ(y − x) (1.82)

and

∂L

∂x
= (y + λ)x̂

∂L

∂y
= (x− λ)ŷ

∂L

∂λ
= (x− y)λ̂. (1.83)

Equating the last two lines to zero gives the required constraints y = x and λ = x

ensuring f ′(x) = L′(x). A final way to perform this constrained optimization is to use

directed vector gradients where

f ′(x) = lim
y→x

∇g(x, y).v.
√
2 (1.84)

with v = (x̂+ ŷ)/
√
2. Here, v is normalized and the extra factor of

√
2 properly calculates

changes in the x direction. This gives the magnitude of the gradient as f ′(x) = 2x as

required.

There are two ways to embed the function f(x) within the surface g(x, y) using either

a limit process or an externally imposed constraint. The limit process fails to preserve
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many of the properties of the source function within the target function. Conversely, the

external constraint does ensure that all source function structures are preserved within

the target function—dimensionality, gradient, and so on. In general, it is not possible

to embed a smaller space within a larger space and preserve gradients and optimization

outcomes without the use of constraints. These constraints reflect the use of isomorphic

mappings to preserve the properties of the source space with the target space [17].
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Figure 1.6: A schematic representation where a three dimensional target probability strat-

egy space (p, q, r) embeds respectively several one dimensional probability spaces associated

with perfectly correlated variables (lines, upper left and lower right), and a two dimen-

sional probability space associated with independent variables (plane, middle). An exact

isomorphism preserves the respective original tangent spaces shown via one and two di-

mensional axes offset in background. A weak isomorphism fails to preserve the original

tangent spaces of the source probability distributions and assigns the three dimensional

tangent space of the target space to every embedded distribution (as shown in foreground

slightly offset from each embedded space).
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1.3 Isomorphisms and Optimization

There are two approaches to optimization over probability spaces presented here. Proba-

bility theory uses isomorphic constraints to exactly preserve the properties of embedded

probability spaces and then compares these exactly calculated values. Game theory es-

chews the use of isomorphic constraints and in effect, argues that any uncertainty about

which probability space to choose bleeds into many calculations within a given space and

alters the calculated outcomes.

When probability spaces are represented as geometries, then it is expected that at

least some of the properties of the probability space will be rendered in geometric terms.

How these geometrical properties are preserved when a probability space is embedded

within another is the question. Probability theory requires the exact preservation of all

properties of every source space and this is achieved by imposing different constraints on

different points within the target space. Game theory in contrast, imposes a single target

space geometry onto every source probability space. One way to picture this is shown in

Fig. 1.6. This figure shows how probability theory exactly preserves the dimensionality

and tangent spaces of embedded probability spaces, while game theory overwrites these

properties of the embedded spaces with the corresponding properties of the mixed space.

In probability theory, the different isomorphism constraints and tangent spaces acting

at each point define non-intersecting lines and surfaces within the target space. Some

of these are shown in Fig. 1.7 representing the (p, q, r) simplex of the two potentially

correlated x and y variables (this behavioural space is defined in the next Chapter). Here,

each state of correlation is a constant and cannot vary during an optimization analysis so

an optimization procedure must sequentially take account of every possible correlation

state between these variables, setting ρxy = ρ for all ρ ∈ [−1, 1]. These optimum points

can then be compared to determine which correlation state between x and y returns the

best value.

Unsurprisingly, these two distinct approaches can sometimes generate conflicting re-

sults.

1.3.1 Isomorphism constraints alter geometry

In general, the imposition of any specific isomorphism constraint can be expected to alter

the geometry of optimization space and alter optimization outcomes. We now illustrate

this briefly.

Consider a three dimensional volume in which Pythagoras’s rule specifies the distance

ds between points (x, y, z) and (x+∆x, y +∆y, z +∆z) as

ds2 = dx2 + dy2 + dx2. (1.85)

That Pythagoras’s rule is satisfied indicates that the space is flat. In contrast, when some

constraint is adopted via z = f(x, y) then the shortest distance between two points no
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Figure 1.7: Every point within the (p, q, r) probability space shown specifies a particular

state of correlation ρxy(p, q, r) between the x and y variables. We show here several

lines and surfaces of constant correlation taking values from top left to bottom right of

ρxy = +1,+0.75,+0.25, 0,−0.25,−0.75,−1. The optimization of expectations at any

point (p, q, r) must take account of correlated changes between x and y.

longer satisfies Pythagoras’s rule indicating that the constraint has rendered the space

curved. Consider the example relation

z2 = r2 − x2 − y2, (1.86)

where r denotes a radius of curvature. The surface constraint now requires

zdz = −xdx− ydy, (1.87)

so

dz2 =
(xdx+ ydy)2

r2 − x2 − y2
. (1.88)
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In turn, this gives the shortest path distance between (x, y) and (x+∆x, y +∆y) as

ds2 = dx2 + dy2 + dz2

= dx2 + dy2 +
(xdx+ ydy)2

r2 − x2 − y2
(1.89)

=

[

1 +
x2

r2 − x2 − y2

]

dx2 +

[

1 +
y2

r2 − x2 − y2

]

dy2 +
2xy

r2 − x2 − y2
dxdy.

Self-evidently, this shortest distance between the points (x, y) and (x+∆x, y+∆y) does

not satisfy Pythagoras’s rule reflecting the fact that the space is now curved.

The adoption of a curvature imposing constraint ensures that optimization problems

(the shortest path distance) within the plane are altered and so locate different optima.

Further, theorems valid in flat space are no longer applicable in the now curved space.

When it is possible to impose curvature inducing constraints on a space to alter opti-

mization outcomes, then it is necessary to examine every possibility to ensure a complete

optimization.

1.4 Discussion

A rational player must compare expected payoffs across the mixed strategy space in order

to locate equilibria. As expectations are polylinear, such comparisons are mathematically

equivalent to calculating gradients and the issues raised in this paper apply. Further, it

is perfectly possible that a rational player might need to calculate the Fisher information

defined in terms of gradients of probability distributions in order to optimize payoffs. It is

perfectly possible that a rational player might well need to optimize an Entropy gradient

to maximize a payoff. It is even perfectly possible to define games where payoffs depend

directly on the gradient of a probability distribution—shine light through a sheet of glass

painted by players to alter transmission probabilities and make payoffs dependent on the

resulting light intensity gradients (call it the interior decorating game). We have shown

that rational players working with the standard strategy spaces of game theory will have

difficulties with these games.

We have highlighted two alternate ways to optimize a multivariate function Π(x, y)

where x and y might be functionally related in different ways, y = gi(x) for different i

say. The first approach, common to probability theory and general optimization theory,

considers each potential functional relation as occupying a distinct space and approaches

the optimization as a choice between distinct spaces. Any uncertainty about which space

to choose does not leak into the properties of any individual space. If desired, isomorphic

constraints can be used to embed all these distinct spaces into a single enlarged space

for convenience, but if so, all the properties of the optimization problem are exactly

preserved. The second approach, common to game theory, holds that the uncertainty

about which functional relation to choose should appear in the same space as the variables

(x, y). This is accomplished by expanding the size of the space to include both the old
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variables x and y and sufficient new variables (not explicitly shown here) to contain

all the potential functional relations and allow limy→gi(x) Π(x, y) = Π[x, gi(x)] for all i.

This enlarged space then allows gradient comparisons to be made at points Π[x, gi(x)]−
Π[x, gj(x)] for all i and j to locate optima. These two approaches can lead to conflicting

optimization outcomes as while these approaches generally assign the same values to

functions at all points,

Π(x, y)|y=gi(x)
= lim

y→gi(x)
Π(x, y), (1.90)

they typically calculate different gradients at those same points

∇Π(x, y)|y=gi(x)
̸= lim

y→gi(x)
∇Π(x, y). (1.91)

These differences can be extreme when the function Π(x, y) depends on global properties

of the space—the dimension, volume, gradient, information or entropy say. In its ap-

proach, game theory differs from many other fields in how it models alternate functional

dependencies including other fields of economics. For example, the Euler-Lagrange equa-

tions of Ramsey-type models consider the functional variation of some function u while

ensuring a consistent treatment of the gradient of the function u′ [18]. Gradients are not

taken in any limit in these fields.

Throughout this work, we have presumed that a rational player should be able to

use standard techniques from either probability theory or optimization theory on the one

hand, or decision theory and game theory on the other, and expect all of these methods

to provide consistent results. We have shown that when considering multiple, poten-

tially correlated variables, and functions of these variables dependent on the geometry

of the probability parameter space, then these methods can give rise to contradictory

optimization outcomes. We have suggested decision and game theory are incomplete

when they require the adoption of a single geometry for any decision or game tree, and

that these fields should consider applying the alternate geometries of probability theory

and optimization theory. Recognizing that a single multi-stage decision or game tree can

encompass an infinite number of incommensurate probability spaces might resolve some

of the paradoxes of game theory, and have broader application.

The specification of a probability space determines which variables exist and whether

they are functionally constrained or freely varying. Given the choice of a probability

space, optimization can only take place with respect to the freely varying parameters

within that adopted space. Should players wish to explore a broader range of variation,

then they must seek to alter the functional assignments of some of their random variables

and functions, and so will alter their probability spaces. In other words, rational players

of unbounded capacity will search both among different probability spaces, which are not

always guaranteed to give the same outcomes, as well as search within each space over

all of the freely varying parameters of each probability space. Rational players require

a decision procedure mediating this dual search of all possible probability spaces and all

possible variables within each space, and that is what we seek to provide here.
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Every probabilistic decision can be modeled by an infinite number of different prob-

ability measure spaces. For many decisions, it is immediately obvious that every alter-

native space leads to exactly the same optimized outcomes. The question is, is this true

for every possible decision, for every possible strategic interaction. Before turning to an-

swer this question, we now turn to examine the probability spaces typically encountered

in game theory. In particular, we focus on mixed strategy probability measure spaces,

behavioural strategy probability measure spaces, and correlated equilibria probability

measure spaces.

1.5 Appendix: Correlation and mutual information

We employ probability space isomorphisms based on correlation. However, it is not clear

that correlation is the appropriate measure to use. It is well known that this measure of

linear correlation is insensitive to nonlinear correlations. Because of this, other measures

might be more useful. When two variables are correlated, and if this correlation is ignored,

then information has been discarded. It might well be the case that information based

measures, in particular, mutual information might provides a better way to take account

of the interrelatedness of random variables [15].

1.5.1 Nonlinear dependencies and correlation

The correlation between arbitrary random variables x and y is

ρx,y =
cov(x, y)

σxσy

=
⟨xy⟩ − ⟨x⟩⟨y⟩

√

⟨x2⟩ − ⟨x⟩2
√

⟨y2⟩ − ⟨y⟩2
, (1.92)

defined in terms of the covariance cov(x, y), the variance σ2
x = cov(x, x), and the mean

⟨x⟩ [19].
Consider two discrete random variables x and y, with x being any of x ∈ {−1, 0, 1}

with equal probability 1
3
, and y = x2 ∈ {0, 1} so P (y = 0) = 1

3
and P (y = 1) = 2

3
. These

variables would normally be considered to be highly correlated as knowing x immediately

specifies y, while knowing y narrows the possible values of x to x = ±√
y. The respective

probability distributions are

P (x, y) =
1

3
(δx,−1δy,1 + δx,0δy,0 + δx,1δy,1)

P (x) =
1
∑

y=0

P (x, y)

=
1

3
(δx,−1 + δx,0 + δx,1)

P (y) =
1
∑

x=−1

P (x, y)

=
1

3
(δy,0 + 2δy,1)
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P (x|y) = δx,0δy,0 +
1

2
δy,1 (δx,−1 + δx,1)

P (y|x) = (δx,−1δy,1 + δx,0δy,0 + δx,1δy,1) . (1.93)

These distributions then give

cov(x, y) = ⟨xy⟩ − ⟨x⟩⟨y⟩

=
1
∑

x=−1

1
∑

y=0

P (x, y)xy

= 0. (1.94)

This zero covariance then specifies a zero coefficient of linear correlation ρxy = 0, but

as noted above, this does not mean these variables are uncorrelated. Better measures of

correlation indicate this.

1.5.2 Mutual Information

A more general measure of the interrelatedness of discrete variables is given by their

mutual information [20]. This is defined in terms of their joint probability distribution

Pxy, the marginal distribution Px governing the x variable, and the marginal distribution

Py governing the y variable. The information obtained from observing a single instance

of a discrete random variable x is

I(x) = − logP (x). (1.95)

Consequently, the average information content of an entire ensemble of observations of x

is obtained by averaging over the entire distribution to give the entropy or uncertainty

of x,

H(x) = −
∑

x

P (x) logP (x). (1.96)

Suppose now that a second discrete random variable y is observed. In line with the above,

the joint entropy or uncertainty of x and y is

H(x, y) = −
∑

x,y

P (x, y) logP (x, y). (1.97)

Consider now how much information we obtain about x given observations of y. The

information obtained about x given knowledge of y is − logP (x|y), which when averaged

gives a measure of the remaining uncertainty in x given an observation of y. This is the

conditional entropy of x given y defined as

H(x|y) = −
∑

x,y

P (x, y) logP (x|y). (1.98)

Consequently, the average reduction in uncertainty in x given observations of y is the mu-

tual information content of the joint probability distribution describing the two discrete

random variables x and y, and is

H(x; y) = H(x)−H(x|y). (1.99)
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Then, when variables x and y are uncorrelated, we have P (x, y) = P (x)P (y) and P (x|y) =
P (x), so H(x|y) = H(x), ensuring their mutual information is minimized at H(x; y) =

0, while their joint entropy or uncertainty is maximized at H(x, y) = H(x) + H(y).

Conversely, when these variables are perfectly correlated, then P (x, y) = P (x)P (y|x) =
P (x)δyx and P (x|y) = 1, so H(x|y) = 0, ensuring their mutual information is maximized

at H(x; y) = H(x), while their joint entropy or uncertainty is minimized at H(x, y) =

H(x) [20].

For the example considered above, we have the entropies or uncertainties in the re-

spective x and y distributions of

H(x) = log 3

H(y) = log 3− 2

3
log 2. (1.100)

That is, there is less uncertainty in y as there are only two possible values taken by y

compared to the three possible values taken by x. Subsequently, the respective conditional

entropies are

H(x|y) =
2

3
log 2

H(y|x) = 0. (1.101)

The difference between these conditional entropies results as knowing x uniquely specifies

y while knowing y only partially specifies x. We can now calculate the mutual information

content x and y which is

H(x; y) = H(y; x) = log 3− 2

3
log 2. (1.102)

Lastly, the joint entropy or uncertainty of x and y is

H(x, y) = H(y, x) = log 3. (1.103)

For the behavioural strategy distributions considered in this paper, we have

Hx;y = log

{

[(1− q)1−qqq]
1−p

[(1− r)1−rrr]
p

[1− q − p(r − q)]1−q−p(r−q) [q + p(r − q)]q+p(r−q)

}

. (1.104)

When q = r indicating that x and y are uncorrelated, we have a mutual information

content of Hy;x = 0. Conversely, when (q, r) = (0, 1) and x and y are perfectly correlated,

the mutual information content is

Hx;y = H(x)

= − [(1− p) log(1− p) + p log p] . (1.105)

Similarly, when (q, r) = (1, 0) and x and y are perfectly anti-correlated, the mutual

information content is

Hx;y = H(x)

= − [(1− p) log(1− p) + p log p] . (1.106)
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This duplicates the value for the perfect correlation case.

The case of continuous distributions is more complicated, where for instance, the

mutual information content evaluates as

H(x; y) =
∫

dx
∫

dy P (x, y) log

(

P (x, y)

P (x)P (y)

)

. (1.107)

The upshot is that correlation corresponds to information. Every different probability

space that might be adopted by each player corresponds to a physical randomization

device, a “roulette”, which defines certain correlations between random variables. These

correlations correspond to information, and should the correlations be ignored, then

this equates to the discarding of information. In this paper, we assume that rational

players will make use of all available information including that implicit in correlated

joint probability measure spaces.

Problem: Mutual information

However that the mutual information is not a constant when x and y are perfectly

correlated or anti-correlated. It is not clear how mutual information might be used, but

then again, it is not clear why correlation should have the status desired for it. What is

the connection between the functional dependencies of our deterministic examples, and

correlated variables?



Chapter 2

Isomorphisms in Strategy Spaces

2.1 Introduction

The preceding chapter has pointed out by example that there are different ways to “con-

tain” one probability distribution within another. Probability theory uses strong isomor-

phic mappings, while game theory uses weaker isomorphic mappings which preserve fewer

properties of the original distribution within the target space. These differences arose

(perhaps) as probability space isomorphisms do not feature anywhere in the historical

definition of mixed strategy spaces. We briefly recap this historical process below.

2.1.1 Mixed strategy probability measure spaces

Rationality, Utility: Von Neumann and Morgenstern began their formalization of game

theory by defining the economic problem as when “rational players” seek to “obtain a

maximum of utility” using “a complete set of rules of behavior in all conceivable sit-

uations.” [1]. Naturally, the result “is thus a combinatorial enumeration of enormous

complexity” [1]. Von Neumann and Morgenstern aimed to formulate a complete plan, an

analysis of every possible move or variable or outcome” [1].

Moves: Each player makes moves in a game, where “A move is the occasion of a

choice between various alternatives” at each stage of the game [1].

Pure Strategies: The choices of moves combine into player strategies: “A strategy

of the player k is a function . . . which is defined for every [personal move of that player],

and whose value [determines his choice at that move]” [1]. A strategy is “a complete plan:

a plan which specifies what choices [a player] will make in every possible situation, for

every possible actual information which he may possess at that moment” [1]. Hence, for

von Neumann and Morgenstern, each different strategy for a given player is a list of all

the combinatorial play possibilities available to that player throughout the game taking

account of every different possible history and information set in the game. Each player

chooses their strategy independently of all the other players, as any dependencies and

correlations are already taken into account in the complete listing of information sets and

35
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possibilities for every possible game that might occur. In particular, “The player k must

choose his strategy . . . without information concerning the choices of the other players,

or of the chance events (the umpire’s choice). This must be so since all the information

he can at any time possess is already embodied in his strategy” [1]. The choice of a

strategy of play then becomes the sole decision to be made by the player, and this is

made independently of any other choice.

Mixed Strategies: Players can choose their pure strategies according to some inde-

pendent probability distributions, termed a mixed strategy. The probability parameters

of each distribution are subject to normalization constraints “and to no others” [1].

Nash Equilibria: Nash closely followed the von Neumann and Morgenstern formal-

ism [2, 3]. Nash’s famous first paper commences “One may define a concept of an n-person

game in which each player has a finite set of pure strategies and in which a definite set

of payments to the n players corresponds to each n-tuple of pure strategies, one strategy

being taken for each player. . . . For mixed strategies, which are probability distributions

over the pure strategies, the pay-off functions are the expectations of the players, thus

becoming polylinear forms in the probabilities with which the various players play their

various pure strategies.” [2]. In a second paper, Nash treated the mixed strategy space

as “points in a simplex whose vertices are the [pure strategies]. This simplex may be

regarded as a convex subset of a real vector space, giving us a natural process of linear

combination for the mixed strategies” [3]. Nash subsequently defined the set of all mixed

strategies for all players as “a point in a vector space, the product space of the vector

spaces containing the mixed strategies. And the set of all such [points] forms, of course,

a convex polytope, the product of the simplices representing the mixed strategies” [3].

Because all the mixed strategy probabilities are continuous, Nash was able to use fixed

point theorems to derive optimal points, referred to now as Nash equilibria.

Behavioural strategy spaces: Kuhn showed that the mixed strategy spaces could

be replaced by the more intuitively accessible behavioural strategy space [4]. The be-

havioural strategies are merely the player’s choice probabilities distributed over each

branch of a game’s decision tree. These probabilities are ‘uncorrelated’ or ‘locally ran-

domized’ strategies wherein a local perspective decentralizes the strategy decision of each

player into a number of local decisions [4, 21]. In this, the agent-normal game form, my-

opic agents at each history set determine paths through the game tree using probability

distributions which are uncorrelated and independent. This assumption allowed Kuhn to

prove the equivalence of uncorrelated behavioural strategies and the uncorrelated mixed

strategies introduced by von Neumann and Morgenstern [1] and Nash [3] in games of

perfect recall [4].

Absent isomorphisms: In the historical development painted above, there is no

room for isomorphic mappings and any discussion of the properties of embedded prob-

ability distributions. A game definition provides a complete list of moves and hence of

strategies and hence of mixed strategies which are independent and unconstrained (and

complete). Our alternative approach posits that a game definition can be put into a 1-1
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correspondence with many alternate probability spaces, with each choice of probability

space altering the complete list of moves and of strategies and hence of mixed strategies.

In this chapter, we show that these two different approaches lead to very different

properties for mixed and behavioural strategy spaces as defined by probability theory

and game theory.
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Figure 2.1: A simple decision tree where potentially independent or correlated variables x

and y take values {0, 1} with the probabilities shown. This defines the (p, q, r) behavioural

probability space.

2.2 Mixed and behavioural strategy spaces

The different approaches of probability theory and game theory to isomorphic embeddings

impacts on the definitions of mixed and behavioural strategy spaces. As previously, we

will compare these spaces both with and without isomorphism constraints. Our focus

will be on a simple decision problem involving two random variables x, y ∈ {0, 1} where

y is potentially conditioned on x as shown in the behavioural strategy decision tree of

Fig. 2.1.

2.2.1 Mixed strategy space PM

The mixed strategy space is denoted PM , and determines the choice of x via a probability

distribution α while the respective choices of y on the left branch of the decision tree yl

and on the right branch yr are determined by an independent probability distribution β
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according to the following table:

(yl, yr) = (0, 0) (0, 1) (1, 0) (1, 1)

(x, y) β0 β1 β2 β3

α0 (0, 0) (0, 0) (0, 1) (0, 1)

α1 (1, 0) (1, 1) (1, 0) (1, 1).

(2.1)

The mixed strategy simplex for each player is respectively SX = {(α0, α1) ∈ R2
+ :

∑

j αj =

1} and SY = {(β0, β1, β2, β3) ∈ R4
+ :

∑

j βj = 1}. The associated tangent spaces are

TX = {z ∈ R2 :
∑

j zj = 0} and T Y = {z ∈ R4 :
∑

j zj = 0}, equivalent to every possible

positive or negative fluctuation in the probabilities of the pure strategies of each player.

The joint probability distribution Pxy(x, y) for x and y is

Pxy(0, 0) = (1− α1)(1− β2 − β3)

Pxy(0, 1) = (1− α1)(β2 + β3)

Pxy(1, 0) = α1(1− β1 − β3)

Pxy(1, 1) = α1(β1 + β3). (2.2)

Here, we have used normalization constraints to eliminate α0 and β0. The expectations

of the x and y variables are given by

⟨x⟩ = α1

⟨y⟩ = β2 + β3 + α1(β1 − β2)

⟨xy⟩ = α1(β1 + β3), (2.3)

while their variances are

V (x) = α1(1− α1)

V (y) = [β2 + β3 + α1(β1 − β2)]× [1− β2 − β3 − α1(β1 − β2)] . (2.4)

For completeness, we note the marginal and joint entropies are

Ex = −(1− α1) log(1− α1)− α1 logα1

Ey = −[1− β2 − β3 + α1(β2 − β1)]× log[1− β2 − β3 + α1(β2 − β1)]

−[β2 + β3 − α1(β2 − β1)]× log[β2 + β3 − α1(β2 − β1)]

Exy = −(1− α1)(1− β2 − β3) log[(1− α1)(1− β2 − β3)]

−(1− α1)(β2 + β3) log[(1− α1)(β2 + β3)]

−α1(1− β1 − β3) log[α1(1− β1 − β3)]

−α1(β1 + β3) log[α1(β1 + β3)]. (2.5)

Naturally, the mixed strategy probability space can model any state of correlation be-

tween x and y with the correlation give by

ρxy(α1, β1, β2, β3) =

√

α1(1− α1)(β1 − β2)
√

⟨y⟩ [1− ⟨y⟩]
. (2.6)
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Then, when x and y are perfectly correlated we have ρxy = 1 requiring the constraints

β1 = 1 and β0 = β2 = β3 = 0. When x and y are perfectly anti-correlated we have

ρxy = −1 requiring the constraints β2 = 1 and β0 = β1 = β3 = 0. Finally, when x and y

are independent we have ρxy = 0 requiring the constraint β1 = β2.

2.2.2 Behavioural strategy space PB

The behavioural strategy probability space [4] is denoted PB and is parameterized as

shown in Fig. 2.1. The behavioural strategy space for the players is SXY = {(p, q, r) ∈
R3

+ : 0 ≤ p, q, r ≤ 1} after taking account of normalization. The associated tangent space

is TXY = {z ∈ R3}. The probability Pxy(x, y) that x and y take on their respective

values is

Pxy(0, 0) = (1− p)(1− q)

Pxy(0, 1) = (1− p)q

Pxy(1, 0) = p(1− r)

Pxy(1, 1) = pr. (2.7)

This distribution gives the following expected values:

⟨x⟩ = p

⟨y⟩ = q + p(r − q)

⟨xy⟩ = pr, (2.8)

while the variances of the x and y variables are

V (x) = p(1− p)

V (y) = [q + p(r − q)] [1− q − p(r − q)] . (2.9)

The marginal and joint entropies between the x and y variables are

Ex = −(1− p) log(1− p)− p log p

Ey = −[(1− p)(1− q) + p(1− r)]× log[(1− p)(1− q) + p(1− r)]

−[(1− p)q + pr] log[(1− p)q + pr]

Exy = −(1− p)(1− q) log[(1− p)(1− q)]− (1− p)q log[(1− p)q]

−p(1− r) log[p(1− r)]− pr log[pr]. (2.10)

The behavioural probability space also allows modeling any arbitrary state of correlation

between the x and y variables where the correlation between x and y is

ρxy =

√

p(1− p)(r − q)
√

[q + p(r − q)] [1− q − p(r − q)]
. (2.11)
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Then, x and y are perfectly correlated at ρxy(p, 0, 1) = 1, perfectly anti-correlated at

ρxy(p, 1, 0) = −1, and uncorrelated if either p = 0 or p = 1 or q = r giving ρxy = 0. Hence,

the decision tree of Fig. 2.1 encompasses every possible state of correlation between x

and y, and thus it can be used to perform a complete analysis.

2.2.3 Isomorphic Mixed and Behavioural Spaces

The mixed PM and behavioural PB strategy spaces contain embedded probability spaces

where x and y are respectively perfectly correlated, independent, or partially correlated.

As previously, we will now perform a comparison of probability spaces, both with and

without isomorphic constraints, for various correlation states between the x and y vari-

ables. That is, we will compare the mixed strategy space PM and behavioural strategy

space PB with isomorphically constrained mixed and behavioural strategy spaces as in-

dicated using the following notation.

The case of perfectly correlated x and y variables is modeled by the spaces

limβ1→1 PM mixed

PM |β1=1 constrained mixed

lim(q,r)→(0,1) PM behavioural

PB|(q,r)=(0,1) constrained behavioural

(2.12)

In these spaces we expect all of the following to hold:

• ∇ [Pxy(0, 0) + Pxy(1, 1)] = 0,

• ∇ [Pxy(0, 1) + Pxy(1, 0)] = 0,

• ∇
[

Px|y(0|0)
]

= 0,

• ∇
[

Px|y(0|1)
]

= 0,

• ∇ [⟨x⟩ − ⟨y⟩] = 0

• ∇ [⟨x⟩ − ⟨xy⟩] = 0

• ∇ [⟨y⟩ − ⟨xy⟩] = 0

• ∇[V (x− y)] = ∇ [V (x) + V (y)− 2cov(x, y)] = 0

• ∇ [Exy − Ex] = 0.

Alternately, when x and y are independent, the relevant spaces are

limβ1→β2 PM mixed

PM |β1=β2
constrained mixed

limr→q PM behavioural

PB|r=q constrained behavioural

(2.13)

In all these spaces, the probability distributions satisfy
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ρxy = 1 PM PB PM |β1=1 PB |(q,r)=(0,1)

Parameters α1, β1, β2, β3 p, q, r α1 p

Dimensions 4 3 1 1

∇ operator ∂
∂α1

α̂1 + ∂
∂β1

β̂1 + ∂
∂β2

β̂2 + ∂
∂β3

β̂3
∂
∂p

p̂+ ∂
∂q

q̂ + ∂
∂r

r̂ ∂
∂α1

α̂1
∂
∂p

p̂

Gradient limβ1→1 ∇(.) lim(q,r)→(0,1) ∇(.) ∇ ∇
Probability Conservation

∇ [Pxy(0, 0) + Pxy(1, 1)] α1β̂1 − (1− α1)β̂2 + (2α1 − 1)β̂3 −(1− p)q̂ + pr̂ 0 0

∇ [Pxy(0, 1) + Pxy(1, 0)] −α1β̂1 + (1− α1)β̂2 − (2α1 − 1)β̂3 (1− p)q̂ − pr̂ 0 0

Conditionals

∇Px|y(0|0) α1

1−α1
(β̂1 + β̂3)

p
1−p

r̂ 0 0

∇Px|y(0|1) 1−α1

1α1
(β̂2 + β̂3)

1−p
p

q̂ 0 0

Expectations

∇⟨x⟩ α̂1 p̂ α̂1 p̂

∇⟨y⟩ α̂1 + α1β̂1 + (1− α1)β̂2 + β̂3 p̂+ (1− p)q̂ + pr̂ α̂1 p̂

∇⟨xy⟩ α̂1 + α1β̂1 + α1β̂3 p̂+ pr̂ α̂1 p̂

Variance

∇ [V (x) + V (y)− 2cov(x, y)] −α1β̂1 + (1− α1)β̂2 + (1− 2α1)β̂3 (1− p)q̂ − pr̂ 0 0

Entropy

∇ [Exy − Ex] ̸= 0 ̸= 0 0 0

Correlation

∇ρxy ̸= 0 ̸= 0 0 0

ρxy = 0 PM PB PM |β1=β2
PB |r=q

Parameters α1, β1, β2, β3 p, q, r α1, β̄ = β1 + β3 p, q

Dimensions 4 3 2 2

∇ operator ∂
∂α1

α̂1 + ∂
∂β1

β̂1 + ∂
∂β2

β̂2 + ∂
∂β3

β̂3
∂
∂p

p̂+ ∂
∂q

q̂ + ∂
∂r

r̂ ∂
∂α1

α̂1 + ∂
∂β̄

ˆ̄β ∂
∂p

p̂+ ∂
∂q

q̂

Gradient limβ2→β1
∇(.) limr→q ∇(.) ∇ ∇

Probability

∇ [Pxy(0, 0)− Px(0)Py(0)] α1(1− α1)(β̂1 − β̂2) p(1− p)(r̂ − q̂) 0 0

∇ [Pxy(0, 1)− Px(0)Py(1)] α1(1− α1)(β̂2 − β̂1) p(1− p)(q̂ − r̂) 0 0

∇ [Pxy(1, 0)− Px(1)Py(0)] α1(1− α1)(β̂2 − β̂1) p(1− p)(q̂ − r̂) 0 0

∇ [Pxy(1, 1)− Px(1)Py(1)] α1(1− α1)(β̂1 − β̂2) p(1− p)(r̂ − q̂) 0 0

Conditionals

∇
[

Px|y(0|0)− Px(0)
]

α1(1−α1)
1−β1−β3

(β̂1 − β̂2)
p(1−p)
(1−q)

(r̂ − q̂) 0 0

∇
[

Px|y(0|1)− Px(0)
]

α1(1−α1)
β1+β3

(β̂2 − β̂1)
p(1−p)

q
(q̂ − r̂) 0 0

Expectation

∇ [⟨xy⟩ − ⟨x⟩⟨y⟩] α1(1− α1)(β̂1 − β̂2) p(1− p)(r̂ − q̂) 0 0

Entropy

∇ [Exy − Ex − Ey ] ̸= 0 ̸= 0 0 0

Correlation

∇ρxy ̸= 0 ̸= 0 0 0

Table 2.1: A comparison of calculated results for mixed PM and behavioural PB strategy

spaces with those same spaces when subject to isomorphic constraints. We examine points

where respectively the x and y variables are first perfectly correlated with ρxy = 1 and

then independent with ρxy = 1. In the unconstrained behavioural spaces, all quantities

are evaluated at points satisfying limβ1→1 or lim(q,r)→(0,1) when ρxy = 1, and at points

satisfying limβ2→β1 or limr→q when ρxy = 0. The isomorphically constrained spaces are

respectively indicated by PM |β1=1 and PB|(q,r)=(0,1) for the perfectly correlated case, and

PM |β1=β2
and PB|r=q when the variables are independent. Game theory and probability

theory assign different dimensionality and tangent spaces to these cases. Many calculated

results differ between these spaces.
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• ∇ [Pxy − PxPy] = 0

• ∇
[

Px|y − Px

]

= 0

• ∇ [⟨xy⟩ − ⟨x⟩⟨y⟩] = 0

• ∇ [Exy − Ex − Ey] = 0.

Table 2.1 records whether each of the expected relations is satisfied for each of the

mixed and behavioural spaces when they are either unconstrained, or isomorphically

constrained. As might be expected, the results indicate that the weak isomorphisms

used to construct the mixed and behavioural spaces of game theory are not able to

reproduce necessarily true results from probability theory. Hence, the rational player

of game theory is unable to reliably reproduce results from probability theory. These

differences between game theory and probability theory need to be resolved.

2.3 Discussion

The question posed in this chapter is whether a physical situation involving variables

(x, y) defines a set of moves (x, y) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} which then defines a

mixed strategy space of three dimensions, or whether the variables (x, y) can be modeled

by multiple distinct probability distributions (perfectly correlated, independent, anti-

correlated, etc) each of which defines a set of possible moves and corresponding mixed

strategy space. These two different approaches can each by modeled using a single mixed

strategy space with or without isomorphism constraints. In this case, the question is

whether the simple physical decision or game involving the variables (x, y) is best mod-

eled by a single probability space which contains all others without using isomorphic

constraints and alters the properties of those embedded spaces to reflect decision uncer-

tainty, or by a single probability space using isomorphic constraints to perfectly preserve

the properties of all embedded spaces.



Chapter 3

A simple decision tree optimization

3.1 Optimizing simple decision trees

We now turn to consider how the differences between probability theory and game theory

influence decision tree optimization. We consider the usual two potentially correlated

random variables depicted in Fig. 2.1 and will use both the unconstrained behavioural

probability space PB and the isomorphically constrained behavioural spaces PB|ρxy=ρ for

every value of the correlation state ρ ∈ [−1, 1]. Our goal is to present an optimization

problem in which a rational player following the rules of game theory cannot achieve

the payoff outcomes of a player following the rules of probability theory. We suppose

that a player gains a payoff by advising a referee of the parameters of the decision tree

probability space (p, q, r) to optimize a given nonlinear random function. The referee uses

these parameters to determine the value of the function and provides a payoff equivalent

to this value. (If desired, the referee could estimate the probability parameters by using

indicator functions and observing an ensemble average of decision tree outcomes.)

3.1.1 Non-polylinear payoff functions

There are many possible random functions which we could use, and some are listed in

Table 2.1. We could choose any relations from this table of the form f = 0 provided

probability theory shows ∇f = 0 and game theory has ∇f ̸= 0. When this is so, the

function ∇f acts effectively as a discrepancy vector. We focus on the squared magnitude

of the length of the discrepancy vector and examine functions of the form F = 1−|∇f |2.
Immediately, probability theory will optimize this function at the point F = 1 while

game theory will locate an optimum at F < 1. In particular, we choose

f = Pxy(0, 0) + Pxy(0, 0) (3.1)

so

F = 1− |∇ [Pxy(0, 0) + Pxy(0, 0)] |2

= 1− |∇ [1− q + p(q + r − 1)] |2. (3.2)

43
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In the unconstrained behavioural space PB, a rational player will evaluate this as

F = 1− (1− q − r)2 − (1− p)2 − p2. (3.3)

In turn, this will be maximized at points p = 1
2
and q + r = 1 to give a maximum payoff

of Fmax =
1
2
.

A contrasting result is obtained using the isomorphism constraints of probability

theory where our player faces the optimization problem

maxF = 1− |∇ [1− q + p(q + r − 1)] |2

subject to ρxy = ρ, ∀ρ ∈ [−1, 1]. (3.4)

Our player might commence by adopting the constraint ρxy = 1 implemented by (q, r) =

(0, 1) to give

maxF = 1− |∇ [1− q + p(q + r − 1)] |2
∣

∣

∣

(q,r)=(0,1)

= 1. (3.5)

This analysis leads to an optimum point at arbitrary p and (q, r) = (0, 1) and a maximum

payoff of Fmax = 1. Self-evidently, the player would cease their optimization analysis at

this point as the achieved maximum can’t be improved.
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Figure 3.1: A non-strategic decision tree over two stages where a variable x ∈ {0, 1} is

chosen in the first stage to condition the choice of a second variable y ∈ {0, 1} in the

second stage. The attained payoffs Π are as shown.

3.1.2 Polylinear payoff functions

Of course, there are many random functions defined over decision trees which produce

identical results when using or not using isomorphic constraints. We now briefly illustrate

this using polylinear expected payoff functions, and consider optimizing the function

max⟨Π⟩ = 2⟨x⟩+ 3⟨y⟩ − 4⟨xy⟩.
subject to ρxy = ρ, ∀ρ ∈ [−1, 1] (3.6)
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over the decision tree of Fig. 3.1. Of course, simple inspection will locate the optimum

at (⟨x⟩, ⟨y⟩) = (0, 1) giving an expected payoff of ⟨Π⟩ = 3. However, we step through the

process for later generalization to strategic games.
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Figure 3.2: The decision tree resulting when the variables x and y are perfectly correlated.

There are an infinite number of correlation constraints to be examined, but several

are straightforward. As shown in Fig. 3.2, when the variables are perfectly correlated at

ρxy = 1 via the constraint (q, r) = (0, 1), we have ⟨x⟩ = ⟨y⟩ = ⟨xy⟩ giving

⟨Π⟩ = ⟨x⟩. (3.7)

This is optimized by setting ⟨x⟩ = 1 giving an expected payoff of ⟨Π⟩ = 1.
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Figure 3.3: The decision tree resulting when the variables x and y are independent.

Fig. 3.3 sets ρxy = 0 so the x and y variables are independent by using the constraint

r = q. The expectations are now separable giving ⟨xy⟩ = ⟨x⟩⟨y⟩ and

⟨Π⟩ = 2⟨x⟩+ 3⟨y⟩ − 4⟨x⟩⟨y⟩. (3.8)

As the ⟨x⟩ and ⟨y⟩ variables are independent, a check of internal stationary points and

the boundary leads to an optimal point at (⟨x⟩, ⟨y⟩) = (0, 1) and an expected payoff of

⟨Π⟩ = 3.
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Figure 3.4: The decision tree resulting when the variables x and y are perfectly anti-

correlated.

We lastly consider the case where the variables are perfectly anti-correlated. As shown

in Fig. 3.4, when the variables are perfectly correlated at ρxy = −1 via the constraint

(q, r) = (1, 0), we have ⟨y⟩ = (1− ⟨x⟩) and ⟨xy⟩ = 0 giving

⟨Π⟩ = 3− ⟨x⟩. (3.9)

This is optimized by setting ⟨x⟩ = 0 giving an expected payoff of ⟨Π⟩ = 3.

More general correlation states require use of, for instance, standard Lagrangian op-

timization procedures.

However, we here adopt a numerical optimization approach by first using the correla-

tion constraint to write the r variable as a function of p, q and the correlation constant ρ,

giving a function r = r+(p, q, ρ). In particular, when the correlation (Eq. 2.11) between

x and y is ρxy = ρ, and as long as both p ̸= 0 and p ̸= 1, then the correlation constraint

defines two surfaces in the (p, q, r) simplex at height

r±(p, q, ρ) =
ρ2 − 2q(1− p)(ρ2 − 1)± ρ

√

ρ2 + 4q(1− q) (1−p)
p

2 [1 + p(ρ2 − 1)]
. (3.10)

The function r+(p, q, ρ) will give the correlation surfaces we require within the simplex.

That is, when ρ = 0 we have r+(p, q, 0) = q as required. Similarly, when ρ = 1 we have

r+(p, q, 1) ≥ 1 across the entire (p, q) plane with the equality r+(p, q, 1) = 1 only where

q = 0 or q = 1. We require ρ = 1 at (q, r) = (0, 1). Finally, when ρ = −1 and x and y are

perfectly anti-correlated, we have r+(p, q,−1) ≤ 0 across the entire (p, q) plane with the

equality r+(p, q,−1) = 0 only where q = 0 or q = 1. We require ρ = −1 at (q, r) = (1, 0).

The strict requirement that 0 ≤ r+(p, q, ρ) ≤ 1 establishes permissible regions on the

(p, q) plane. For 0 < ρ < 1, the permissible region is bounded by the q = 0 line and the

line

q(p, ρ) =
p

p+ ρ2

1−ρ2

. (3.11)

Similarly, for −1 < ρ < 0, the (p, q) region is bounded by the q = 1 line and the line

q(p, ρ) =
1

1 + p1−ρ2

ρ2

. (3.12)
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The problem is then solved using a a typical Mathematica command line of [22]

NMaximize[{inRange[r+(p, q, ρ)]× [2p+ 3q − 3pq − pr+(p, q, ρ)] ,

0 ≤ p ≤ 1 && 0 ≤ q ≤ 1}, {p, q}]. (3.13)

Here, a suitably defined “inRange” function determines whether r+ is taking permissible

values between zero and unity allowing the payoff function to be examined over the entire

(p, q) plane. The resulting optimal expected payoffs are follows:

ρ (p, q, r) ⟨Π⟩
+1 (1., 0., 1.) 1.

+0.75 (0.8138, 0.3876, 1.) 1.03032

+0.5 (0.4831, 0.5917, 1.) 1.40068

+0.25 (0.2590, 0.7953, 1.) 2.02693

0 (0., 1., 1.) 3.

−0.25 (0., 1., 0.9378) 3.

−0.5 (0., 1., 0.7506) 3.

−0.75 (0., 1., 0.4386) 3.

−1 (0., 1., 0.) 3.

(3.14)

Some care must be taken to ensure convergence of the solution. This analysis makes it

evident that the player can maximize expected payoffs by choosing a correlation constraint

where x and y is independent (say) allowing the setting (p, q, r) = (0, 1, 1) to gain a payoff

of ⟨Π⟩ = 3. Other choices would also have been possible.

We now turn to applying isomorphism constraints to the strategic analysis of game

theory.
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Chapter 4

A simple two-player-two-stage

optimization

4.1 Optimizing a multistage game tree

In this section, we show that the use of isomorphic constraints can alter the outcomes

of strategic games even when expected payoff functions are being used. We will consider

either the mixed strategy space PM (Eq. 2.2) and the behavioural strategy space PB

(Eq. 2.7) or the isomorphically constrained behavioural spaces PB|ρxy=ρ for every value

of the correlation state ρ ∈ [−1, 1].

We consider a strategic interaction between two players over multiple stages as de-

picted in Fig. 4.1. Here, two players denoted X and Y seek to optimize their respective

payoffs

X : maxΠX(x, y) = 3− 2x− y + 4xy

Y : maxΠY (x, y) = 1 + 3x+ y − 2xy. (4.1)

Again, we assume a domain x, y ∈ {0, 1} and that player X chooses the value of x and

advises this to Y before Y determines the value of y. Players will either consider the

payoff functions above or their expectations

X : max⟨ΠX⟩ = 3− 2⟨x⟩ − ⟨y⟩+ 4⟨xy⟩
Y : max⟨ΠY ⟩ = 1 + 3⟨x⟩+ ⟨y⟩ − 2⟨xy⟩. (4.2)

4.1.1 Unconstrained mixed space PM

For the unconstrained mixed strategy space PM , the expected payoffs for each player are

(yl, yr) = (0, 0) (0, 1) (1, 0) (1, 1)

(⟨ΠX⟩, ⟨ΠY ⟩) β0 β1 β2 β3

α0 (3, 1) (3, 1) (2, 2) (2, 2)

α1 (1, 4) (4, 3) (1, 4) (4, 3).

(4.3)

49
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Figure 4.1: Two players, X and Y conduct a two-stage sequential game where X chooses

the first variable x ∈ {0, 1} and Y chooses the second variable y ∈ {0, 1} conditioned on

x. The payoffs for players are ΠX and ΠY .

Using this table, the expected payoff functions take the form

⟨ΠX⟩ = 3− β2 − β3 + α1(−2 + 3β1 + β2 + 4β3)

⟨ΠY ⟩ = 1 + β2 + β3 + α1(3− β1 − β2 − 2β3) (4.4)

while the unconstrained gradients evaluate as

∇⟨ΠX⟩ = (−2 + 3β1 + β2 + 4β3)α̂1 + 3α1β̂1 + (α1 − 1)β̂2 + (4α1 − 1)β̂3

∇⟨ΠY ⟩ = (3− β1 − β2 − 2β3)α̂1 − α1β̂1 + (1− α1)β̂2 + (1− 2α1)β̂3. (4.5)

The expected payoff can then optimized by either comparing returns in the payoff table

for each mixed strategy combination, or by the equivalent strategy of comparing the

simultaneous rates of change of the payoff functions with the probability parameters.

(To illustrate the second approach, the rate of change of ⟨ΠY ⟩ with β1 is equal to −α1

which is almost always negative indicating that payoffs are maximized by setting β1 = 0.)

Either approach then locates the optimal mixed strategy of (α1, β1, β2, β3) = (0, 0, 1, 0)

leading to expected payoffs of (⟨ΠX⟩, ⟨ΠY ⟩) = (2, 2).

4.1.2 Unconstrained behavioural space PB

The unconstrained behavioural strategy space PB is pictured in Fig. 2.1. The uncon-

strained optimization problem faced by each player is

X : max
p

⟨ΠX⟩ = 3− 2p− q + pq + 3pr

Y : max
q,r

⟨ΠY ⟩ = 1 + 3p+ q − pq − pr. (4.6)
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The unconstrained gradients of the expected payoffs evaluate as

∇⟨ΠX⟩ = (q + 3r − 2)p̂− (1− p)q̂ + 3pr̂

∇⟨ΠY ⟩ = (3− q − r)p̂+ (1− p)q̂ − pr̂. (4.7)

This perfect information game can then be optimized by inspection, or by equating

gradients to zero, or by using backwards induction. The resulting optimal pure strategy

choices are (x, y) = (0, 1) giving payoffs of (ΠX ,ΠY ) = (2, 2).

4.1.3 Constrained behavioural space PB|ρxy=ρ

We now consider the constrained behavioural spaces PB|ρxy=ρ , ∀ρ ∈ [−1, 1]. The two

players are non-communicating and it is generally not possible to use a single value for

the correlation ρ, and this generally makes the analysis intractable. However, player Y

has total control over the setting of the correlation ρ in three cases—when ρ = ±1 and

ρ = 0. We consider these cases now.

First consider the space PB|ρxy=1 in which the variables are functionally equal so

y = x = xy. (We can consider the payoff functions directly rather than their expected

values.) In this space the players face the respective optimization tasks

X : max
x

ΠX(x) = 3 + x

Y : ΠY (x) = 1 + 2x. (4.8)

As a result, player X optimizes their payoff by setting x = 1 giving the outcomes

(ΠX ,ΠY ) = (4, 3).

In contrast, in the space PB|ρxy=−1, the variables are functionally related by y = 1−x

and xy = 0. These constraints render the optimization tasks as

X : max
x

ΠX(x) = 2− x

Y : ΠY (x) = 2 + 2x. (4.9)

Here, playerX chooses x = 0 to optimize their payoff leading to the outcomes (ΠX ,ΠY ) =

(2, 2).

Finally, when player Y chooses to discard all information about the x variable, then

the variables x and y are independent and the chosen space is PB|ρxy=0. When the

variables are independent, there might not necessarily be a pure strategy solution and

we need to optimize expected payoffs. In this space, we have ⟨x⟩ = p and ⟨y⟩ = q and

⟨xy⟩ = ⟨x⟩⟨y⟩ = pq giving the optimization problem

X : max
p

⟨ΠX⟩ = 3− 2p− q + 4pq

Y : max
q

⟨ΠY ⟩ = 1 + 3p+ q − 2pq. (4.10)
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The best response functions or equivalent partial differentials are

X :
∂⟨ΠX⟩
∂p

= −2 + 4q

Y :
∂⟨ΠY ⟩
∂q

= 1− 2p (4.11)

locating the optimal point at (p, q) = (1
2
, 1
2
) with expected payoffs of (⟨ΠX⟩, ⟨ΠY ⟩) =

(5
2
, 5
2
).

At this stage of the analysis, both players have separately calculated an equilibrium

point in three spaces PB|ρxy=ρ for ρ ∈ {−1, 0, 1}, and the selection of these correlation

states is solely at the discretion of player Y . The expected payoffs gained at each of these

“local” equilibrium points can then be compared to obtain a “global” optimal expected

payoff. For convenience, these are summarized here:

ρ (⟨ΠX⟩, ⟨ΠY ⟩)
−1 (2, 2)

0 (5
2
, 5
2
)

+1 (4, 3).

(4.12)

Based on these results, player Y will then rationally optimize their expected payoff by

choosing to have their variables in a state of perfect correlation with ρ = 1 in the space

PB|ρxy=1. Player X, also being a rational optimizer will play accordingly to give equilib-

rium payoffs of (⟨ΠX⟩, ⟨ΠY ⟩) = (4, 3).

It is useful again to reemphasize a geometric picture. As shown in Fig. 4.2(a), an

unconstrained behavioural space has a three-dimensional gradient everywhere which is

non-zero even when x and y are perfectly correlated so payoffs are not optimized at any

such points. In contrast, the use of isomorphic constraints when the x and y variables are

perfectly correlated gives the situation in Fig. 4.2(b) where now a 1-dimensional gradient

points solely along the p̂ axis. A comparison in Fig. 4.2(c) of the resulting outcomes can

then be made to determine which probability space should be chosen so as to maximize

outcomes.

4.1.4 Strategic analysis difficulties

The players might then seek to supplement the above solutions by considering a wider

range of correlation states.The optimization task then becomes

X : max
p

⟨ΠX⟩ = 3− 2p− q + pq + 3pr

Y : max
q,r

⟨ΠY ⟩ = 1 + 3p+ q − pq − pr

subject to ρxy = ρ, ∀ρ ∈ [−1, 1]. (4.13)

Unfortunately, there does not seem to be any straightforward way to make progress with

the general correlation case. Players are non-communicating and hence cannot agree on
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Figure 4.2: (a) Game theory adopts an unconstrained joint probability measure space in

which expected payoffs vary over three dimensions (p, q, r) and where positive gradients

with respect to q and r (dotted arrows) and with respect to p (solid arrow) ensure that

players maximize joint payoffs by choosing (p, q, r) = (0, 1, 0). (b) An alternate joint

probability space where x is perfectly correlated to y in which expected payoffs vary over

a single dimension p with positive gradients with respect to p (solid arrow) ensuring that

players optimize payoffs by choosing p = 1. (c) The choice of two alternate probability

spaces (more are possible) associates two different total gradients (double-lined arrows)

with any point along the perfect correlation line ρxy = 1 at (q, r) = (0, 1). In the absence

of any effective decision procedure privileging any one space over another, players should

examine all possible spaces, all possible gradients, and all possible optimized outcomes.

a value of the correlation state ρ. If players adopt different values of the correlation

states they must model conflicting global constraints and it is not clear how these can be

resolved. An attempt to model the use of a single correlation state generates expected

payoff functions which are not poly-linear in the probability parameters and that are

not generally quasi-concave. This implies that existence theorems for Nash equilibria are

inapplicable in these cases so equilibrium points might not exist for different correlation

states. It is more than likely that an acceptable solution methodology does not exist for

strategic interactions in the general correlation case, and it is beyond the scope of this

paper to consider this issue further. Here finally, we find the irreducible complexity of

strategic analysis expected by von Neumann and Morgenstern.

4.1.5 More general constrained analysis

The choice of variable y is normally modeled as requiring two separate and independent

coin tosses—see the behavioural space tree of Fig. 4.1. When x = 0 a coin is tossed

determining y = u ∈ {0, 1} with respective probabilities (1 − q, q), while when x = 1

another coin is tossed determining y = v ∈ {0, 1} with respective probabilities (1− r, r).
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The u and v coins are then simple, biassed, independent coins.

However, there is no need for this simplest possible treatment. The u and v coins

could themselves be modeled using any of the alternate probability spaces of Eqs. 1.21—

1.34. These alternate probability spaces would need to be checked by rational players of

unbounded capacity.

Another possible probability space might consider the u and v variables themselves to

be partially correlated. That is, the second stage player chooses to partially correlate their

two behavioural strategies by employing two sequential roulettes. The first determines

the variable u ∈ {0, 1} with probabilities (1 − q, q) while the second gives v ∈ {0, 1}
with respective probabilities (1− r1, r1) if u = 0 and (1− r2, r2) if u = 1. The resulting

correlation between the variables u and v is then

ρuv(q, r1, r2) =

√

q(1− q)(r2 − r1)
√

[r1 + q(r2 − r1)] [1− r1 − q(r2 − r1)]
. (4.14)

When r1 = r2 then these variables are uncorrelated as usual. In turn, this correlation

between the u and v variables renders the correlation between the x and y variables as

ρxy(p, q, r1, r2) =

√

p(1− p)[r1 − q(1 + r1 − r2)]
√

[q + p(r1 − q) + pq(r2 − r1)] [1− q + p(r1 − q) + pq(r2 − r1)]
. (4.15)

The second stage player might then choose to adopt a probability space with a constant

correlation between the u and v variables, say ρuv(q, r1, r2) = ρ̄uv say. If ρ̄uv = 0 then

we have the usual situation of uncorrelated behavioural strategies normally considered

by game theory. Conversely, if ρ̄uv = ±1 we have respectively either perfectly correlated

or perfectly anti-correlated behavioural strategies. If such a correlation constraint can

be adopted, then both players should analyze this possibility to determine whether it is

optimal.

Even more strangely, the u and v coin tosses could themselves be partially correlated

to the previous choice of x. That is, the u and v variables can be correlated with x,

and only after they have been chosen is the value for y assigned. For example, we might

have u perfectly anti-correlated with x so u = 1− x and v perfectly correlated with x so

v = x, and then we assign y = u if x = 0 and y = v if x = 1. There are many possible

choices that might be considered. In particular, we might consider the 9 possible cases

which arise when firstly the u variable is either perfectly anti-correlated to x (denoted

PY
−.), independent of x (PY

0. ) or perfectly correlated to x (PY
+.), and the v variable is either

perfectly anti-correlated to x (denoted PY
.−), independent of x (PY

.0 ) or perfectly correlated

to x (PY
.+). We have introduced subscript symbols indicating these possibilities. That is,

we separately have

P Y (u) =







































δu(1−x)) PY
−.

(1− q, q) PY
0.

δux PY
+.
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P Y (v) =







































δv(1−x) PY
.−

(1− r, r) PY
.0

δvx PY
.+

. (4.16)

The right hand column here lists the shorthand notation for each adopted strategy. This

notation shows that if u is independent of x while v is perfectly correlated to x, the second

stage probability distribution adopted by player Y is PY
0+. Similarly, when both u and

v are perfectly correlated to x we have the probability distribution PY
++. Each of these

choices of a different probability space generates a different optima within that space,

and these optima must be compared so that players can decide which space they can

rationally choose. Without showing the details, the generated outcomes in these possible

spaces are

(⟨ΠX⟩, ⟨ΠY ⟩)
PY

−− (2, 2)

PY
−0 (2, 2)

PY
−+ (4, 3)

PY
0− (2, 2)

PY
00 (2, 2)

PY
0+ (4, 3)

PY
+− (3, 1)

PY
+0 (3, 1)

PY
++ (4, 3).

(4.17)

These outcomes can easily be verified by drawing the different trees generated by each

choice of joint probability space as shown in Fig. 4.3. This extended table of distinct

trees makes evident that again, within this range of considered joint probability spaces,

player Y optimizes their outcomes by choosing, for instance, the space PY
++ ensuring that

their choice is perfectly correlated with that of their opponent.

We argue that optimizing multiple-player-multiple-stage games is more complicated

than envisaged in conventional game analysis. As noted earlier, the strategic optimization

of expected payoffs first requires the adoption of a suitable joint probability measure

space, and it is only the adoption of such a space that permits the functional definition

of both the expected payoff and suitable gradient operators allowing the optimization to

be completed. For the above simple two player game, the expected payoffs and gradient
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Figure 4.3: The nine distinct trees, payoffs and equilibria (indicated by triangles) given

that players X and Y adopt the indicated joint probability space. The two subscript

symbols here respectively indicate whether each of player Y ’s second stage choices are

perfectly anti-correlated (“−”), uncorrelated (“0”), or perfectly correlated (“+”) to the

previously observed random variable x.
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operators have been respectively defined variously as

(

⟨ΠX⟩, ⟨ΠY ⟩
)

=



















































































































































































(2− p, 2 + 2p) PY
−−

(2− p+ 3pr, 2 + 2p− pr) PY
−0

(2 + 2p, 2 + p) PY
−+

(3− 2p− q + pq, 1 + 3p+ q − pq) PY
0−

(3− 2p− q + pq + 3pr, 1 + 3p+ q − pq − pr) PY
00

(3 + p− q + pq, 1 + 2p+ q − pq) PY
0+

(3− 2p, 1 + 3p) PY
+−

(3− 2p+ 3pr, 1 + 3p− pr) PY
+0

(3 + p, 1 + 2p) PY
++

(4.18)

and

[

∇X ,∇Y
]

=























































































































































































[(

∂
∂p

)

, .
]

PY
−−

[(

∂
∂p

)

,
(

∂
∂r

)]

PY
−0

[(

∂
∂p

)

, .
]

PY
−+

[(

∂
∂p

)

,
(

∂
∂q

)]

PY
0−

[(

∂
∂p

)

,
(

∂
∂q
, ∂
∂r

)]

PY
00

[(

∂
∂p

)

,
(

∂
∂q

)]

PY
0+

[(

∂
∂p

)

, .
]

PY
+−

[(

∂
∂p

)

,
(

∂
∂r

)]

PY
+0

[(

∂
∂p

)

, .
]

PY
++.

(4.19)

That is, the expected payoff is defined here as a joint functional mapping from the various

probability measure spaces to the reals via
(

⟨ΠX⟩, ⟨ΠY ⟩
)

:
{

PX
0 × PY

−−,PX
0 × PY

−0,PX
0 × PY

−+,PX
0 × PY

0−,PX
0 × PY

00,

PX
0 × PY

0+,PX
0 × PY

+−,PX
0 × PY

+0,PX
0 × PY

++

}

→ IR× IR. (4.20)
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Again, this is in sharp contrast to the usual definition of game theory that it is sufficient

for optimization to consider that the expected payoff is defined as the joint function

mapping
(

⟨ΠX⟩, ⟨ΠY ⟩
)

: PX
0 × PY

00 → IR× IR. (4.21)

4.2 Backwards induction and isomorphism con-

straints

We have mentioned above that backwards induction can be used to solve the uncon-

strained optimization problem. This approach is often presented as a ‘proof’ that no

alternative procedure could possibly be considered by a rational player. It is worth tak-

ing a closer look at what is involved in the backwards induction algorithm, and how it

interacts with isomorphic constraints.

Backwards induction first constrains the values of first stage probability parameters

and then evaluates the gradients of the expected payoff function ⟨ΠY ⟩ at different nodes
in the last stage of the game. These last stage gradients are then used to set the optimal

values of the (q, r) probability variables. These values are then applied as constraints to

the evaluation of the gradient of the expected payoff function ⟨ΠX⟩ in the first stage of the

game—the first stage probability parameters are now treated as variables. To illustrate

these steps, we choose to begin our analysis at a point in the behavioural strategy space

where the variables are perfectly correlated at (q, r) = (0, 1). The steps involved are:

lim
(q,r)→(0,1)

∂⟨ΠY ⟩|p=0

∂q
= 1 > 0, so q → 1

lim
(q,r)→(0,1)

∂⟨ΠY ⟩|p=1

∂r
= −1 < 0, so r → 0

∂⟨ΠX⟩
∂p

∣

∣

∣

∣

∣

(q,r)=(1,0)

= −p < 0, so p → 0. (4.22)

The optimal point is then at (p, q, r) = (0, 1, 0) giving payoffs of (⟨ΠX⟩, ⟨ΠY ⟩) = (2, 2).

It is very easy and straightforward to apply the backwards induction algorithm to an

isomorphically constrained space, provided that the global isomorphic constraints and the

altered geometry is taken into account. If the variables x and y are perfectly correlated

then the game tree reduces to a single stage and backwards induction is properly applied

to that single stage. However, problems arise when as is common, it is argued that

backwards induction must be applied to both stages even when the x and y variables

are perfectly correlated. This argument presupposes that backwards induction overrides

isomorphic constraints and the altered game geometry.

To see how this is done, let us imagine trying to apply the backwards induction

algorithm to an isomorphically constrained perfectly correlated space PB|(q,r)=(0,1) with

ρ = 1. The above evaluations then try to combine limit processes, gradient evaluations,
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and isomorphic constraints with global scope. That is:

lim
(q,r)→(0,1)

∂⟨ΠY ⟩|p=0

∂q

∣

∣

∣

∣

∣

(q,r)=(0,1)

= ?

lim
(q,r)→(0,1)

∂⟨ΠY ⟩|p=1

∂r

∣

∣

∣

∣

∣

(q,r)=(0,1)

= ?

∂⟨ΠX⟩
∂p

∣

∣

∣

∣

∣

(q,r)=(0,1)

∣

∣

∣

∣

∣

∣

(q,r)=(1,0)

= ?. (4.23)

Mathematically and logically, these statements make little sense. An isomorphic con-

straint of global scope sets the values (q, r) = (0, 1) and then backwards induction seeks

to treat these parameters as variables and evaluate a gradient with respect to these vari-

ables. In actuality, these variables no longer exist in this constrained probability space as

there is no second stage in this probability space. The altered probability space geometry

has altered the game try to include only one stage and one probability parameter.

Let us try a slightly more general treatment. Consider briefly the optimization by

player Z ∈ {X, Y } of an example two stage game where x is known before y is decided

giving

⟨ΠZ⟩ =
1
∑

x,y=0

PX(x)P Y (y|x)ΠZ(x, y). (4.24)

The conventional analysis begins by drawing a single game tree capturing every possible

move that might be made along every history, and assigning independent distributions

to each decision point which can then be optimized via backwards induction. Then,

backwards induction begins by optimizing the last stage first via, for instance, evaluations

like

∂⟨ΠZ⟩
∂P Y (y′|x′)

=
∂

∂P Y (y′|x′)

1
∑

x,y=0

PX(x)P Y (y|x)ΠZ(x, y)

= PX(x′)
∂

∂P Y (y′|x′)

[(

1− P Y (y′|x′)
)

ΠZ(x′, 1− y′) + P Y (y′|x′)ΠZ(x′, y′)
]

= PX(x′)
(

ΠZ(x′, y′)− ΠZ(x′, 1− y′)
)

. (4.25)

Implicit in this evaluation, is the assumption that the gradient operator ∂
∂PY (y′|x′)

com-

mutes with the distribution PX(x′) via

∂

∂P Y (y′|x′)
PX(x′) = PX(x′)

∂

∂P Y (y′|x′)
. (4.26)

This is only true under the assumption that the distributions P Y (y|x) and PX(x) are not

functionally dependent. When this is not the case, then obviously, the above commutation

relation cannot be used. Speaking figuratively, for longer N stage games, backwards

induction relies on similar independence assumptions allowing gradients with respect to

ith stage distributions Pi to commute with all earlier stage distributions, giving (loosely)

max
P1,P2,...,PN−1,PN

⟨ΠZ⟩ = max
P1

[

∑

. . .max
P2

[

∑

. . .max
PN−1

[

∑

. . .max
PN

[

∑

. . .
]

]]]

(4.27)
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Again, commuting latter stage gradient operators through all preceding earlier stage

distributions is only valid under the assumption that these distributions are not func-

tionally dependent. These assumptions are not necessarily true, and we suggest that

rational players will consider the case where they are not warranted.

In our approach in contrast, we hold that the functionals ⟨ΠZ⟩ cannot be represented
by a single game tree of finite size, and that they possess neither dimensionality nor

continuity properties. While they are a mapping into a range of reals, their domain

sets are essentially unspecified. In fact, and crudely put, if S is the set of all possible

feasible spaces for this game, say S = {IR1, IR2, . . .}, then the functional is a mapping

from the set of all possible feasible spaces to the reals, ⟨ΠZ⟩ : S → IR. Just as a

topological space possesses dimensionality but lacks any measure of distance and only

gains such measures with the adoption of a metric, these expected payoff functionals do

not even possess dimensionality prior to the adoption of a suitable probability measure

space. In fact, the mapping ⟨ΠZ⟩ must be defined over every possible probability measure

space. For all these possible space, within any adopted probability measure space, ⟨ΠZ⟩
becomes a function of fixed dimensionality and specified continuity and differentiability

properties which can be described by a suitable decision tree. Such a tree then supports

the backwards induction and subgame decomposition operations which can then be used

to optimize pathways through this particular tree, one instance among many of the trees

definable using the entire mapping ⟨ΠZ⟩.
The adoption of a probability measure space inducing correlations between any game

variables alters the structure of the decision tree to create an irreducible whole entity

which must be optimized as a single unit. Backwards induction and subgame decompo-

sitions cannot be improperly used to break these indivisible units as any such attempt

is simply mathematically invalid. This has profound implications canvassed later for the

evolution of hierarchical complexity.

When player Y chooses an alternate probability space such as PY
++ in which all of the

second stage choices are perfectly correlated with their opponent’s previous move, then

they possess no free parameters and so have nothing to vary to optimize their payoff.

This restriction of their ability to vary their second stage choice has been implicitly

considered to be a reason for not using the correlated probability space PY
++ in favour

of the conventional space PY
00. This latter probability space allows players to consider

all possibilities in the second stage, thus justifying the use of this probability space.

However, this is a misleading argument. No reasons have ever been provided for why a

player should restrict their analysis to a single space. Lifting this restriction requires them

in turn to choose which space offers them the greatest range of choice. Rather, the player

can perform their optimization by first choosing among the infinite number of available

probability spaces, and then optimizing over every parameter defined within each space.

In some spaces they consider, they will possess a certain number of parameters to vary,

and in other spaces they will possess a different number of parameters to vary. Certainly,

some spaces will offer no free parameters to vary, but nothing is lost by having a player
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consider this as one option among many. It is the conventional analysis which restricts

player searches by forcing them to consider only a single type of probability space.

It has also been argued that, even when player Y intends to adopt correlated second

stage play, their observation that player X chooses x = 0 in the first stage will require

player Y to rethink their desire to adopt a correlated strategy so they should then seek

to optimize their outcomes given that the choice x = 0 has been made. In effect, this ar-

gument presupposes that player Y has adopted the conventional probability space which

allows this player to have a further choice in the second stage. As emphasized above,

one of the firmest results of probability measure theory is that joint probability distri-

butions are separable if and only if all the variables are independent. That is, different

variables can be separately optimized if and only if they are are described by separable

joint probability distributions and this occurs if and only if they are independent. This

means that it is only when variables are independent that a subgame decomposition be

performed allowing players to separately optimize decisions in each subgame. It is a non-

sense to argue that non-independent and non-separable variables are actually separable

and hence separately optimized. When player Y has made a prior choice to adopt the

probability space PY
++, then they have freely chosen not to have a choice in the second

stage, and they will compare the payoffs stemming from this choice with those available

from alternate choices.

To reiterate previous points, a coin consists of many components possessing correlated

dynamics, and these correlations permit the construction of a coin decision tree with only

two branches indicating Heads or Tails. A pseudo-random number generator consists of

millions of components all possessing correlated dynamics so again, the total decision

tree might possess only two branches. Correlation between variables reduces the size of

decision trees, and alters the dimensionality of expected payoff functional spaces.

4.3 Optimizing over multiple joint probability spaces

We now have multiple possible joint probability spaces. In these alternate spaces, the

expected payoff functions possess exactly the same value when x and y are perfectly

correlated but possess entirely different gradients at this point. Variational optimization

principles insist that every possible functional form and gradient must be taken into

account in any complete optimization. These principles permit players to infinitely vary

the “immutable” functional assignments defining any space (i.e. y = δx0u + δx1v and

y = x above), providing access to a vastly larger decision space than usually analyzed in

game theory. It is not a question of which space is best, rather, it is a question of either

restricting the analysis to a single space or allowing players to analyze all possible spaces.

Game theory adopts expected payoff “functions” allowing examination of every pos-

sible combination of payoff values and assumes that this is sufficient for optimization.

However, while these functions can duplicate every possible payoff value, they cannot

duplicate every possible functional dependency or gradient—and optimization depends
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on these dependencies and gradients.

More generally, in our approach, rational players are able to perform an entirely

unconstrained search of every possible joint probability space to optimize their payoffs

via

X: max
PX

⟨ΠX⟩ =
∫

ΩX×ΩY
dPXY

xy ΠX(x, y)

(4.28)

Y : max
PY

⟨ΠY ⟩ =
∫

ΩX×ΩY
dPXY

xy ΠY (x, y).

Here, each player’s optimization is over every possible probability space that might be

applied to their problem. Game analysis then requires players to jointly define a prod-

uct probability space PX × PY where player X is responsible for PX and player Y is

responsible for PY . As noted above, each player Z can use any of an infinite number of

alternate probability spaces which we here enumerate PZ
i for i = 0, 1, 2, . . .. (The num-

ber of probability spaces is non-denumerable.) Because each player must optimize their

choices given the choices made by their opponent, then both players must analyze every

possible joint probability space PX
i × PY

j for i, j = 0, 1, 2, . . .. Each player is then faced

with the task of sequentially analyzing what happens given the adoption of every possi-

ble joint probability space, and then optimizing their own payoffs within each adopted

probability space, and then comparing the payoffs attainable from each joint probability

space to determine which space both they and their opponents will adopt.

In contrast, conventional analysis mandates that players must necessarily adopt a

single probability space (whether mixed or behavioural) leading to what is effectively a

heavily constrained optimization

X: max
PX

⟨ΠX⟩ =
∫

ΩX×ΩY
dPXY

xy ΠX(x, y)

Y : max
PY

⟨ΠY ⟩ =
∫

ΩX×ΩY
dPXY

xy ΠY (x, y)

subject to PX = PX
0 , PY = PY

0 . (4.29)

That is, of all the possible joint probability spaces that might be adopted, game theory

restricts its rational players to a single mandated choice. And this without ever proving

that this single choice is somehow optimal.

We argue that optimization theory and probability theory are entirely consistent

with the fact that a known correlation state between random variables will influence the

dimensionality and gradients of an optimization problem. In view of this, these fields offer

no reasons whatsoever for the necessity of the constraint shown in the last line above.

4.3.1 Rational game play: A story

Let us make the mathematics more concrete by telling a story in an attempt to assist

conceptualization of the new methods presented here.
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Figure 4.4: The conventional play of the two stage game features a closed room containing

players X and Y , their respective randomizing urns used to implement mixed strategies,

and a large metallic apparatus featuring a ball, and different channels and cups to act

as a decision recording device. Player X implements their “p” randomization by draw

either a white or black marble from their urn, and correspondingly drops the ball down

the x = 0 or x = 1 channel. Player Y picks up the ball, selects the relevant urn imple-

menting either their “q” or “r” randomizations, draws either a white or black marble,

and correspondingly drops the ball down the appropriate y = 0 or y = 1 channel into the

waiting cups. Payoffs are assigned as shown.

Suppose that you are the first player, player X, in the example two stage game. As

shown in Fig. 4.4, you are in a room with your opponent, player Y , and together, you

are looking at the game playing equipment. As player X, you play first and have to drop

a large ball down one of two channels marked x = 0 or x = 1. To assist your decision,

you have an urn containing a prepared number of white or black marbles allowing you

to implement a randomized mixed strategy by selecting x = 0 with probability 1− p or

x = 1 with probability p. You have chosen p so as to maximize your payoff. You are also

aware that after your ball has landed in the appropriate cup, your opponent, player Y ,

will choose one of their two randomizing urns which each contain appropriate numbers of

white and black marbles. The first urn allows player Y to choose y = 0 with probability

1 − q and y = 1 with probability q, while the second urn allows them to choose y = 0

with probability 1 − r and y = 1 with probability r. Player Y has chosen q and r so

as to maximize their payoff. After determining their choice of y = 0 or y = 1, player Y

will drop the ball down the appropriate channel so that it lands in the waiting cup to

provide a permanent record of each players decisions. The players then divide a payoff

accordingly as shown in Fig. 4.4. As shown in previous sections, a conventional analysis
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results in the play combinations (x, y) = (0, 1) and respective payoffs of
(

⟨ΠX⟩, ⟨ΠY ⟩
)

=

(2, 2). The above situation captures the conventionally mandated procedure for payoff

maximization in this particular strategic interaction. It is presumed that the specified

use of the respective urns by each player along with the conventional analysis specifying

the values of p, q and r suffices to optimize player payoffs. What could be simpler?

Notice however that game theory has never provided a proof that the above proce-

dure is complete, necessary, or sufficient. In particular, von Neumann and Morgenstern

explicitly used a method of “indirect proof” subject to later falsification and so did not

prove the completeness, the necessity, or the sufficiency of their methods. Nash simply

adopted a mixed strategy probability space as the simplest way to provide an existence

proof for what are now called Nash equilibria. Kuhn established only that mixed and

behavioral probability spaces were equivalent in games of perfect recall, but did not es-

tablish that they were complete, necessary, or sufficient. In fact, no-one has ever provided

a mathematical proof of the completeness, the necessity, or the sufficiency of preferring

one probability space over all others. Absent such proof, we suggest that rational players

will explore every feasible probability space describing any given game. In the absence

of any confirmed decision procedure mandating the use of one probability space over

all others, we suppose that players have the capacity to examine alternate probability

spaces, and choose between them so as to maximize their payoffs.

��

�� �

�

�����
�
�����

�
���������������������������������	���������������������

����������������	���������������������������

������� �

��	����

Figure 4.5: The correlated play of the two stage game features players X and Y and an

altered decision recording apparatus. Player X implements their “p” randomization as

usual and drops the ball down either the x = 0 or x = 1 channel. Player Y has used their

toolkit to alter the device so they no longer have any decision to make as the ball simply

continues falling down an extended channel to the waiting cups. Payoffs are assigned as

shown.
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Accordingly, suppose now that player Y adopts a different procedure to that conven-

tionally mandated. Suppose in fact that player Y walks into the game room equipped

with a toolkit containing hacksaws, hammers, and welding equipment, and suppose that

before the game commences they set to work to reconfigure the decision recording de-

vice. As player X, you gaze in appalled fascination as Y hammers, cuts, and welds away

until the result is as shown in Fig. 4.5. As the time to start the game approaches, you

have a decision to make. Your eyes provide you with evidence that the decision making

device has been altered. Your previous analysis was based on the conventionally man-

dated device structure, but its alteration makes the previous analysis irrelevant and in

all likelihood, wrong. As player X, you might seek to remonstrate with your opponent

by saying that they cannot alter the definition of the game and that it is mandatory

that they use the conventionally mandated space. In response, player Y simply responds

that they have not altered the game structure in any way, but have merely adopted a

probability space which correlates their decision to the previous choice by X. Every

single move of the game is still present but some have zero probability assigned. This is

always possible. Conventional analysis allows such assignments of zero probability but

then insists that these assignments can be altered by gradient optimization operations.

In contrast, Y asserts that they have assigned zero probabilities to certain moves which

cannot be altered by gradient optimization operations as is specifically allowed by prob-

ability measure theory. Further, Y knows of no proof proving the conventional mandate,

and as they are solely motivated by a desire to maximize their payoff, they will take any

steps appropriate to that goal. Your decision is whether to close your eyes to the altered

nature of the decision making device and continue to argue that any such alteration is

irrational and non-payoff maximizing, or to take the evidence of your eyes into account

and to alter your analysis. What decision will you make? Self-evidently, as player X,

after the game has commenced, you will now choose to drop your ball down the x = 1

channel as that maximizes your payoff. Any other choice will minimize your payoff, and

as a payoff maximizing rational player, you will not make such a choice. The result, as

shown in previous sections, is that a correlated analysis results in the play combinations

(x, y) = (1, 1) and respective payoffs of
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (4, 3). This provides an increased

payoff for player Y justifying their rebuilding of the decision recording device.

But that doesn’t end the story as it is entirely unreasonable that player X perfectly

knows how Y is making their decisions. We now suppose that you, as player X, have

watched your opponent walk into the game room with their toolkit and a large rectan-

gular metal shield. Player Y erects their shield to entirely hide their part of the decision

making device from your gaze, and behind this shield, they proceed to saw, hammer and

weld away. You, as player X, are however entirely unsure what Y is doing behind their

shield. Perhaps Y is reconstructing the original channel arrangements of the convention-

ally mandated device of Fig. 4.4. Perhaps on the other hand, player Y is leaving the

channels exactly as configured in the correlated decision device of Fig. 4.5 and the weld-

ing is required to reconstruct the required “q” and “r” urns. The resulting situation, as
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Figure 4.6: The play of the two stage game when player X is unsure how player Y has

reconstructed the decision recording apparatus. Player X implements their “p” random-

ization as usual and drops the ball down either the x = 0 or x = 1 channel. Player Y

might be using the conventional apparatus of Fig. 4.4 or the correlated apparatus of Fig.

4.5. Payoffs are assigned as shown.

perceived by yourself, is as shown in Fig. 4.6. Here, both you and player Y are depicted

as being certain about how player X will optimize their payoff. Namely, X will use an

urn to implement some mixed strategy “p” to optimize their payoff. However, you, as

player X have no information about how player Y will make their decision. Again, you

have a decision to make. A conventional analysis mandates that player Y should use a

conventionally configured decision device and you should play accordingly. In this case,

Y will gain a payoff of ⟨ΠY ⟩ = 2. However, Y could alternatively choose to adopt a

correlated probability space in which case they will gain a payoff of ⟨ΠY ⟩ = 3. Being

rational, Y can be expected to seek to maximize their expected payoff. What will you

do? Will you assume that Y has adopted a conventionally mandated space and drop

the ball down the x = 0 channel in the hope that it stops half way requiring Y to walk

over to the device to place it in the y = 1 channel. What a disappointment then if the

ball drops all the way down both the x = 0 and y = 0 channels into the leftmost cup.

Or alternatively, will you assume that Y is indeed a payoff maximizer able to alter their

choice of decision device leading to the conclusion that Y will have chosen to reconfigure

the channels to implement correlated play. In this case, you should drop the ball into the

x = 1 channel in the hope that the ball will drop all the way through both the x = 1 and

y = 1 channels into the rightmost cup. What a disappointment then if you see the ball

stop half way requiring Y to walk over to place the ball into the y = 0 channel. What is

your choice?
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We suggest that if you know (by observing) that Y has perfectly correlated their choice

of y to your choice of x, then you must take this information into account. Similarly, even

without direct observation, if you can deduce that Y will perfectly correlate their choice

of y to your choice of x, then likewise, you must take this information into account.
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Figure 4.7: The play of the two stage game when both player X and player Y are unsure

about which probability spaces and randomization devices have been adopted by their op-

ponents. In this case, each player perfectly shields their decision making apparatus from

their opponent (shaded devices), and so might be adopting the conventionally mandated

analysis or any of an infinite number of alternate possible probability spaces. Rational

players will analyze all these possibilities in order to maximize their payoffs. Payoffs are

assigned as shown.

In reality of course, the situation in a real strategic exchange is more akin to that

shown in Fig. 4.7. Here, each player knows precisely the rules of the game including

all possible moves in their specified sequences. What they don’t know is the choice of

probability space made by their opponent. This ignorance is represented by the coloured

shields shown in the figure. In fact, prior to their completing their own analysis, they

do not know which probability space they will adopt, or whether they will choose a

single space or randomize over a number of spaces. This is in sharp contrast to the

presumption of conventional game theory which mandates that each player must use a

particular probability space (or one of their equivalents). As noted above, there has

never been a proof of the completeness, necessity or sufficiency of this mandated type of

space. In view of this, we suggest that rational players will simply optimize their choice

of probability space to maximize their expected payoff. In Fig. 4.7, you, as player X,

must deduce which space player Y will use to maximize their payoff. In the situation

depicted here, Y has not physically reconstructed the decision recording device before
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your eyes, but they have likely chosen to adopt a particular probability space and physical

randomization device. Their roulette might involve their preprogramming one or more

random number generators, or might involve their providing instructions to an agent who

will act autonomously once the game has begun allowing Y to leave the room and take no

further part in the game. As player X, you have absolutely no information whatsoever

about which roulette will be adopted by Y . The only fact you are sure of is that Y will

act so as to maximize their payoff.

The question is, as always, is it possible for Y to vary their choice of probability

space, of their roulette, or is this impossible? If it is impossible, provide a proof of

this conjecture, and then optimize accordingly. If it is possible, determine your optimal

choices taking into account your opponent’s optimal choices.

4.4 Discussion

We propose that rational players will optimize their expected payoff functionals (not func-

tions) in strategic situations using generalized calculus of variations approaches. These

generalized variational functional optimization methods examine every possible value of

a functional at every point as well as every possible gradient through that point. A ratio-

nal player, seeking to perform a complete optimization, must examine every one of these

possibilities against all of the equivalent range of possibilities of their opponents. These

generalized methods give access to an infinity of non-independent and functionally con-

strained probability measure spaces defining non-continuous expected payoff functionals

defined over discontinuous domains possessing, perhaps, a gradient nowhere.

The resulting generalized optimization approach corresponds to optimizing an infi-

nite number of alternate game decision trees exhibiting altered optimal pathways and

equilibria.

In this work, we follow the same methodology used by von Neumann and Morgenstern

[1]. These authors initially focussed on single players, typified by Robinson Crusoe, who

tried to optimize their payoff by choosing their actual moves or pure strategies in a

consumption game. They then showed that this optimization method (focussed solely on

pure strategies) did not generalize to all multiple player games leading to the introduction

of probability distributions over pure strategies, defining mixed strategies. That is, it

was established by these and later authors that while certain games (single player or

multiple-player-perfect-information games) had solutions in pure strategies, this was not

always true of more general games, and as a mixed strategy analysis entirely subsumes a

pure strategy analysis, it was always advisable for a rational player to perform a complete

mixed strategy analysis for general games. Here, we suggest similar results. It seems to be

sufficient to employ conventional analysis for single-player or multiple-player-single-stage

games. However, we suggest that the complete analysis of multiple-player-multiple-stage

games requires more than a conventional analysis. Again, as the conventional analysis is

entirely subsumed within our augmented optimization approach, it seems advisable for
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rational players to perform an augmented analysis in general.

In earlier chapters, we have alluded to the possibility that our expanded optimization

analysis would produce results which differ from standard results in game theory. This

does not mean that game theory is wrong. Just as a theorem valid in a flat geometry—the

interior angles of all triangles sum to 180 degrees—can be invalid in a curved geometry,

then so can results validly derived in game theory be invalid in our extended analysis.

Game theory is incomplete, rather than wrong.

For instance, Kuhn established that games of perfect recall could always be decom-

posed into discreet subgames, and that the equilibrium pathway of the entire game con-

sisted of concatenated portions of the equilibrium pathways of all the relevant subgames

[4]. Crucial to the proof of this result, is the separability of the joint probability distribu-

tions of the entire game, and such separability exists only for the independent behavioural

probability spaces developed by Kuhn. In our approach, behavioural strategies are not

necessarily independent so their governing probability spaces are not necessarily sepa-

rable. A theorem derived assuming that probability distributions is separable, is not

applicable when distributions are inseparable.

Similarly, in the same paper, Kuhn established that games of perfect information

always have pure strategy equilibria [4]. In our approach, even in perfect information

games, players are uncertain about which probability space might be adopted by their

opponents, and this allows equilibria to be probabilistic. Again, there is no contradiction

with existing results, as theorems derived assuming separable probability distributions

are inapplicable when distributions are inseparable.

All of the results and theorems of game theory are derived under certain assumptions

about the joint probability spaces governing game analysis. When players can adopt al-

ternate probability spaces invalidating these assumptions, then naturally, they can derive

results which differ from those of game theory. Such differences reflect limitations in the

optimization analysis of game theory, rather than errors in our more general optimization

approach.

Finally, we again remind ourselves that conventional analysis routinely predicts out-

comes at odds with observation. As we later show, the extended analysis that we argue

must be available to players of unbounded rationality, will produce outcomes entirely

consistent with observation.

Obviously, there are immediate applications of our new methods to sequential games

such as the chain store paradox, the trust game, the ultimatum game, the public goods

game, the centipede game, and the iterated prisoner’s dilemma. We turn to this now.
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Chapter 5

Correlated Equilibria

5.1 Introduction

We are introducing isomorphism constraints into the strategy spaces of game theory.

These constraints alter strategy space geometries to allow the location of new equilibria.

It is useful to contrast out approach with Aumann’s “correlated equilibria”.

5.2 Correlated equilibria

In 1974, Aumann modeled a nominally competitive game in which players coopt pub-

lic roulettes and share information to improve their payoffs. This possibility arises as

the Nash equilibria for non-communicating players has them locating the best payoff

regardless of their opponent’s choices so correlated changes of strategy are impossible.

Given the ability to communicate however, correlated strategies become possible allow-

ing novel equilibria. Following Aumann’s terminology, these are now termed “correlated

equilibria”.

Our work here differs from Aumann’s approach. We allow players to alter their cho-

sen private randomization devices but do not permit communication between players.

We show that even without additional communication channels, if players use differ-

ent physical randomization devices with different numbers of independent coordinates

and functionally constrained coordinates, then these possible probability spaces must be

taken into account. To clarify the difference and similarities between our entirely non-

communicating analysis and Aumann’s correlated equilibria, we here go through one of

the examples used by Aumman in detail.

To model correlated equilibria, Aumman introduced probability measures into his

definitions of needed

equipment for randomizing strategies, and for defining utilities and subjective

probability for the players. Thus to the description of the game we append

the following:

71
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(5) A set Ω (the states of the world), together with a σ-field B of subsets of

Ω (the events);

(6) For each player i, a sub-σ-field Ii of B (the events in Ii are those regarding

which i is informed).

(7) For each player i, a relation ≽i (the preference order of i) on the space

of lotteries on the outcome space X, where a lottery on X is a B-measurable

function from Ω to X [23].

This welter of definitions was made understandable by use of a series of worked examples,

and we here follow the same route by examining in detail Aumann’s example (2.7).
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Figure 5.1: The game tree for the two player non-zero-sum game considered by Aumann

in his example (2.7) [23]. Here, two players X and Y simultaneously and independently

choose one of two options x, y ∈ {0, 1} to gain the payoff combinations shown.

In Aumman’s example (2.7), the two-person payoff matrix is

Py

Px

(ΠX ,ΠY ) 0 1

0 (6, 6) (2, 7)

1 (7, 2) (0, 0)

. (5.1)

In terms of the behavioural probability space defined in Fig. 5.1, the expected payoff

optimization problems are

X : max
p

⟨ΠX⟩ = 6 + p− 4q − 3pq

Y : max
qr

⟨ΠY ⟩ = 6− 4p+ q − 3pq. (5.2)

These expected payoffs are continuous multivariate functions dependent only on the freely

varying parameters (p, q) so the relevant gradient operator used by both players to analyze

this particular probability space is

∇ =

[

∂

∂p
,
∂

∂q

]

. (5.3)
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Optimization then proceeds as usual via

∂⟨ΠX⟩
∂p

= 1− 3q

∂⟨ΠY ⟩
∂q

= 1− 3p (5.4)

so equilibria appear at the intersections shown in Fig. 5.2. As noted by Aumann, there are

three Nash equilibria for this game at choices (p, q) = (0, 1), (1, 0), and (1
3
, 1
3
) generating

respective payoffs (⟨ΠX⟩, ⟨ΠY ⟩) = (2, 7), (7, 2), and (14
3
, 14

3
).
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Figure 5.2: The intersection of the gradient conditions specifying Nash equilibria for the

two player non-zero-sum game considered by Aumann in his example (2.7) [23]. The

three Nash equilibria points are circled.

Aumann now supposes that the players share a public 3-sided fair dice allowing events

“A”, “B”, and “C” to be selected with probability 1
3
, and that X is informed whether or

not event “A” appeared, while Y is told whether or not “C” appeared. Aumann then asks,

given this altered environment with additional communications, how will players now

optimize their expected payoffs. As a first step, the players must alter their probability

spaces to reflect the changed physical randomization devices being used.

One possibility is depicted Fig. 5.3. Here, event E ∈ {A,B,C} occurs each with

probability of 1/3 and conditions two additional variables u, v ∈ {0, 1}. Player X knows

the value of the variable u while player Y knows the value of v. The variable u is set to

u = 1 when E = A and u = 0 otherwise, while v = 1 when E = C and v = 0 otherwise.

The players can condition their subsequent choices on the u and v variables.

The altered expected payoff functions are then

X : max
PX

⟨ΠX⟩ =
∑

Euv,x,y

P (Euv, x, y)ΠX(x, y)
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Figure 5.3: The modified game tree corresponding to the players sharing a three-sided

dice selecting an event E = A, B, or C with equal probability 1
3
with player X advised

whether event A occurs or not (specified by the indicator variable u) while player Y is

advised whether event C occurs or not (indicated by the indicator variable v). The players

can then appropriately condition their decisions on their available information sets, as

indicated. The respective information sets are not adequately represented on this figure.

=
∑

Euv,x,y

P (Euv)PX(x|Euv)P Y (y|Euv)ΠX(x, y)

=
1

3
[18 + 2p0 + p1 − 8q0 − 4q1 − 3 [p1q0 + p0q0 + p0q1]]

Y : max
PY

⟨ΠY ⟩ =
∑

Euv,x,y

P (Euv, x, y)ΠY (x, y)

=
∑

Euv,x,y

P (Euv)PX(x|Euv)P Y (y|Euv)ΠY (x, y)

=
1

3
[18− 8p0 − 4p1 + 2q0 + q1 − 3 [p1q0 + p0q0 + p0q1]] . (5.5)

written in terms of the joint probability distribution P (Euv, x, y) spanning the probability

space, and where we recognize that the payoff functions ΠZ(x, y) depend only on the

choices x and y, and we also take account of the various conditioning possibilities of the

variables.

Consequently, in this expanded probability space the relevant gradient operator is

∇ =

(

∂

∂p0
,
∂

∂p1
,
∂

∂q0
,
∂

∂q1

)

(5.6)

in terms of which the players evaluate

∂⟨ΠX⟩
∂p0

=
1

3
(2− 3q0 − 3q1)

∂⟨ΠX⟩
∂p1

=
1

3
(1− 3q0)
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∂⟨ΠY ⟩
∂q0

=
1

3
(2− 3p0 − 3p1)

∂⟨ΠY ⟩
∂q1

=
1

3
(1− 3p0). (5.7)

The second and fourth lines here specify that

p1 =







































1 if q0 <
1
3

arbitrary if q0 =
1
3

0 if q0 >
1
3

q1 =







































1 if p0 <
1
3

arbitrary if p0 =
1
3

0 if p0 >
1
3

, (5.8)

which in turn allows calculating the flow diagram for the remaining gradients in terms

of the variables p0 and q0 as shown in Fig. 5.4. This locates two unstable stationary

points at (p0, q0) = (1
3
, 1
3
) and (2

3
, 2
3
) and three stable stationary points defining correlated

equilibria at (p0, q0) = (0, 0), (0, 1), and (1, 0). The respective payoffs for each player at

these correlated equilibria points are (⟨ΠX⟩, ⟨ΠY ⟩) = (5, 5), (2, 7), and (7, 2). There is

then an additional correlated equilibria giving an increased expected payoff for each player

motivating them to use the additional available information to correlate their strategy

choices to their opponent’s moves.

The location of a correlated equilibrium point with improved payoffs to both play-

ers, (⟨ΠX⟩, ⟨ΠY ⟩) = (5, 5), lying strictly outside the convex hull of the Nash equilibrium

payoffs concludes Aumann’s example. To reiterate, every change of the physical random-

ization device adopted by players, whether secret or public, must be modelled by altered

probability spaces. Aumann introduced these tools to model correlated equilibria gener-

ated by players sharing a public randomization device and shared communication. This

communication means that novel correlated equilibria can be located even in two-player

single stage games.

In contrast, our work with isomorphic constraints based on correlations eschews any

additional communication between the players. Rather, players can adopt different secret

randomization devices modelled by altered probability spaces possessing different dimen-

sionality, continuity properties, differentiability conditions, and gradients, all of which

allow the location of novel equilibria. The continued absence of communication between

the players means that, as far as we can tell, novel constrained equilibria appear only in

multiple-player-multiple-stage games.
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Figure 5.4: The flow diagram showing the direction of the gradient of the respective ex-

pected payoffs [∂⟨Π
X⟩

∂p0
, ∂⟨Π

Y ⟩
∂q0

] identifying two unstable stationary points at (p0, q0) = (1
3
, 1
3
)

and (2
3
, 2
3
) (open circles), as well as three stable stationary points locating correlated equi-

libria at (p0, q0) = (0, 0), (0, 1), and (1, 0) (closed disks). The respective payoffs at the

correlated equilibria are (⟨ΠX⟩, ⟨ΠY ⟩) = (5, 5), (2, 7), and (7, 2).



Chapter 6

The chain store paradox

6.1 Introduction

The chain store paradox examines predatory pricing to maintain monopoly profits. It

gains its “paradoxical” moniker as (so it has been argued [24]) a substantial proportion of

the economics profession finds itself disagreeing with the clear predictions of game theory

in this game. That is, many economists would hold that it is irrational for any firm

to engage in predatory pricing to drive rivals out of business and so gain a monopolist

position as predation is costly to the predator while potential new entrants well under-

stand that any price cutting is temporary. It is also generally held that any attempt to

extract monopoly pricing benefits in some industry would quickly attract new entrants

so any monopoly gains will be short lived. An extensive literature has demonstrated the

implausibility of these claims, with Ref. [24] examining predatory pricing in the shipping

industry, IBM pricing strategies against competitors, and coffee price wars, for instance.

Selton first proposed the chain store paradox as a complement to the finite iterated

prisoner’s dilemma [25] in order to highlight inadequacies in game theory. These lacks

would then justify the necessity of bounding rationality in game theory. Terming the

conventional game theoretic analysis and predicted outcome as the “induction” argument,

and contrasting this with an alternate “deterrence” theory, Selton noted

“. . . only the induction theory is game theoretically correct. Logically, the

induction argument cannot be restricted to the last periods of the game.

There is no way to avoid the conclusion that it applies to all periods of the

game.

Nevertheless the deterrence theory is much more convincing. If I had to play

the game in the role of [the monopolist], I would follow the deterrence theory.

I would be very surprised if it failed to work. From my discussions with friends

and colleagues, I get the impression that most people share this inclination.

In fact, up to now I met nobody who said that he would behave according

to the induction theory. My experience suggests that mathematically trained

77
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persons recognize the logical validity of the induction argument, but they

refuse to accept it as a guide to practical behavior.

It seems safe to conjecture that even in a situation where all players know that

all players understand the induction argument very well, [the monopolist] will

adopt a deterrence policy and the other players will expect him to do so.

The fact that the logical inescapability of the induction theory fails to destroy

the plausibility of the deterrence theory is a serious phenomenon which merits

the name of a paradox. We call it the ‘chain store paradox’” [25].

Efforts to resolve the paradox include recognizing that players might not be sure that

their opponents are rational payoff maximizers due to the impact of mistakes or trem-

bles, rationality bounds, incomplete information, or altered definitions of rationality, all

of which necessitate use of subjective probabilities [26]. In addition, introducing asym-

metric information whereby entrants are uncertain whether monopolists are governed by

behavioural rules which eliminate common knowledge of rationality and provide a ratio-

nale for entrants to base their expectations of the monopolist’s future behaviour on its

past actions [24], while the use of imperfect information or uncertainty about monopo-

list payoffs allows the replication of observed behaviours [27]. Other approaches include

dropping common knowledge of rationality [28], or by introducing incomplete and im-

perfect information [29]. For a good review of how this paradoxical game contributes to

economic understanding appears, see [30].

Selton’s construction of the paradox hinges on the use of “deterrence” theory in a mul-

tiple stage game (involving repeated choices by the monopolist), whereby the monopolist

can adopt a non-rational strategy in early stages of the game to build a reputation for

implementing that strategy which induces their opponent’s to alter their own choices in

latter stages. All subsequent treatments have followed Selton in modelling such multiple

stage games and have then introduced some mechanism to justify “reputational” effects.

In contrast, in our treatment here, by introducing isomorphic constraints into our

strategy spaces, we can establish that it is rational for the monopolist to adopt the seem-

ingly irrational choice even in a minimal game (where the monopolist makes a single

response to a single entrance) where it is commonly thought that reputation or deter-

rence effects cannot make an appearance. The conventional analysis of this minimal

game is immediately solved via backwards induction dependent on the assumptions of

a common knowledge of rationality (CKR), independent behavioural strategies defining

separable joint probability distributions and allowing subgame decompositions. In our

extended analysis, the adoption of isomorphically constrained joint probability spaces

allows non-independent behavioural strategies described by non-separable joint proba-

bility distributions all of which invalidate subgame decompositions and alter the optima

located via backwards induction. We demonstrate this now.
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Figure 6.1: A minimal chain store game decision tree in an unconstrained behavioural

space where a potential new market entrant X must decide to either stay out of a new

market x = 0 with probability 1−p or enter the market x = 1 with probability p, in which

case the monopolist Y chooses to either acquiesce y = 0 with probability 1 − q or fight

y = 1 with probability q their entry, with the corresponding payoffs shown.

6.2 The chain store paradox

The minimal chain store paradox, conventionally pictured in Fig. 6.1, is defined over two

sequential stages where first, a potential market entrant X must decide to either stay out

of a new market x = 0 or enter that market x = 1 where their opponent, the monopolist

Y , observes this choice. Should X stay out of the market, they neither gain nor lose any

payoff while Y gains monopolist profits so (ΠX ,ΠY ) = (0, 1). In contrast, should X enter

the market, Y must then decide whether to acquiesce to their opponent’s entry y = 0 by

leaving prices unchanged and losing profits so (ΠX ,ΠY ) = (1, 0) or by driving X out of

business by price cutting so payoffs are (ΠX ,ΠY ) = (−1,−1).

6.2.1 Unconstrained behaviour strategy spaces

A standard analysis frames the behaviour strategy spaces of each player as being

PX
B = {x ∈ {0, 1}, {1− p, p}}

PY
B = {y ∈ {0, 1}, {1− q, q}|x = 1} . (6.1)

Here, player Y chooses their value of y only when advised that x = 1. In the joint

behaviour space PX
B × PY

B , the respective optimization problems for the players are

X : max
p

⟨ΠX⟩ = p− 2pq

Y : max
q

⟨ΠY ⟩ = 1− p− pq, (6.2)

so the only independent parameters are p and q. In this joint space, the gradient operator

used by each player in their analysis is

∇ =

[

∂

∂p
,
∂

∂q

]

, (6.3)
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so optimal solutions are obtained via

∂⟨ΠX⟩
∂p

= 1− 2q

∂⟨ΠY ⟩
∂r

= −p. (6.4)

The solutions to these conditions are graphed in Fig. 6.2. Here, the gradient of the

payoff for the monopolist Y is essentially always negative so Y sets q = 0 and so always

acquiesces to new market entrants. In turn, realizing this, X determines that the gradient

of their payoff is always positive and so always sets p = 1 and decides to enter the market.

There is also an equilibria at the point p = 0 and q = 1, termed imperfect as it requires

Y to adopt an irrational strategy (to fight) when X stays out of the market even though

this intention cannot be sustained if indeed it turns out that X enters the market. The

resulting expected payoffs given that players adopt the sole perfect Nash equilibria of

p = 1 and q = 0 are
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (1, 0).

00.20.40.60.81
1.2

0 0.2 0.4 0.6 0.8 1 1.2p

q

Figure 6.2: The intersection of the gradient conditions specifying Nash equilibria for the

minimal chain store paradox. The two Nash equilibria points are circled.

It is useful to again remind ourselves how this conventional analysis without isomor-

phism constraints models perfect correlations between x and y to show that the monop-

olist cannot rationally sustain a perfectly correlated strategy. Suppose that Y seeks to

perfectly correlate y with x via q = 1. As usual, both players are perfectly capable of

evaluating the expected payoff gradients in the appropriate limit to obtain

lim
q→1

∂⟨ΠX⟩
∂p

= lim
q→1

(1− 2q) = −1

lim
q→1

∂⟨ΠY ⟩
∂q

= lim
q→1

−p = −p. (6.5)
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That is, even when the monopolist seeks to perfectly correlate their choice y with x, the

non-zero gradients present at these points ensure they must rationally alter their intention

so as to maximize their payoff. This conclusion is of course valid only when isomorphism

constraints are absent so that behavioural strategy probability distributions are separable

allowing subgame decompositions and optimization via backwards induction. Conversely,

this result does not pertain when isomorphism contraints are in use.

Rational players of unbounded capacity are able to alter their choice of probability

space, and will optimize this choice so as to maximize their expected payoffs. In each

alternate space, the generated joint probability distributions might well involve non-

independent variables so the joint probability distributions are nonseparable preventing

conventional subgame decompositions and ensuring that novel equilibria can be located.

We now complete a partial search of the possible joint probability spaces.

6.2.2 Isomorphically correlated space PX
B × PY

B |q=1

Suppose that player Y employs an isomorphism constraint q = 1 ensuring that variable

y is perfectly correlated to x via y = x and y2 = x2 = xy = x. We denote this space

PY
B |q=1. In this space, the optimization tasks facing the players are

X : max
x

ΠX = −x

Y : ΠY = 1− 2x. (6.6)

It is immediately evident that player X maximizes their payoff in this space by setting

x = 0. The same result arises when expected payoffs are used where we have the relations

⟨y⟩ = ⟨x⟩ and ⟨y2⟩ = ⟨x2⟩ = ⟨xy⟩ = ⟨x⟩ giving

X : max
p

⟨ΠX⟩ = −p

Y : ⟨ΠY ⟩ = 1− 2p. (6.7)

As usual, the decision by Y to adopt the PY
B |q=1 probability space leaves them with no

further decisions to optimize. The relevant gradient operator used by both players to

analyze this particular probability space is

∇ =
∂

∂p
(6.8)

so optimization proceeds as usual via

∂⟨ΠX⟩
∂p

= −1 (6.9)

ensuring that player X chooses not to enter the market via p = 0 giving x = 0. Conse-

quently, this means that Y chooses y = 0 but this setting does not influence payoffs. That

is, when players (X, Y ) adopt the PX
B × PY

B |q=1 joint probability space, they maximize

their payoffs via the combination (x, y) = (0, 0) to garner payoffs
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (0, 1).

In short, the monopolist has deterred any new entry into the market so they retain their

profit. The threat they made to retaliate was not empty and indeed, was sufficient to

modify rational outcomes.
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6.2.3 The functionally anti-correlated space: PX
B × PY

B |q=0

Alternatively, player Y might choose the alternate probability space PY
B |q=0 in which

player Y chooses to functionally anti-correlate their y variable to the previous choice of

x via y = 1 − x and xy = 0. In the joint probability space PX
B × PY

B |q=0, the expected

payoff optimization problem becomes

X : max
x

ΠX = x

Y : ΠY = 1− x. (6.10)

It is immediately evident that player X maximizes their payoff in this space by setting

x = 1. The use of expected payoffs will lead to the same result as we have the relations

⟨y⟩ = 1− ⟨x⟩ and ⟨xy⟩ = 0 giving

X : max
p

⟨ΠX⟩ = p

Y : ⟨ΠY ⟩ = 1− p. (6.11)

Again, the adoption of the PY
B |q=0 probability space leaves Y with no decisions to opti-

mize. As a result, the gradient operator is again

∇ =
∂

∂p
, (6.12)

with optimization giving
∂⟨ΠX

0−⟩
∂p

= 1, (6.13)

ensuring that player X chooses to enter the market via p = 1 with x = 1. Consequently,

this means that Y chooses y = 0 but this setting does not influence payoffs. The result is

that when players (X, Y ) adopt the PX
B ×PY

B |q=0 joint probability space, they maximize

their payoffs via the combination (x, y) = {(1, 0)} to garner payoffs
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (1, 0).

In this space, X is undeterred and enters the market to garner the profits

6.2.4 Expected payoff comparison across multiple probability

spaces

Altogether, the various joint probability spaces which might be adopted by the players

lead to a table of expected payoff outcomes of

(⟨ΠX⟩, ⟨ΠY ⟩) PX
B

PY
B |q=0 (1, 0)

PY
B (1, 0)

PY
B |q=1 (0, 1)

(6.14)
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making it evident that to maximize their payoff, player Y must rationally elect to use

probability space PY
B |q=1 in preference to either PY

B or PY
B |q=0. That is, Y will under-

take to functionally correlate their choice to the previous choice of the potential market

entrant, and thereby deny themselves a choice about the setting of y once the game has

commenced. They do this knowing it to be the payoff maximizing choice of probability

space (among the few examined here). Knowing this, player X will not enter the market

even in this minimal chain store game. Similar results apply for extended games with

multiple markets and potential entrants. The clear prediction of our analysis is that

players of unbounded rationality will always fight entrants in the chain store game even

though this strategy appears to be non-rational when examined using conventional anal-

ysis. That is, in the chain store game, a monopolist does not need to build a reputation

for aggression over initial stages to try to discourage potential entrants in later stages.

A monopolist, of unbounded rationality, is well aware that making a choice to adopt a

probability space in which their choices are functionally assigned to be correlated to their

opponent’s is both payoff maximizing and rational.

It is of course possible to consider a broader range of joint probability spaces for both

players X and Y , but these do not alter the conclusion here that it can be rational for a

monopolist to punish market entrants to resolve the chain store paradox.
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Chapter 7

The trust game

7.1 Introduction

The previous chapter considered what conventional analysis holds to be anomalous ag-

gression, anomalous as it decreases the payoffs of the aggressive player. In this chapter,

we consider trusting behaviour where players transfer their own payoffs to their opponent

in the hope that their opponent will return the favour and transfer an enlarged pool of

funds back to them. Needless to say, the conventional analysis holds that each of these

trusting actions is anomalous. In this chapter, we consider the single shot trust game.

In earlier formulations, the trust game took place over repeated stages [31] allowing

reputation and punishment theories to explain why players can exhibit trust and increase

their payoffs over those predicted by game theory. Such results motivated investigations

of single shot trust games (initially termed the investment game) where the minimal

number of stages ensures that reputation and punishment effects are absent. Despite

this, players continue to exhibit trust to increase their payoff [32]. More recently, players

involved in the trust game have undergone functional magnetic resonance imaging of their

brains during play [33]. Other minimal games eliminating reputation and punishment

effects are the ultimatum and the dictator game among others.

7.2 A simplified trust game

In this section, we simplify the trust game as far as possible without losing any of its

character.

The minimal trust game, as conventionally pictured in Fig. 7.1, is defined over two

sequential stages where first, player X possess a single unit of funds and must choose to

either retain these funds x = 0 generating payoffs of
(

ΠX ,ΠY
)

= (1, 0), or trust their

opponent by investing their funds with Y via x = 1. Should this investment occur,

both players are aware that Y receives three units and must then decide how much

of this total to keep and how much to return to X. That is, Y decides to retain an

amount y ∈ {0, 1, 2, 3} while returning an amount 3 − y to X generating payoffs of
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1-p                                         p
ΠXΠY:              1,0                       3,0                2,1                1,2                0,3 q           r              s          t x:          0                                                         1y:                                   0                   1                2               3

Figure 7.1: A minimal trust game wherein player X possesses funds of one unit and

must choose to either retain these funds x = 0 generating payoffs of
(

ΠX ,ΠY
)

= (1, 0)

or trust their opponent by investing their funds with Y via x = 1. Should this investment

occur, both players are aware that Y receives three units, and must then decide how

much of this total to keep and how much to return to X. That is, Y decides to retain

an amount y ∈ {0, 1, 2, 3} while returning an amount 3 − y to X generating payoffs of
(

ΠX ,ΠY
)

= (3− y, y).

(

ΠX ,ΠY
)

= (3− y, y). Altogether, the payoffs to the players are

ΠX = 1− x+ x(3− y)

ΠY = xy. (7.1)

7.2.1 Unconstrained behaviour strategy spaces

Conventional game analysis commences with the assumption that players X and Y each

adopt a probability space lacking isomorphism constraints. Possible spaces include

PX
B = {x ∈ {0, 1}, {1− p, p}}

PY
B = {y ∈ {0, 1, 2, 3}, {q, r, s, t}|x = 1} . (7.2)

Here, player Y chooses their value of y only when advised that x = 1 and we have the

normalization condition q + r + s + t = 1. In the joint behaviour space PX
B × PY

B , the

respective optimization problems for the players are

X : max
p

⟨ΠX⟩ = 1− p+ p(3q + 2r + s)

Y : max
q,r,s

⟨ΠY ⟩ = p(3− 3q − 2r − s). (7.3)

The only independent variables here are p, q, r and s (subject to normalization con-

straints) so the relevant gradient operator is

∇ =

[

∂

∂p
,
∂

∂q
,
∂

∂r
,
∂

∂s
,

]

. (7.4)
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Consequently, optimal solutions are obtained via

∂⟨ΠX⟩
∂p

= −1 + 3q + 2r + s

∂⟨ΠY ⟩
∂q

= −3p

∂⟨ΠY ⟩
∂r

= −2p

∂⟨ΠY ⟩
∂s

= −p. (7.5)

The last three equations here straightforwardly show that Y maximizes their expected

payoff by setting q = r = s = 0 ensuring t = 1 to give y = 3. In turn, this result

simplifies the optimization condition for X establishing that X maximizes their payoff

by setting p = 0 to give x = 0. The Nash equilibria for this simplified trust game is

then (x, y) = (0, 3) so both X and Y selfishly retain all the funds they can generating

expected payoffs of
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (1, 0).

As noted previously, these payoffs are not optimal as they could be improved by both

players adopting different choices, as is commonly observed in human play.

ΠXΠY:                    1,0                                                                3-y, yx:                       1-p                                                     p
Figure 7.2: The case where players (X, Y ) adopt the PX

B ×PY
B |y=ȳ joint probability space

where player Y functionally correlates their second stage choice to their opponent’s first

stage choice. In this case, a decision by X to invest funds with Y automatically invokes

a partial return of funds.

7.2.2 The isomorphically correlated space PX
B × PY

B |y=ȳ

Rational players are able to alter their choice of probability space, and will optimize

this choice so as to maximize their expected payoffs. Suppose that player Y considers

an alternate probability space denoted PY
B |y=ȳ in which the choice of the variable y is

determined by the preceding choice of x via

y = 3(1− x) + xȳ. (7.6)

This means that when x = 0 we have y = 3 while the choice x = 1 enforces the setting

y = ȳ for ȳ ∈ {0, 1, 2, 3}. This possibility is shown in Fig. 7.2. Noting we still have
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x2 = x and x(1− x) = 0, the payoffs to each player are

X : max
x

ΠX = 1 + x(2− ȳ)

Y : ΠY = xȳ. (7.7)

It is evident that player X will set x = 1 provided ȳ < 2 and x = 0 when ȳ > 2. They

are indifferent when ȳ = 2 and so will play safe with x = 0. The same results appear

when the expected payoffs are maximized via

X : max
p

⟨ΠX⟩ = 1 + 2p− pȳ

Y : ⟨ΠY ⟩ = pȳ. (7.8)

The relevant gradient operator is

∇ =

[

∂

∂p

]

, (7.9)

and optimization proceeds via
∂⟨ΠX⟩
∂p

= (2− ȳ). (7.10)

As a result, X maximizes their payoff by setting p = 1 whenever ȳ < 2, and p = 0

otherwise. Subsequently, because Y has left themselves no free choices during the game,

the outcomes (ȳ, x, y, ⟨ΠX⟩, ⟨ΠY ⟩) are respectively (0, 1, 0, 3, 0), (1, 1, 1, 2, 1), (2, 0, 3, 1, 0),

and (3, 0, 3, 1, 0).

7.2.3 Expected payoff comparison across multiple probability

spaces

The optimal payoffs in the various joint probability spaces considered here which might

be adopted by the players are

(⟨ΠX⟩, ⟨ΠY ⟩) PX
B

PY
B (1, 0)

PY
B |y=0 (3, 0)

PY
B |y=1 (2, 1)

PY
B |y=2 (1, 0)

PY
B |y=3 (1, 0)

. (7.11)

This makes it evident that to maximize their payoff, Y must rationally elect to use the

joint probability space PY
B |y=1 in preference to any alternate probability space considered
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here. That is, player Y will undertake to functionally correlate their second stage decision

to the previous choice of their opponent, and thereby deny themselves a second stage

choice during the game knowing this to be the payoff maximizing choice. Knowing this,

X is confident enough to send all of their funds to Y with the clear expectation of making

a profit. This prediction of our extended analysis is in accord with observation.
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Chapter 8

The ultimatum game

8.1 Introduction

The prevalence and importance of bargaining in society justifies the examination of simple

bargaining models such as the ultimatum game, particularly in view of the discrepancy

between observed player strategies and rational equilibrium solutions [34]. In the ultima-

tum game, two players must divide an item of equal utility to both (generally money).

One player, the proposer, offers a proportional division to the other, the responder, who

must either accept it in which case the division proceeds as suggested, or reject it in which

case neither player receives any money. The assumption that players are rational and

payoff maximizing allows derivation of the subgame perfect equilibrium where in each

stage the proposer offers the smallest positive amount of money possible which the re-

sponder accepts as receiving some amount of money, however small, is always better than

receiving none. This solution is seldom observed in experiments making the ultimatum

game an ideal vehicle for testing the assumptions of game theory.

This role as a game theory test-bed has long been explored [35, 36, 34, 37, 38, 39,

40], and tested by many experiments including examination of the influence of variable

stake sizes [41, 42, 43] and of culture [44, 45]. See experimental surveys in [46, 47,

48]. Experimental results typically demonstrate offers closer to a fair split (50%), and

frequent rejections of offers even substantially above 0% (approximately the predicted

equilibrium offer). Further, more detailed analysis shows that players, while failing to

locate the subgame perfect equilibrium, are performing a sophisticated matching of offers

to acceptance probabilities so as to maximize payoffs [49], while the ability to track a

changing game environment demonstrates that proposers can be induced to vary their

offer ranges and that responders can expand their acceptance sets—in effect offers and

acceptances are contingent on the possibly changing game environment [50].

Proposed modifications to game theory to generate the observed payoff maximiz-

ing behaviour have focused on introducing mechanisms to complement player self-

interest. In the main, these proposed additions either exploit modified utility func-

tions interdependent on both player’s payoffs by taking account of psychological factors

91
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(so player utility increases with player equity or player intentionality say), or by em-

bedding the ultimatum game within a larger, perhaps societal game (taking account of

player reputation and self image for instance). These differing approaches include fairness

[38, 51, 39, 44, 52, 53, 54, 55, 56, 57], though with equity definitions generally self-serving

and modified by player information and payoff asymmetries [58], rivalry [59], reciprocity

[60, 61], envy [62], punishment and revenge [63], competition and cooperation [64], al-

truism and spitefulness [65], and reputation [66]. In these approaches, player strategies

effectively become contingent on both player’s payoffs generating novel equilibria allowing

more equitable play.

Player learning can be modelled via algorithms modifying current strategy selections

(offers and acceptance probabilities) in the light of prior game events [42, 67] which

again makes player strategies contingent on those of their opponents to generate novel

equilibria. See also [68, 69, 70]. Essentially the same algorithm can be implemented at

the population level using evolutionary games theory in which players observe and learn

about previous acceptances and rejections of other players and modify their strategies

accordingly [71], or simply learn which payoff splits maximize payoffs [72]. See also

[73, 74]. Again, these approaches effectively make current strategy choice contingent on

prior game events to generate novel equilibria.
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Figure 8.1: A conventional tree of the two stage ultimatum game. In this decision tree,

X makes an integral offer 1 ≤ x ≤ M with probability px to Y who either accepts the

offer by choosing y = 1 with probability qx or who rejects the offer by setting y = 0 with

probability 1− qx. If the offer is accepted, the player payoffs are (ΠX ,ΠY ) = (M − x, x)

while if the offer is rejected, player payoffs are (ΠX ,ΠY ) = (0, 0).

8.2 The Ultimatum game

As shown in Fig. 8.1, the ultimatum game is defined here over two sequential stages

where first X communicates an integral offer 1 ≤ x ≤ M to Y . Player Y must then
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decide whether to accept the offer by choosing y = 1 in which case Y keeps the offer

amount x and X receives an amount M − x. Alternately, Y rejects the offer by choosing

y = 0 in which case neither player receives any payoff. That is, the payoffs are

ΠX = (M − x)y

ΠY = xy. (8.1)

A quick optimization analysis (achieved by straightforwardly embedding the discrete

payoffs in the corresponding continuous functions) has

∂ΠX

∂x
= −y < 0

∂ΠY

∂y
= x > 0, (8.2)

indicating that player X can increase their payoff by setting x as small as possible, so

x = 1, while player Y increases their payoff by making y as large as possible, so y = 1.

This gives the equilibrium point (x, y) = (1, 1) generating payoffs of (Πx,ΠY ) = (M−1, 1).

However, few human players adopt this equilibrium point.

A more detailed analysis has players seeking to alter their choices of probability spaces

PX and PY so as to maximize their respective payoffs. As previously, players must

determine which joint probability space defining the joint probability distributions will

optimize payoff outcomes.

8.2.1 The isomorphically unconstrained space: PX
B × PY

B

The conventional analysis of the ultimatum game commences with players X and Y each

adopting a probability space lacking isomorphism constraints. Possible spaces include

PX
B = {x ∈ {1, 2, . . . ,M}, {p1, p2, . . . , pM}}

PY
B =

{

y ∈ {0, 1}, {P Y (y = 0|x = i) = (1− qi), P
Y (y = 1|x = i) = qi, ∀i}

}

. (8.3)

Here, we have the normalization condition
∑

i pi = 1.

In the joint behaviour space PX
B × PY

B , the respective optimization problems for the

players are

X : max
p2,...,pM

⟨ΠX⟩ = q1(M − 1)−
M
∑

i=2

pi [q1(M − 1)− qi(M − i)]

Y : max
q1,...,qM

⟨ΠY ⟩ = q1 +
M
∑

i=2

pi(qii− q1). (8.4)

We have here resolved the normalization condition via p1 = 1 −∑M
i=2 pi. Consequently,

the expected payoffs are continuous multivariate functions dependent on the probability

parameters (p2, . . . , pM , q1, . . . , qM), so the relevant gradient operator used by both players

to analyze this particular probability space is

∇ =

[

∂

∂p2
, . . . ,

∂

∂pM
,
∂

∂q1
, . . . ,

∂

∂qM

]

. (8.5)
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Immediately then, the optimization conditions evaluated by each player are

∂⟨ΠX⟩
∂pi

= −[(M − 1)q1 − (M − i)qi], ∀i ∈ [2,M ]

∂⟨ΠY ⟩
∂qi

= ipi ∀i ∈ [1,M ]. (8.6)

The conditions for rates of change of Y ’s payoff with respect to q1, . . . , qM here are all

non-negative ensuring that Y sets q1 = . . . = qM = 1 and thus accepts any offer from X

greater than or equal to x = 1. In turn, these determinations simplify the optimization

conditions forX wherein the rates of change forX’s payoff with respect to all of p2, . . . , pM

are negative so X sets p2 = . . . = pM = 0 and p1 = 1. The resulting choices by each

player are (x, y) = (1, 1) generating expected payoffs of
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (M − 1, 1). This

is the unique Nash equilibrium point for this ultimatum game, given the adoption of the

joint probability space PX
B × PY

B . Unfortunately, it is not an equilibrium adopted by

many human players.

Rational players will be very aware that both they and their opponent can alter

their choice of probability space, and will optimize this choice so as to maximize their

expected payoffs. In these alternate spaces, the random probability variables used in

player optimizations might well be non-independent so joint probability distributions are

nonseparable preventing conventional subgame decompositions and ensuring that novel

equilibria can be located. We illustrate this now accomplishing, as usual, only a partial

search of the available infinity of probability spaces.

8.2.2 An isomorphically constrained space: PX
B × PY

B |y=ȳ

Suppose that player Y adopts one of a possible M−1 alternate probability spaces PY
B |y=ȳ

for integral 2 ≤ ȳ ≤ M in which they correlate their y variable with the previous value x.

In particular, suppose that Y undertakes to reject any offer x less than ȳ and to accept

any offer x equal to or greater than ȳ. That is Y adopts the functional assignment

y =















0 if x < ȳ

1 if x ≥ ȳ.

(8.7)

In other words, we have y = δx≥ȳ giving the payoff functions

X : max
x

ΠX = (M − x)δx≥ȳ

Y : ΠY = xδx≥ȳ. (8.8)

It is then evident that player X will set x = ȳ to maximize their payoff at ΠX = (M − ȳ)

giving player Y a payoff of ΠY = ȳ. Similar results are obtained from optimizing the

expected payoff functions obtained using the probability distribution

P Y (y|x) =















P Y (y = 0|x) = 1−∑M
j=ȳ δjx

P Y (y = 1|x) = ∑M
j=ȳ δjx.

(8.9)
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Players of unbounded rationality must then sequentially assume that players X and Y

have adopted the joint probability space PX
B × PY

B |y=ȳ for 2 ≤ ȳ ≤ M , and within

each space, locate the constrained equilibria optimizing outcomes, all of which can be

subsequently compared in a later comparison table. We complete this process now.
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Figure 8.2: The case where players (X, Y ) adopt the PX
B ×PY

B |y=ȳ joint probability space

where player Y is functionally constrained to reject any offer x < ȳ and to accept any

offer x ≥ ȳ. As a result offers of a lesser amount appear neither in the expected payoff

functions nor in the corresponding game tree.

With the adoption of the joint probability space PX
B × PY

B |y=ȳ, and taking account

of the the normalization condition pȳ = 1−∑M
i=ȳ+1 pi, the expected payoff optimization

problems for the players becomes

X : max
pȳ+1,...,pM

⟨ΠX⟩ = (M − ȳ) +
M
∑

i=ȳ+1

pi(ȳ − i)

Y : ⟨ΠY ⟩ =
M
∑

i=ȳ

pii, (8.10)

which are now dependent only on the freely varying parameters (pȳ+1, . . . , pM). That

is, given their previous choice of probability space, player Y has no further independent

parameters, while player X is indifferent to any choice with 1 ≤ i < ȳ because these

variables have disappeared from the problem specification. The resulting game tree is as

shown in Fig. 8.2. The relevant gradient operator used by both players to analyze this

particular probability space is

∇ =

[

∂

∂pȳ+1

, . . . ,
∂

∂pM

]

. (8.11)

Optimization then proceeds as usual via

∂⟨ΠX⟩
∂pi

= ȳ − i, ∀i ∈ [ȳ + 1,M ]. (8.12)

All of the terms on the right hand side are negative ensuring that player X sets pȳ+1 =

. . . = pM = 0. In turn, this means that X sets pȳ = 1 and only ever offers x = ȳ.

(When ȳ = M , player X gains zero payoff regardless of their offer and so is indifferent.)

Consequently, in the joint probability space PX
B × PY

B |y=ȳ, players (X, Y ) choose the

combination (x, y) = {(ȳ, 1)} to garner payoffs
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (M − ȳ, ȳ).
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8.2.3 Payoff comparison across probability spaces

The above analysis has considered a total of one conventional joint probability space

PX
B ×PY

B and M−1 alternate probability spaces PX
B ×PY

B |y=ȳ for 2 ≤ ȳ ≤ M . Altogether,

the various joint probability spaces adopted by the players lead to a table of expected

payoff outcomes of

(⟨ΠX⟩, ⟨ΠY ⟩) PX
B

PY
B (M − 1, 1)

PY
B |y=2 (M − 2, 2)
...

...

PY
B |y=M−2 (2,M − 2)

PY
B |y=M−1 (1,M − 1)

, (8.13)

making it evident that to maximize their payoff, player Y must rationally elect to use

probability space PY
B |y=M−1 in preference to PY

B . Knowing this, player X will offer

x = (M − 1) to Y to ensure that they gain a payoff greater than zero.

8.2.4 An indicative solution reflecting symmetries

Obviously, in normal play of the ultimatum game, X does not normally expect that

they need to offer all of the available funds to avoid rejection, and Y seldom elects to

reject every offer less than all of the funds. This might result as the game is now highly

symmetric.

A conventional analysis shows that player X can garner a payoff of M − 1 and force

Y to accept a payoff of 1. The isomorphic constrained analysis here shows that Y can

force a payoff of M − 1 for themselves leaving X with a minimal payoff of 1. Player X,

facing a minimal payoff of 1 could then seek to modify their own probability space and

undertake to not even consider offers greater than x̄ say. It is possible that an extended

analysis taking account of the ability of both X and Y to veto offers will settle in a choice

around x̄ = ȳ = M/2 or thereabouts.

The analysis presented here is indicative only and we do not attempt to resolve the ul-

timatum game. It suffices for our purposes to show that including isomorphic constraints

within the strategy spaces of the ultimatum game allows a broader range of equilibria

outcomes than considered by conventional game theory.

8.3 Discussion

This paper presents an analysis of isomorphically constrained play in the finitely iterated

Ultimatum game. The use of isomorphic constraints reduces the dimensionality of the

game strategy spaces and can modify game properties and equilibrium points. We suggest

that these constraints are routinely exploited in human play to maximize player outcomes.
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We crudely suggested that fair play might be one possible outcome of our extended

analysis.

Experiments across a wide range of cultures show human players as commonly adopt-

ing fair play. This carries the implication that human game players in a diversity of

cultures have a natural ability to exploit isomorphic constraints to their own ends. Fur-

ther, we suggest that use of isomorphic constraints are common in bargaining situations

and in economics in general, and it is necessary that games theory be able to properly

model these isomorphic constraints in strategic interactions. Further, our analytical ap-

proach is likely to be more broadly applicable to the wider economic sphere as modeled

by game theory.
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Chapter 9

The public goods game

9.1 Introduction

There are many situations in which a number of players must jointly participate in

creating some common resource but where no player can be prevented from exploiting

that resource. This creates a “free-rider” or “tragedy of the commons” style problem as

while all players benefit if the public good is provided, any individual player can increase

their benefits if they avoid paying their share of the costs [75]. As a result, players do

not cooperate and the public good is not provided. These results are altered if players

are able to punish free riders, even when punishment carries significant costs to the

initiator [76]. The public goods game allows experimental examination of how norms

of cooperative behaviour are established and enforced using a wide range of theoretical

approaches [77, 78, 79, 80], including a proposed quantum solution [81].

9.2 A simplified public goods game

Here as usual, we simplify the public goods game as far as possible without losing any of

its character. In particular, we restrict the number of players to two, designated as usual

X and Y , and also restrict both the amounts that can be exchanged and the amounts

used to punish opponents.

The minimal public goods game, as pictured in Fig. 9.1, is defined over two sequential

stages. In stage one, players X and Y both choose whether four units of payoff is either

retained x1, y1 = 0 or invested x1, y1 = 1. The return to each player from their own

investment is negative whilst the return to them from their opponent’s investment is

positive. The payoffs to the players from their joint actions in stage one are

ΠX
1 = 4− x1 + 3y1

ΠY
1 = 4 + 3x1 − y1. (9.1)

Thus, should both X and Y make no investments via x1 = y1 = 0 then their payoffs are

ΠX
1 = ΠY

1 = 4 while if both invest all their funds via x1 = y1 = 1 then their payoffs are

99
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x1:                                                        p0 p1
ΠXΠY:                                       1,1                           7,3                                               3,7  6,6

0000...                                                                                                      ...1111
y1:                                        q0 q1 q0 q1x2:                            p0|00 p1|00 p0|01 p1|01 p0|10 p1|10 p0|11 p1|11y2:                   q0|00 q1|00 q0|10 q1|10q0|01 q1|01                                                                                              q0|11 q1|11ΠY:                     4           0    -4         -8         3         -1    -5         -9     7          3     -1         -5   6            2     -2        -6ΠX:                     4          -4     0         -8        7          -1     3         -5     3         -5     -1         -9   6           -2     2         -6

Figure 9.1: A minimal public goods game involving two players X and Y who simul-

taneously choose to make an investment of some amount x1, y1 ∈ {0, 1} in stage one.

The return to each player of their own investment is negative whilst the return to them

from their opponent’s investment is positive. Thus, investment is a public good which

creates a free rider problem. In the second stage, each player can choose to either punish

their opponent for their first stage actions x2, y2 = 1 at some cost to themselves, or not

x2, y2 = 0, with the corresponding payoffs shown.

improved to ΠX
1 = ΠY

1 = 6. Unfortunately however, it pays for each player to free ride

on their opponent’s investment: should X invest their funds x1 = 1 while Y retains all

of their funds y1 = 0, the joint payoffs are
(

ΠX
1 ,Π

Y
1

)

= (3, 7), making it tempting for

Y to free ride. Conversely, should X retain their funds while Y invests, the payoffs are
(

ΠX
1 ,Π

Y
1

)

= (7, 3). The net result is that game theory predicts that both players attempt

to free ride on the investment of their opponent resulting in non-Pareto optimal payoffs.

The willingness of players to incur costs to punish their free riding opponents can

then be studied by adding a second stage as shown in Fig. 9.1. Here, each player can

choose to either not punish their opponent x2, y2 = 0 leaving all payoffs unchanged, or

can choose to punish their opponent x2, y2 = 1 at some cost to themselves. That is,

should a player choose to punish their opponent, they decrease their payoff by four units

while at the same time decreasing their opponent’s payoff by eight units. Consequently,

by the end of stage two, the joint payoffs are

ΠX = 4− x1 + 3y1 − 4x2 − 8y2

ΠY = 4 + 3x1 − y1 − 8x2 − 4y2. (9.2)

It is this two stage form of the game that generates significant discrepancies between
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game theoretic predictions and observed human play. In particular, because punishment

is costly then game theory makes the firm prediction that rational players will never

choose to punish their opponents. However, precisely the opposite tends to occur in

practise. People exhibit a strong tendency to punish their free riding opponents even

when this reduces their own payoffs. Herein lies the interest in the public goods game.

9.2.1 Unconstrained behavioural strategy spaces: PX
B × PY

B

Conventional game analysis commences with the assumption that both players X and Y

together adopt a joint probability space PX
B × PY

B in which every behavioural strategy

on every history set is independent. One possibility for the joint behavioural strategy

space is shown in Fig. 9.1. We have chosen a terminology allowing the expected payoff

function for player Z ∈ {X, Y } to be written as

Z : max ⟨ΠZ⟩ =
1
∑

x1,y1,x2,y2=0

PXY (x1, y1, x2, y2)Π
Z(x1, y1, x2, y2)

=
1
∑

x1,y1,x2,y2=0

PX(x1)P
Y (y1)P

X(x2|x1y1)P
Y (y2|x1y1)Π

Z(x1, y1, x2, y2)

=
1
∑

x1,y1,x2,y2=0

px1qy1px2|x1y1qy2|x1y1Π
Z(x1, y1, x2, y2). (9.3)

We also have implicit normalization conditions such as p0+p1 = 1 and p0|x1y1+p1|x1y1 = 1,

and so on. The expected payoff functions for each player are then

X : max
p1,p1|x1y1

⟨ΠX⟩ = 4− ⟨x1⟩+ 3⟨y1⟩ − 4⟨x2⟩ − 8⟨y2⟩

= 4− p1 + 3q1 − 4
1
∑

x1y1x2=0

px1qy1px2|x1y1x2 − 8
1
∑

x1y1y2=0

px1qy1qy2|x1y1y2

= 4− p1 + 3q1 − 4
1
∑

x1y1=0

px1qy1p1|x1y1 − 8
1
∑

x1y1=0

px1qy1q1|x1y1

Y : max
q1,q1|x1y1

⟨ΠY ⟩ = 4 + 3⟨x1⟩ − ⟨y1⟩ − 8⟨x2⟩ − 4⟨y2⟩

= 4 + 3p1 − q1 − 8
1
∑

x1y1x2=0

px1qy1px2|x1y1x2 − 4
1
∑

x1y1y2=0

px1qy1qy2|x1y1y2

= 4 + 3p1 − q1 − 8
1
∑

x1y1=0

px1qy1p1|x1y1 − 4
1
∑

x1y1=0

px1qy1q1|x1y1 . (9.4)

Here, the expected payoff functions are continuous multivariate functions dependent on

the probability parameters
[

p1, p1|00, p1|01, p1|10, p1|11
]

and
[

q1, q1|00, q1|01, q1|10, q1|11
]

, so the

relevant gradient operator is

∇ =

[

∂

∂p1
,

∂

∂p1|00
,

∂

∂p1|01
,

∂

∂p1|10
,

∂

∂p1|11
,
∂

∂q1
,

∂

∂q1|00
,

∂

∂q1|01
,

∂

∂q1|10
,

∂

∂q1|11

]

. (9.5)

Normalization conditions mean that any term dependent on p0 or p0|x1y1 contributes a

negative term to any gradient with respect to p1 or p1|x1y1 respectively. Similar consider-

ations apply to the q parameters.
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Taking account of normalization, the optimization conditions evaluated by each player

are

∂⟨ΠX⟩
∂p1

= −1 + 4
1
∑

y1=0

qy1
(

p1|0y1 − p1|1y1
)

+ 8
1
∑

y1=0

qy1
(

q1|0y1 − q1|1y1
)

∂⟨ΠX⟩
∂p1|00

= −4p0q0

∂⟨ΠX⟩
∂p1|01

= −4p0q1

∂⟨ΠX⟩
∂p1|10

= −4p1q0

∂⟨ΠX⟩
∂p1|11

= −4p1q1

∂⟨ΠY ⟩
∂q1

= −1 + 8
1
∑

x1=0

px1

(

p1|x10 − p1|x11

)

+ 4
1
∑

x1=0

px1

(

q1|x10 − q1|x11

)

∂⟨ΠY ⟩
∂q1|00

= −4p0q0

∂⟨ΠY ⟩
∂q1|01

= −4p0q1

∂⟨ΠY ⟩
∂q1|10

= −4p1q0

∂⟨ΠY ⟩
∂q1|11

= −4p1q1, (9.6)

Thus, player X finds the rate of change of their payoff with respect to p1|ij is always

negative so they set p1|ij = 0 for all i and j. Similarly, player Y sets q1|ij = 0 as the

rate of change of their payoff with respect to q1|ij is also always negative for all i and

j. That is, there are no histories in which it is payoff maximizing for either player to

punish their opponent. In turn, these results simplify the remaining two conditions for

first stage moves giving

∂⟨ΠX⟩
∂p1

= −1

∂⟨ΠY ⟩
∂q1

= −1. (9.7)

This establishes that both players maximize their expected payoffs by setting p1 = 0

and q1 = 0 in the first stage. Thus, both players make no investment in the first round

confident in the knowledge that their opponent will not punish them for this. The

Nash equilibria for this simplified public goods game is then (x1, y1, x2, y2) = (0, 0, 0, 0)

generating expected payoffs of
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (4, 4). As noted previously, these payoffs

are not Pareto optimal as they could be improved by both players adopting different

choices, as is commonly observed in human play.

Rational players are able to alter their choice of probability space, and will optimize
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this choice so as to maximize their expected payoffs. We here suppose that players might

each consider a total of two alternate probability spaces.

x1:                                                                           p0 p1
x1y1:                                       00                                       01                                  10      11ΠX,ΠY:                                 -8,-8                                   -1,-1                               -1,-1             6,6y1:                                       q0 q1 q0 q1

Figure 9.2: The case where players (X, Y ) adopt the PX
B |x2=1−y1 ×PY

B |y2=1−x1 joint prob-

ability space where both players functionally anti-correlate their second stage choices to

their opponent’s first stage choices. Then a failure to invest automatically invokes pun-

ishment while investment invokes no punishment.

9.2.2 Isomorphically anti-correlated space PX
B |x2=1−y1×PY

B |y2=1−x1

Suppose first that both players X and Y choose to adopt a joint probability space

PX
B |x2=1−y1 × PY

B |y2=1−x1 as shown in Fig. 9.2, in which they each functionally anti-

correlate their second stage choices to the previous choices of their opponents. This is

implemented via

x2 = 1− y1

p1|x1y1 = δ1,(1−y1)

y2 = 1− x1

q1|x1y1 = δ1,(1−x1). (9.8)

This choice of probability space alters the dimensions of the game space, the game

trees, and the payoff functions to be

ΠX = 4− x1 + 3y1 − 4x2 − 8y2

= 4− x1 + 3y1 − 4(1− y1)− 8(1− x1)

= −8 + 7x1 + 7y1

ΠY = 4 + 3x1 − y1 − 8x2 − 4y2

= 4 + 3x1 − y1 − 8(1− y1)− 4(1− x1)

= −8 + 7x1 + 7y1. (9.9)
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It is then immediately evident that players maximize their own payoffs by choosing to

invest (x1, y1) = (1, 1) which invokes a subsequent lack of punishment in stage two giving

(x2, y2) = (0, 0). The final payoffs are then (ΠX ,ΠY ) = (6, 6).

Optimization of the expected payoffs must reproduce this result. The isomorphically

constrained expected payoff functions can simply be read from the tree in Fig. 9.2 and

are

X : max
p1

⟨ΠX⟩ = −8 + 7p1 + 7q1

Y : max
q1

⟨ΠY ⟩ = −8 + 7p1 + 7q1. (9.10)

These expected payoffs are continuous multivariate functions dependent only on the freely

varying parameters p1 and q1, so the relevant gradient operator used by both players is

∇ =

[

∂

∂p1
,
∂

∂q1

]

. (9.11)

Immediately then, the optimization conditions evaluated by each player are

∂⟨ΠX⟩
∂p1

= 7

∂⟨ΠY ⟩
∂q1

= 7, (9.12)

ensuring that both players X and player Y maximize their expected payoffs by investing

their funds by setting p1 = 1 giving x1 = 1 and q1 = 1 giving y1 = 1. The functionally

assigned punishment choices then ensure that neither player punishes the other so the

equilibria choice of play is (x1, y1, x2, y2) = (1, 1, 0, 0) generating expected payoffs of
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (6, 6).

9.2.3 Anti-correlated and independent space: PX
B |x2=1−y1 × PY

B

To complete this simplified analysis of the reduced public goods game considered here,

both players might also examine the possible joint probability space PX
B |x2=1−y1 ×PY

B in

which X anti-correlates their second stage choice to their opponent’s first stage choice

while Y does not employ any isomorphic constraints—see Fig. 9.3. (Symmetry allows

these results to be used for the space PX
B × PY

B |y2=1−x1 after an appropriate reflection.)

The required functional anti-correlations are implemented via

x2 = 1− y1

p1|x1y1 = δ1,(1−y1). (9.13)

In the adopted probability space, the payoff functions for the players are then

ΠX = 4− x1 + 3y1 − 4x2 − 8y2

= 4− x1 + 3y1 − 4(1− y1)− 8y2
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x1:                                                          p0 p1
x1 y1 y2:                        000...                                                                                              ...111
y1:                                           q0 q1 q0 q1y2:                           q0|00 q1|00 q0|10 q1|10q0|01 q1|01                                                                     q0|11 q1|11ΠX,ΠY:                         0,-4             -8,-8                7,3             -1,-1            -1,-1            -9,-5         6,6            -2,2

Figure 9.3: The case where players (X, Y ) adopt the PX
B |x1=1−y1 × PY

B joint probability

space where X functionally anti-correlates their second stage choices to their opponent’s

first stage choice and so automatically punishes a failure to invest, while Y adopts every-

where independent behavioural strategies in both their stages.

= −x1 + 7y1 − 8y2

ΠY = 4 + 3x1 − y1 − 8x2 − 4y2

= 4 + 3x1 − y1 − 8(1− y1)− 4y2

= −4 + 3x1 + 7y1 − 4y2. (9.14)

Here, player X sets x1 = 0 to maximize their payoff while Y sets y1 = 1 and y2 = 0 to

maximize their payoff. The final outcome is (ΠX ,ΠY ) = (7, 3).

A similar result is obtained from optimizing the expected payoff functions. The iso-

morphically constrained joint probability space PX
B |x2=1−y1 × PY

B specifies the expected

payoff optimization problem after the resolution of the imposed functional constraints as

X : max
p1

⟨ΠX⟩ = 4− p1 + 3q1 − 4
1
∑

x1y1=0

px1qy1p1|x1y1 − 8
1
∑

x1y1=0

px1qy1q1|x1y1

= 4− p1 + 3q1 − 4
1
∑

x1y1=0

px1qy1δ1,(1−y1) − 8
1
∑

x1y1=0

px1qy1q1|x1y1

= 4− p1 + 3q1 − 4
1
∑

x1=0

px1q0 − 8
1
∑

x1y1=0

px1qy1q1|x1y1

= 4− p1 + 3q1 − 4q0 − 8
1
∑

x1y1=0

px1qy1q1|x1y1

Y : max
q1,q1|x1y1

⟨ΠY ⟩ = 4 + 3p1 − q1 − 8
1
∑

x1y1=0

px1qy1p1|x1y1 − 4
1
∑

x1y1=0

px1qy1q1|x1y1

= 4 + 3p1 − q1 − 8
1
∑

x1y1=0

px1qy1δ1,(1−y1) − 4
1
∑

x1y1=0

px1qy1q1|x1y1
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= 4 + 3p1 − q1 − 8
1
∑

x1=0

px1q0 − 4
1
∑

x1y1=0

px1qy1q1|x1y1

= 4 + 3p1 − q1 − 8q0 − 4
1
∑

x1y1=0

px1qy1q1|x1y1 . (9.15)

These expected payoffs are continuous multivariate functions dependent only on the first

stage freely varying parameters p1 and q1 and the second stage independent parameters
[

q1|00, q1|01, q1|10, q1|11
]

, so the relevant gradient operator used by both players to analyze

this particular probability space is

∇ =

[

∂

∂p1
,
∂

∂q1
,

∂

∂q1|00
,

∂

∂q1|01
,

∂

∂q1|10
,

∂

∂q1|11

]

. (9.16)

The resulting optimization conditions evaluated by each player are

∂⟨ΠX⟩
∂p1

= −1 + 8
1
∑

y1=0

qy1
(

q1|0y1 − q1|1y1
)

∂⟨ΠY ⟩
∂q1

= 7 + 4
1
∑

x1=0

px1

(

q1|x10 − q1|x11

)

∂⟨ΠY ⟩
∂q1|00

= −4p0q0

∂⟨ΠY ⟩
∂q1|01

= −4p0q1

∂⟨ΠY ⟩
∂q1|10

= −4p1q0

∂⟨ΠY ⟩
∂q1|11

= −4p1q1. (9.17)

The last four conditions here ensure that Y maximizes their expected payoff by setting

q1|x1y1 = 0 on any history x1y1. That is, Y chooses the second stage choice y2 = 0 and

never punishes X irrespective of X’s first stage move. In turn, substituting these results

into the second condition establishes that Y maximizes their expected payoff by setting

q1 = 1 giving y1 = 1. That is, Y always invests their funds in stage one. Consequently,

these results substituted into the first condition shows that X maximizes their payoff by

setting p1 = 0 giving x1 = 0 and so free rides on their opponent’s inability to punish

them. The resulting equilibria choice of play is (x1, y1, x2, y2) = (0, 1, 0, 0) generating

expected payoffs of
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (7, 3).
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9.2.4 Expected payoff comparison

Altogether, the various joint probability spaces as considered here which might be adopted

by the players gives a table of expected payoff outcomes of

(⟨ΠX⟩, ⟨ΠY ⟩) PY
B PY

B |y2=1−x1

PX
B (4, 4) (3, 7)

PX
B |x2=1−y1 (7, 3) (6, 6)

(9.18)

making it evident that to maximize their payoff, both players must rationally elect to

use joint probability space PX
B |x2=1−y1 ×PY

B |y2=1−x1 in preference to any of the alternate

probability space considered here. That is, players X and Y will undertake to function-

ally anti-correlate their second stage decision to the previous choice of their opponent,

and thereby deny themselves a second stage choice during the game. Again, they do

this knowing it to be the payoff maximizing choice of probability space (among the few

examined here).

The clear predictions of our analysis is that players of unbounded rationality will

choose to not free ride on their neighbours and will punish free riders even at considerable

cost to themselves.
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Chapter 10

The centipede game

10.1 Introduction

The centipede game was introduced by Rosenthal [26]. A readily accessible treatment can

be found in [82]. The centipede game is of interest due to the extreme discrepancy between

experimentally observed play and the predictions of game theory—see the experimental

investigations in [83] with discrepancies explained by allowing players to altruistically

consider their opponent’s payoffs, or by using learning approaches to explain observed

discrepancies in a normal form centipede game [84]. More generally, the centipede game

has had a prime role in arguments over the definitions of rationality, common knowledge

of rationality, and backwards induction [85, 86, 87, 88, 89, 90, 91]. In part, this ongoing

debate has led to the wider impugning of backwards induction [85, 86, 92, 93], but see

the defence of backwards induction in [94]. For an indication of the role of this game in

the wider economics and social sciences, see [95].

p0 q0|1 p0|11 q0|111 p0|1111 q0|11111 x1 y1 x2 y2 x3 y3
(ΠX,ΠY):   (10)                (02)                (31)                (24)                (53)               (46) 

p1 q1|1 p1|11 q1|111 p1|1111 q1|11111 (65) 
Figure 10.1: A truncated centipede game decision tree over 6 stages where two players X

and Y alternately choose to either play down (xi, yi = 0 for 1 ≤ i ≤ 3) in which case the

game stops, or play across (xi, yi = 1 for 1 ≤ i ≤ 3) so that either their opponent faces

a similar choice or the game terminates in stage 6.

109
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10.2 The centipede game

The centipede game gains its peculiar name as it normally features two players playing

over 100 turns so that, when drawn horizontally as in Fig. 10.1, the game tree takes the

appearance of a centipede. Here, we truncate the game without loss of generality at only

6 stages allowing a tractable analysis. In this truncated centipede game, each player X

or Y must alternately elect to either play down (xi, yi = 0 for 1 ≤ i ≤ 3) in which case

the game immediately terminates and players gain the respective payoffs shown, or play

across (xi, yi = 1 for 1 ≤ i ≤ 3) in which case either their opponent plays or the game

terminates with the payoffs shown. When either player hands play to their opponent,

they suffer a short term loss of potential payoff with the prospect of a long term gain.

The interest in this game comes from the countervailing effects of these short term losses

and long term gains which combine together to ensure that human players typically fail

to follow the recommendations of game theory and yet significantly improve their payoffs

by doing so.

In fact, the centipede game has a unique subgame perfect equilibrium solution, which

can be readily located by simply inspecting Fig. 10.1 and applying backwards induction.

In the last (far right) stage, Y can choose y3 = 0 to obtain a payoff of ΠY = 6, or can

choose y3 = 1 to obtain a payoff of ΠY = 5. Obviously, Y will prefer to play down with

y3 = 0 in this final stage to maximize their payoff. Player X is well able to deduce this

to conclude that if they choose x3 = 1 to play across in the second last stage then they

will obtain a payoff of ΠX = 4 when Y subsequently plays down. In contrast, should X

play down themselves by choosing x3 = 0, they will gain the improved payoff of ΠX = 5.

Obviously, X will choose x3 = 0 to preempt Y ’s choice of y3 = 0. Exactly the same

argument applies to Y ’s choice in the fourth stage, to X’s choice in the third stage, to

Y ’s choice in the second stage, and finally to X’s choice in the first stage. That is, being

able to deduce that Y will play down in the second stage by choosing y1 = 0 to give X a

payoff of ΠX = 0, then player X will choose to maximize their payoff by preempting Y

and playing down in the first stage through the choice x1 = 0 to gain an improved payoff

of ΠX = 1. The associated payoff for Y is ΠY = 0.

And here lies the conundrum. The sole conventionally mandated choice of play lies

in the first player X choosing down at the first opportunity to gain a mere fraction of

the potential payoff should they and their opponent play across a few times. Interest-

ingly, most people playing this game will indeed ignore the conventionally sanctioned

choice with both players typically playing across repeatedly to drastically improve their

payoffs. Just as in the other games under consideration here, it seems intuitively obvi-

ous to human players that adopting “non-rational” play will improve payoffs. However,

conventional analysis has had trouble explaining these propensities. Here, we show that

lifting implicit conventional bounds on rationality to allow players to take into account

alternate probability spaces easily produces game theoretic predictions in agreement with

observation.
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Altogether, the payoffs to the players in the centipede game considered here are

ΠX = (1− x1) + x1 (y1 [3(1− x2) + x2 {2(1− y2) + y2 (5(1− x3) + x3 [4(1− y3) + 6y3])}])
ΠY = x1 (2(1− y1) + y1 [1(1− x2) + x2 {4(1− y2) + y2 (3(1− x3) + x3 [6(1− y3) + 5y3])}]) .

(10.1)

As usual, players must then choose amongst their possible probability spaces PX and

PY to optimize their payoffs. A first choice will be the examination of the conventionally

mandated probability space, which we turn to now.

10.2.1 The unconstrained space PX
B × PY

B

To replicate the standard conventional analysis (the backwards induction analysis above),

both players X and Y together adopt a joint probability space PX
B ×PY

B in which every

behavioural strategy on every history set is independent—see Figs. 10.1. The expected

payoff optimization problem for each player Z ∈ {X, Y } can be written

Z : max ⟨ΠZ⟩ =
1
∑

x1,y1,x2,y2,x3,y3=0

PXY (x1, y1, x2, y2, x3, y3)Π
Z(x1, y1, x2, y2, x3, y3)

=
1
∑

x1,y1,x2,y2,x3,y3=0

PX(x1)P
Y (y1|x1)P

X(x2|x1y1)P
Y (y2|x1y1x2)× (10.2)

×PX(x3|x1y1x2y2)P
Y (y3|x1y1x2y2x3)Π

X(x1, y1, x2, y2, x3, y3).

To simplify notation, we write PX(x2|x1y1) → px2|x1y1 , P
Y (y2|x1y1) → qy2|x1y1 and so on,

and we take account of normalization conditions p0|x1y1+p1|x1y1 = 1 and q0|x1y1+q1|x1y1 = 1

on all histories.

Consequently, the expected payoff optimization problem becomes

X : max
p1,p1|11,p1|1111

⟨ΠX⟩ = [1− p1] +

p1 {0+
q1|1

(

3
[

1− p1|11
]

+

p1|11
{

2
[

1− q1|111
]

+

q1|111
(

5
[

1− p1|1111
]

+

p1|1111
[

4
[

1− q1|11111
]

+ 6q1|11111
])})}

Y : max
q1|1,q1|111,q1|11111

⟨ΠY ⟩ = p1
[

2
[

1− q1|1
]

+

q1|1
([

1− p1|11
]

+

p1|11
{

4
[

1− q1|111
]

+

q1|111
(

3
[

1− p1|1111
]

+

p1|1111
[

6
[

1− q1|11111
]

+ 5q1|11111
])})]

.(10.3)



112 CHAPTER 10. THE CENTIPEDE GAME

In these optimization problems, the players X and Y have respective independent proba-

bility parameters of p1, p1|11, p1|1111 and q1|1, q1|111, q1|11111 all of which can vary freely over

[0, 1]. Consequently, in the joint space PX
B ×PY

B , each player optimizes using the gradient

operator

∇ =

[

∂

∂p1
,

∂

∂q1|1
,

∂

∂p1|11
,

∂

∂q1|111
,

∂

∂p1|1111
,

∂

∂q1|11111

]

, (10.4)

as all other parameters disappear. The easiest way to complete the optimization is via

backwards induction, so both players first evaluate the last stage choice of player Y via

∂⟨ΠY ⟩
∂q1|11111

= −p1q1|1p1|11q1|111p1|1111 ≤ 0, (10.5)

which is either zero should any player have played down in any preceding stage in which

case Y is indifferent to any choice in this final stage, or always negative so essentially Y

plays down via q1|11111 = 0 and y3 = 0. This result allows player X to optimize their

choice in the second last stage via

∂⟨ΠX⟩
∂p1|1111

= −p1q1|1p1|11q1|111 ≤ 0, (10.6)

which again, leads to the setting p1|1111 = 0 and x3 = 0. A similar analysis proceeds

backwards through all the stages to give the final solution, deducible by both players,

of (x1, y1, x2, y2, x3, y3) = (0, 0, 0, 0, 0, 0). This choice garners players the conventionally

mandated payoffs of
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (1, 0).

10.2.2 Isomorphically constrained spaces

Naturally, players of unbounded rationality will not be content to merely examine the

conventionally mandated joint probability space PX
B × PY

B and will turn to consider

alternative joint probability spaces. In each alternative space, isomorphic constraints

alter game spaces and trees and thereby alter the subgame decompositions used in the

conventional analysis to locate novel equilibria. We consider such alternatives now.

As usual, there are an infinity of possible probability spaces that might be adopted

by the players in the sequential centipede game, and we can here consider only a partial

search of these possible spaces. We first suppose that the players restrict their attention

to “Markovian” strategies in which the variable of a given stage is only conditioned on the

outcome of the immediately preceding stage. The alternative—correlating variables in the

given stage to the outcomes in every preceding stage—simply generates to many options

without adding significantly to the analysis. Given this restriction, a moments reflection

will make it obvious that there is little point in a player choosing to anti-correlate their

choice in a given stage to their opponent’s previous choice. There opponent must have

played across so an anti-correlation would simply force a move down and this merely

duplicate the outcomes of the conventional analysis above. The same considerations

make it immediately attractive to have players consider perfect correlations between the
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opponent’s choices in the preceding stage and the current choices in the present stage as

a previous choice of across then implies a current choice of across. We therefore suppose

that players, in each stage after the first, can make their choices either independently or

by correlation to their opponent’s previous choice.

These consideration leave four possible probability spaces to be enacted by player X,

namely

PX
B

PX
B |x2=y1

PX
B |x3=y2

PX
B |x2=y1,x3=y2 .

(10.7)

Similarly, there are eight possible spaces to be enacted by player Y , namely

PY
B

PY
B |y1=x1

PY
B |y2=x2

PY
B |y3=x3

PY
B |y1=x1,y2=x2

PY
B |y1=x1,y3=x3

PY
B |y2=x2,y3=x3

PY
B |y1=x1,y2=x2,y3=x3 .

(10.8)

Altogether, this makes 32 joint probability spaces that need be considered. We now turn

to follow the players in their analysis of the outcomes from their joint adoption of all of

these combinations of spaces.

10.2.3 The space PX
B |x2=y1,x3=y2 × PY

B |y1=x1,y2=x2,y3=x3

Given the joint probability space PX
B |x2=y1,x3=y2 × PY

B |y1=x1,y2=x2,y3=x3 in which every

variable after the first stage is isomorphically constrained to be perfectly correlated to

the preceding choice by their opponent, we have the variable assignment reduces to

y3 = x3 = y2 = x2 = y1 = x1. Subsequently, the payoff functions for both players become

ΠX = (1− x1) + x1 (y1 [3(1− x2) + x2 {2(1− y2) + y2 (5(1− x3) + x3 [4(1− y3) + 6y3])}])
= (1− x1) + x1 (x1 [3(1− x1) + x1 {2(1− x1) + x1 (5(1− x1) + x1 [4(1− x1) + 6x1])}])
= 1 + 5x1

ΠY = x1 (2(1− y1) + y1 [1(1− x2) + x2 {4(1− y2) + y2 (3(1− x3) + x3 [6(1− y3) + 5y3])}]) .
= x1 (2(1− x1) + x1 [1(1− x1) + x1 {4(1− x1) + x1 (3(1− x1) + x1 [6(1− x1) + 5x1])}]) .
= 5x1. (10.9)

Here, it is immediately evident that player X maximizes their payoff by setting x1 = 1

generating a sequence of play of (x1, x2, x3, y1, y2, y3) = (1, 1, 1, 1, 1, 1) and payoffs of

(ΠX ,ΠY ) = (6, 5).
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A similar result is obtained from optimizing the expected payoffs via

X : max
p1

⟨ΠX⟩ =
1
∑

x1,y1,x2,y2,x3,y3=0

PX(x1)δy1x1δx2y1δy2x2δx3y2δy3x3Π
X

=
1
∑

x1=0

PX(x1)Π
X(x1, x1, x1, x1, x1, x1)

= 1 + 5p1

Y : ⟨ΠY ⟩ =
1
∑

x1,y1,x2,y2,x3,y3=0

PX(x1)δy1x1δx2y1δy2x2δx3y2δy3x3Π
Y

=
1
∑

x1=0

PX(x1)Π
Y (x1, x1, x1, x1, x1, x1)

= 5p1. (10.10)

Here, player Y has left themselves no choices in any stage. As a result, the optimization

is completed by
∂⟨ΠX⟩
∂p1

= 5 > 0, (10.11)

so X sets p1 = 1 to choose x1 = 1 and plays across in stage 1. This choice is mimicked in

every subsequent stage giving (x1, y1, x2, y2, x3, y3) = (1, 1, 1, 1, 1, 1) to generate payoffs

to the players of
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (6, 5).

10.2.4 The space PX
B |x2=y1,x3=y2 × PY

B |y2=x2,y3=x3

In the joint probability space PX
B |x2=y1,x3=y2 × PY

B |y2=x2,y3=x3 the variable assignment

reduces to y3 = x3 = y2 = x2 = y1 so the payoff functions become

ΠX = (1− x1) + x1 (y1 [3(1− x2) + x2 {2(1− y2) + y2 (5(1− x3) + x3 [4(1− y3) + 6y3])}])
= (1− x1) + x1 (y1 [3(1− y1) + y1 {2(1− y1) + y1 (5(1− y1) + y1 [4(1− y1) + 6y1])}])
= 1− x1 + 6x1y1

ΠY = x1 (2(1− y1) + y1 [1(1− x2) + x2 {4(1− y2) + y2 (3(1− x3) + x3 [6(1− y3) + 5y3])}])
= x1(2 + 3y1). (10.12)

These payoff functions establish that player Y maximizes their payoff by setting y1 = 1

while player X maximizes their income by setting x1 = 1 generating a sequence of play

of (x1, x2, x3, y1, y2, y3) = (1, 1, 1, 1, 1, 1) and payoffs of (ΠX ,ΠY ) = (6, 5).

The expected payoff functions optimization task becomes

X : max
p1

⟨ΠX⟩ =
1
∑

x1,y1,x2,y2,x3,y3=0

PX(x1)P
Y (y1|x1)δx2y1δy2x2δx3y2δy3x3Π

X

=
1
∑

x1y1=0

PX(x1)P
Y (y1|x1)Π

X(x1, y1, y1, y1, y1, y1)

= 1− p1 + 6p1q1|1
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Y : max
q1|1

⟨ΠY ⟩ =
1
∑

x1,y1,x2,y2,x3,y3=0

PX(x1)P
Y (y1|x1)δx2y1δy2x2δx3y2δy3x3Π

Y

=
1
∑

x1y1=0

PX(x1)P
Y (y1|x1)Π

Y (x1, y1, y1, y1, y1, y1)

= p1
[

2 + 3q1|1
]

. (10.13)

In this case, the optimization is completed by

∂⟨ΠX⟩
∂p1

= −1 + 6q1|1

∂⟨ΠY ⟩
∂q1|1

= 3p1. (10.14)

Essentially then, player Y notes their positive gradient and so sets q1|1 = 1 to give

y1 = 1. In turn, player X deduces this and sets p1 = 1 to give x1 = 1. Together, in

the joint probability space PX
B |x2=y1,x3=y2 ×PY

B |y2=x2,y3=x3 , the optimization generates the

play choices (x1, y1, x2, y2, x3, y3) = (1, 1, 1, 1, 1, 1) to generate payoffs to the players of
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (6, 5).

10.2.5 Expected payoff comparison across multiple probability

spaces

Similar analysis to that above can be applied to evaluate the expected payoffs in all the

other combinations of joint probability spaces to give the payoff combination table
(

⟨ΠX⟩, ⟨ΠY ⟩
)

PX
B |x2=y1,x3=y2 PX

B |x3=y2 PX
B |x2=y1 PX

B

PY
B |y1=x1,y2=x2,y3=x3 (6, 5) (6, 5) (6, 5) (6, 5)

PY
B |y1=x1,y3=x3 (6, 5) (6, 5) (6, 5) (6, 5)

PY
B |y2=x2,y3=x3 (6, 5) (6, 5) (6, 5) (6, 5)

PY
B |y3=x3 (6, 5) (6, 5) (6, 5) (6, 5)

PY
B |y1=x1,y2=x2 (4, 6) (4, 6) (5, 3) (5, 3)

PY
B |y1=x1 (4, 6) (4, 6) (5, 3) (5, 3)

PY
B |y2=x2 (4, 6) (4, 6) (2, 4) (3, 1)

PY
B (4, 6) (4, 6) (2, 4) (1, 0).

. (10.15)

The equivalent trees and equilibrium pathways are shown in Fig. 10.2. Perusal of this

table makes it clear that players do not optimize their payoffs by choosing the convention-

ally mandated joint probability space. Rather, it is much more likely that Y will choose

any probability space in which their last stage variable is isomorphically constrained. In

turn, this alters the payoffs for player X in such a way as to render them indifferent to

any choice of probability space. The net result will be that X will find themselves playing

across in the first stage irrespective of which space they adopt.

A more sophisticated analysis in a longer game would take into account end-game

effects where players might express some preference for terminating the game slightly
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Figure 10.2: The 32 distinct trees and equilibrium pathways (indicated by triangles) given

that players X and Y adopt the probability spaces shown. Dots indicate successive deci-

sion nodes, where nodes with a descending vertical line are independent decision points

and nodes lacking a descending vertical line are isomorphically constrained to equal the

immediately preceding decision.

early. Such tendencies are similar to those seen in the finite iterated prisoner’s dilemma

game, and as there, are not likely to make it irrational for players to play across in the

early stages of the centipede game.

The extended analysis presented here produces game theoretic predictions in sub-

stantial accord with observed human play in the centipede game. As noted above, this

agreement contrasts sharply with the manifest contradiction between the game theoretic

predictions of conventional analysis and observed play tendencies. As such, we take these

observations as evidence that humans naturally take account of isomorphic constraints

in strategic play in game theory.



Chapter 11

The Iterated Prisoner’s Dilemma

11.1 Introduction

Conventional game analysis holds that it is rational for players in a finite iterated pris-

oner’s dilemma to adopt the noncooperative “all defect” as the optimal solution under

common knowledge of rationality (CKR) even though human players are commonly ob-

served to increase payoffs by irrationally adopting alternative strategies. There are many

observations of this mismatch between theoretical prediction and observed behaviour

[96, 97, 98, 99]. These mismatches have typically been explained by introducing be-

havioral factors such as bounded rationality, incomplete information, and other innate

tendencies promoting cooperative and altruistic behaviours. In particular, these sug-

gestions include modifying definitions of rationality to include reciprocity, fairness and

altruism or to otherwise bound rationality [100, 101, 102, 103, 104, 64, 105], via mod-

elling the evolution of cooperation [106, 77], by taking account of incomplete information

[107, 108, 109, 110] and uncertainty in the number of repeat stages [111], to bound the

complexity of implementable strategies [112, 113, 114], to account for communication

and coordination costs [115], to incorporate reputation and experimentation effects [116]

or secondary utility functions as in benevolence theory [25] or in moral discussions [117],

to include adaptive learning [118] or fuzzy logic [119], or more directly, to employ com-

prehensive constructions of normal form strategy tables incorporating belief strategies

[120, 121, 122]. Interestingly, quantum correlations can be introduced to resolve the

prisoner’s dilemma [123].

11.2 The finite Iterated Prisoner’s Dilemma

In this chapter, we will examine the finite iterated prisoner’s dilemma while using the

strong isomorphic mappings of probability theory to construct our mixed and behavioural

strategy game spaces. Our particular focus will be to examine whether cooperation is

rational in the finite iterated prisoner’s dilemma. As usual, we assume our players are

rational and of unbounded capacity, and that they have adopted common knowledge of

117
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x1:                                                        p0 p1
ΠXΠY:                                           22                        03                                                 30  11
H3:                   0000...                                                                                                  ...1111
y1:                                         q0 q1 q0 q1x2:                                                                         p0|01 p1|01y2:                                                                  q0|01 q1|01
H2:                                                00                        01                                                10 11
ΠXΠY:                   44         25    52         33     25         06   33         14  52         33  60         41      33   14     41      22

H1={}

Figure 11.1: A two stage game decision tree where two non-communicating players simul-

taneously choose moves xn or yn equal to “0” or “1” at stage n with respective probabilities

PX(xn|Hn) and P Y (yn|Hn) at every decision point. At the beginning of each stage, play-

ers know the history sets Hn = {x1, y1, . . . , xn−1, yn−1} detailing the shared information

known to both players of all choices to that stage (with H1 = {}). Players also know their

cumulative payoffs (ΠX ,ΠY ) to that point.

rationality (CKR). An illustrative game tree depicting a two stage iterated prisoner’s

dilemma is shown in Fig. 11.1.

The finite iterated prisoner’s dilemma is defined here over a finite number of N stages,

where at each stage 1 ≤ n ≤ N two non-communicating players X and Y choose moves

xn and yn chosen to be either 0 (cooperation) or 1 (defection). The payoffs gained in

each stage are given by the payoff matrix

Y

X

(πx, πy) 0 1

0 (2, 2) (0, 3)

1 (3, 0) (1, 1),

(11.1)

equivalent to the single stage payoff functions

πx(xn, yn) = 2 + xn − 2yn

πy(xn, yn) = 2− 2xn + yn. (11.2)

For multiple stage games, total game payoffs of a finite N stage game are simply the sum

of single stage payoffs. The optimization problem for both players is then

X : max
x1,...,xN

ΠX(x1, y1, . . . xN , yN) =
N
∑

n=1

(2 + xn − 2yn)
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Y : max
y1,...,yN

ΠY (x1, y1, . . . xN , yN) =
N
∑

n=1

(2− 2xn + yn). (11.3)

Each player desires to maximize their respective endgame payoffs by varying their re-

spective move choices xn and yn over every stage of the game. (The players know N in

advance.)

Yet more generally, players choose their moves probabilistically to prevent their op-

ponent predicting and exploiting deterministic strategies. The players will then adopt

the joint probability space PX × PY , and so seek to maximize their respective expected

payoffs

X : max
PX

⟨ΠX⟩ =
1
∑

x1...yN=0

PXY (x1, y1, . . . , xN , yN)Π
X(x1, y1, . . . , xN , yN)

=
1
∑

x1...yN=0

PX(x1)P
Y (y1)P

X(x2|H2)P
Y (y2|H2) . . .×

. . . PX(xN |HN)P
Y (yN |HN)

N
∑

n=1

(2 + xn − 2yn)

= 2N +
N
∑

n=1

1
∑

x1...xn=0

y1...yn=0

PX(x1)P
Y (y1)P

X(x2|H2)P
Y (y2|H2) . . .×

. . . PX(xn|Hn)P
Y (yn|Hn)(xn − 2yn)

Y : max
PY

⟨ΠY ⟩ =
1
∑

x1...yN=0

PXY (x1, y1, . . . , xN , yN)Π
Y (x1, y1, . . . , xN , yN)

=
1
∑

x1...yN=0

PX(x1)P
Y (y1)P

X(x2|H2)P
Y (y2|H2) . . .×

. . . PX(xN |HN)P
Y (yN |HN)

N
∑

n=1

(2− 2xn + yn)

= 2N +
N
∑

n=1

1
∑

x1...xn=0

y1...yn=0

PX(x1)P
Y (y1)P

X(x2|H2)P
Y (y2|H2) . . .×

. . . PX(xn|Hn)P
Y (yn|Hn)(yn − 2xn), (11.4)

We have written PZ(zn|Hn) as the conditioned probability distribution at stage n that

player Z chooses move zn (either xn or yn) given history Hn = {x1, y1, . . . , xn−1, yn−1}
detailing the shared information known to both players of all choices to that stage (with

H1 = {}). We further write PX(x1|H1) = PX(x1) = p1, P
Y (y1|H1) = P Y (y1) = q1,

PX(xn|Hn) = pxn|Hn
and P Y (yn|Hn) = qyn|Hn

. The expected payoffs are obtained

by summing over every possible path through the game tree specified by the move

choices x1, y1, . . . , xN , yN , with each path weighted by the joint probability of that

path being selected PXY (x1, y1, . . . , xN , yN), and where each path generates a payoff

of ΠZ(x1, y1, . . . , xN , yN) for player Z.

Here, as usual, the players X and Y vary their choice of respective probability space

PX and PY so as to maximize their expected payoff. That is, we hold that such players
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will avail themselves of the strong isomorphic mappings adopted by probability theory to

construct their mixed or behavioural strategy spaces. Hence, each player will sequentially

analyze situations where both players adopt altered joint probability spaces PX
i × PY

j

for i, j = 0, 1, 2, . . .. The infinity of possible alternatives mandates that some limits be

placed on the search space.

In the following analysis, we will first consider theN = 1 single stage prisoner dilemma

game. This will inform our subsequent analysis of the N = 2 stage prisoner’s dilemma.

We will analyze the N = 2 stage game by comparing three strategies commonly found in

the literature—conventional independent play, a Tit-For-Tat strategy, and All Defect—

with a functionally correlated Markovian probability strategy space. This analysis will

then be generalized to consider a total of 256 alternate joint probability spaces. Finally,

we will consider a multiple stage game withN arbitrary and analyze a number of alternate

joint probability spaces.

11.3 The N = 1 stage Prisoner’s dilemma

The single stage prisoner’s dilemma has the players seeking to optimize the payoff func-

tions

X : max
x1

ΠX(x1, y1) = 2 + x1 − 2y1

Y : max
y1

ΠY (x1, y1) = 2− 2x1 + y1. (11.5)

We suppose that players adopt a joint behavioural probability space PX
B ×PX

B . Because

of the lack of communication, the choices of the x1 and y1 variables are independent.

One possible joint probability space defines the expected payoff optimization problem for

each player as

X : max
p1

⟨ΠX⟩ =
1
∑

x1y1=0

PXY (x1, y1)Π
X(x1, y1)

=
1
∑

x1y1=0

PX(x1)P
Y (y1)(2 + x1 − 2y1)

= 2 + p1 − 2q1

Y : max
q1

⟨ΠY ⟩ =
1
∑

x1y1=0

PXY (x1, y1)Π
Y (x1, y1)

=
1
∑

x1y1=0

PX(x1)P
Y (y1)(2− 2x1 + y1)

= 2− 2p1 + q1, (11.6)

where use has been made of the normalization conditions p0 + p1 = 1 and q0 + q1 = 1.

In this two-player-single-stage game, each expected payoff function is a function of the

independent parameters p1 and q1 and so are maximized by the gradient operator

∇ =

[

∂

∂p1
,
∂

∂q1

]

, (11.7)
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giving the joint optimization conditions

∂⟨ΠX⟩
∂p1

= 1

∂⟨ΠY ⟩
∂q1

= 1. (11.8)

Together, these make it evident that each player optimizes their expected payoff by

maximizing their defection probability (choosing p1 = 1 and q1 = 1) irrespective of their

opponent’s choices. That is, both players defect with certainty. This is the unique single-

stage Nash equilibrium point [3] from which neither player can unilaterally alter their

choice without worsening their payoff. Even so, payoffs are jointly maximized when both

players cooperate (via x1 = y1 = 0) to yield payoffs of (ΠX ,ΠY ) = (2, 2). Herein lies the

dilemma.

We now turn to consider the N = 2 stage iterated prisoner’s dilemma.

11.4 The N = 2 stage prisoner’s dilemma

For the N = 2 stage game, the optimization problem for both players is

X : max
x1,x2

ΠX =
2
∑

n=1

(2 + xn − 2yn)

Y : max
y1,y2

ΠY =
2
∑

n=1

(2− 2xn + yn). (11.9)

The question which needs to be addressed by each player is how to take account of

all of the possible functional relationships that might exist between the variables. Of

course, when the variables are functionally related then this imposes constraints onto

the calculation of gradients which effects optimization outcomes. Game theory presumes

there exists a single space which properly takes into account every possible functional

dependency. Probability theory and optimization theory in general hold that no such

single space exists. These fields employ a multiplicity of distinct spaces in order to take

account of the different possible dependencies. In what follows, we will consider a small

number of different possible functional dependencies.

11.4.1 The unconstrained space PX
B × PY

B

Conventional game analysis assumes that rational players X and Y will adopt a single

specific joint probability space, denoted here PX
B × PY

B . In this space, the absence of

isomorphism constraints means that all behavioural strategies are independent allowing

the game to be decomposed into subgames in every history separating the last stage from

the preceding stage. Then, optimization in the last stage is independent of both prior

and non-existent future events, so the last stage is identically a single stage game and

optimized in the prisoner’s dilemma via the unique single stage Nash equilibria of mutual
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defection. This process can then be iterated backwards through the game (backwards

induction) to locate the unique Nash equilibria for the entire game of mutual defection

in every stage. We now detail this analysis.

In the space PX
B × PY

B , players seek to optimize their respective expected payoffs

X : max ⟨ΠX⟩ = 2N +
2
∑

n=1

1
∑

x1...yn=0

PX(x1)P
Y (y1) . . . P

X(xn|Hn)P
Y (yn|Hn)(xn − 2yn)

= 4 + p1 − 2q1 + [1− p1] [1− q1]
[

p1|00 − 2q1|00
]

+ [1− p1] q1
[

p1|01 − 2q1|01
]

+p1 [1− q1]
[

p1|10 − 2q1|10
]

+ p1q1
[

p1|11 − 2q1|11
]

Y : max ⟨ΠY ⟩ = 2N +
2
∑

n=1

1
∑

x1...yn=0

PX(x1)P
Y (y1) . . . P

X(xn|Hn)P
Y (yn|Hn)(yn − 2xn)

= 4− 2p1 + q1 + [1− p1] [1− q1]
[

q1|00 − 2p1|00
]

+ [1− p1] q1
[

q1|01 − 2p1|01
]

+p1 [1− q1]
[

q1|10 − 2p1|10
]

+ p1q1
[

q1|11 − 2p1|11
]

. (11.10)

These expected payoff functions can take account of every possible state of correla-

tion between the second stage variables x2 and y2 and the first stage variables x1 and

y1. The first stage probability variables p1, q1, together with the second stage variables

p1|00, p1|01, p1|10, p1|11, and q1|00, q1|01, q1|10, q1|11 are all freely varying over the range [0, 1].

As a result, the relevant gradient operator used by both players to analyze this particular

probability space is

∇ =

[

∂

∂p1
,
∂

∂q1
,

∂

∂p1|00
,

∂

∂p1|01
,

∂

∂p1|10
,

∂

∂p1|11
,

∂

∂q1|00
,

∂

∂q1|01
,

∂

∂q1|10
,

∂

∂q1|11

]

.(11.11)

Immediately then, optimization with respect to second stage variables by player X gives

∂⟨ΠX⟩
∂p1|00

= [1− p1] [1− q1] ≥ 0

∂⟨ΠX⟩
∂p1|01

= [1− p1] q1 ≥ 0

∂⟨ΠX⟩
∂p1|10

= p1 [1− q1] ≥ 0

∂⟨ΠX⟩
∂p1|11

= p1q1 ≥ 0, (11.12)

with similar results applying for Y . As the rate of change of the expected payoff is

essentially positive with increasing last stage defection probability, each player maximizes

their expected payoff by defecting with certainty in the last stage. That is, each player

sets p1|x1y1 = 1 and q1|x1y1 = 1 on every pathway. Taking account of this last stage result

simplifies the optimization for the first stage probability variables (backwards induction),

giving
∂⟨ΠX⟩
∂p1

= 1, (11.13)
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with similar results applying for Y . Again, players will defect in the first stage by

setting p1 = 1 and q1 = 1. Hence, players conclude that, given the adoption of the

joint probability space PX
B × PY

B , they maximize their expected payoffs by defecting in

every stage of the game (x1, y1, x2, y2) = (1, 1, 1, 1) to derive a joint expected payoff

of
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (N,N) = (2, 2). This is the unique Nash equilibrium pathway for

the finite iterated prisoner’s dilemma, given the adoption of the joint probability space

PX
B × PY

B .

11.4.2 Alternate isomorphic probability spaces

In this section we suppose that players X and Y consider only a choice of four possible

alternate probability spaces, namely, the conventional independent behavioural strat-

egy space, a functionally correlated Markovian probability space, a Tit-For-Tat strategy

space, and an All Defect strategy space.

When adopting a Markovian space, each player functionally correlates their second

stage choices to their opponent’s first stage choices. That is, player X implements

x2 = y1

px2|x1y1 = δx2y1 , (11.14)

while player Y chooses

y2 = x1

qy2|x1y1 = δy2x1 . (11.15)

We denote these spaces respectively as PX
B |x2=y1 and PY

B |y2=x1 .

When adopting Tit-For-Tat, each player chooses to cooperate in the first stage and

then functionally correlate their second stage choice to the opponent’s first stage choice.

Player X implements Tit-For-Tat via

x1 = 0

px1 = δx10

x2 = y1

px2|x1y1 = δx2y1 , (11.16)

while player Y will implement

y1 = 0

qy1 = δy10

y2 = x1

qy2|x1y1 = δy2x1 . (11.17)

We denote these probability spaces respectively as PX
B |x1=0,x2=y1 and PY

B |y1=0,y2=x1 .
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Finally, by adopting the ALL DEFECT space, each player chooses to defect in every

stage. Player X chooses

x1 = 1

px1 = δx11

x2 = 1

px2|x1y1 = δx21, (11.18)

and player Y chooses

y1 = 1

qy1 = δy11

y2 = 1

qy2|x1y1 = δy21. (11.19)

We denote these probability spaces respectively as PX
B |x1=x2=1 and PY

B |y1=y2=1.

Subsequently, players of unbounded rationality will then sequentially examine the

alternate isomorphic probability spaces available to the players. Within each possible

space, they will locate the constrained equilibria optimizing outcomes, and then later

compare these outcomes in a comparison table. We complete this process now.x1:                                                         p0 p1
ΠXΠY:                                           22                       03                                                  30  11H3:                              000...                                                                                        ...111
y1:                                          q0 q1 q0 q1x2:                                                           p0|01 p1|01H2:                                                00                       01                                                 10                        11
ΠXΠY:                          44                  52                25                 33              33                 41    14              22

H1={}

Figure 11.2: The case where players (X, Y ) adopt Independent versus Markovian strate-

gies in the PX
B × PY

B |y2=x1 joint probability space. The second stage choices of player

Y are isomorphically constrained and so are not freely varying parameters and do not

appear in the decision tree.

11.4.3 N = 2 stage: Independent versus Markovian strategies

Supposing that the players examine the case where they adopt Independent versus Marko-

vian strategies and so jointly adopt the PX
B × PY

B |y2=x1 probability space. In this space,
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the players seek to optimize (11.10) subject to the isomorphic constraint y2 = x1. This

constraint alters the expected payoff optimization problems to be

X : max
p1,p1|x1y1

⟨ΠX⟩ = 4 + p1 − 2q1 +

[1− p1] [1− q1] p1|00 +

[1− p1] q1p1|01 +

p1 [1− q1]
[

p1|10 − 2
]

+

p1q1
[

p1|11 − 2
]

Y : max
q1

⟨ΠY ⟩ = 4− 2p1 + q1 +

−2 [1− p1] [1− q1] p1|00 −
2 [1− p1] q1p1|01 +

p1 [1− q1]
[

1− 2p1|10
]

+

p1q1
[

1− 2p1|11
]

. (11.20)

These expected payoffs are continuous multivariate functions dependent only on the freely

varying parameters [p1, q1, p1|00, p1|01, p1|10, p1|11]. Consequently, the relevant gradient op-

erator used by both players to analyze this particular probability space is

∇ =

[

∂

∂p1
,
∂

∂q1
,

∂

∂p1|00
,

∂

∂p1|01
,

∂

∂p1|10
,

∂

∂p1|11

]

(11.21)

while the resulting game tree is shown in Fig. 11.2. Optimization then proceeds as usual

via

∂⟨ΠX⟩
∂p1|00

= [1− p1] [1− q1] ≥ 0

∂⟨ΠX⟩
∂p1|01

= [1− p1] q1 ≥ 0

∂⟨ΠX⟩
∂p1|10

= p1 [1− q1] ≥ 0

∂⟨ΠX⟩
∂p1|11

= p1q1 ≥ 0, (11.22)

ensuring that player X defects with certainty in the last stage by setting p1|x1y1 = 1 on

every pathway. These choices then allow evaluating

X : max
p1

⟨ΠX⟩ = 5− p1 − 2q1

∂⟨ΠX⟩
∂p1

= −1 ≤ 0, (11.23)

so player X cooperates with certainty in the first stage by setting p1 = 0. In contrast,

the analysis by player Y must simply determine their first stage variable (taking account
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of the optimized moves by player X) via

Y : max
q1

⟨ΠY ⟩ = 2 + 2q1

∂⟨ΠY ⟩
∂q1

= 1 ≥ 0, (11.24)

so player Y defects in the first stage by setting q1 = 1. Altogether, when players

(X, Y ) adopt the PX
B × PY

B |y2=x1 joint probability space, they play the move combi-

nations (x1, y1, x2, y2) = (0, 1, 1, 0) to garner payoffs
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (3, 3). Here, in this

particular joint probability space, the player adopting an Independent strategy must co-

operate in the first stage to ensure that their mimicking opponent playing a Markovian

will cooperate in the second stage so setting them up for a sucker’s payoff in that stage.

However, this gains them little as their opponent can still freely defect in the first stage

so in the end, players end up with equal payoffs.

x1:                                                            p0 p1
ΠXΠY:                                    06                                      14                                   14         22H3:                                         00                                      01                                   10    11x2:                                     p0|0 p1|0 p0|1 p1|1H2:                                                                      0                                                     1H1={}

Figure 11.3: The case where players (X, Y ) adopt Independent versus All Defect strategies

in the PX
B × PY

B |y1=y2=1 joint probability space. We write px2|x11 → px2|x1. Here, neither

first nor second stage choices of player Y appear in the game tree as they have been

isomorphically constrained.

11.4.4 N = 2 stage: Independent versus All Defect strategies

Suppose now that players examine the situation where they jointly adopt Independent

versus All Defect strategies in the PX
B ×PY

B |y1=y2=1 probability space. After resolution of

the adopted isomorphic constraints, the expected payoff optimization problems become

X : max
p1,p1|01,p1|11

⟨ΠX⟩ = 2 + p1 + [1− p1]
[

p1|01 − 2
]

+ p1
[

p1|11 − 2
]

Y : ⟨ΠY ⟩ = 5− 2p1 + [1− p1]
[

1− 2p1|01
]

+ p1
[

1− 2p1|11
]

. (11.25)

Given the isomorphic constraints adopted by the players, these expected payoff func-

tions are dependent solely on the freely varying parameters [p1, p1|01, p1|11] so the relevant
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gradient operator used by both players in their analysis is

∇ =

[

∂

∂p1
,

∂

∂p1|01
,

∂

∂p1|11

]

. (11.26)

Consequently, optimization for player X gives

∂⟨ΠX⟩
∂p1|01

= [1− p1] ≥ 0

∂⟨ΠX⟩
∂p1|11

= p1 ≥ 0, (11.27)

leading, essentially, to defection on all second stage histories via p1|x11 = 1 and q1|x11 = 1

on every pathway. Taking account of these last stage results then gives

X : max
p1

⟨ΠX⟩ = 1 + p1

∂⟨ΠX⟩
∂p1

= 1, (11.28)

so player X also defects in the first stage with certainty through the choice p1 = 1.

Altogether, the PX
B × PY

B |y1=y2=1 joint probability space leads both players to mutual

defection in every stage to garner expected payoffs of
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (N,N) = (2, 2).x1:                                                            p0 p1
ΠXΠY:                                     44                                      52                                  33         41H3:                                          00                                     01                                  10     11x2:                                     p0|0 p1|0 p0|1 p1|1H2:                                                                        0                                                   1H1={}

Figure 11.4: The case where players (X, Y ) adopt Independent versus Tit-For-Tat strate-

gies in the PX
B × PY

B |y1=0,y2=x1 joint probability space. We write px2|x10 = px2|x1. Again,

neither first nor second stage choices of player Y appear in the game tree as they have

been isomorphically constrained and so are not freely varying parameters.

11.4.5 N = 2 stage: Independent versus Tit-For-Tat strategies

If, on the other hand, players (X, Y ) suppose that together they adopt the PX
B ×

PY
B |y1=0,y2=x1 joint probability space, then the expected payoff function optimization

problem becomes

X : max
p1,p1|00,p1|10

⟨ΠX⟩ = 4 + p1 + [1− p1] p1|00 + p1
[

p1|10 − 2
]

⟨ΠY ⟩ = 4− 2p1 − 2 [1− p1] p1|00 + p1
[

1− 2p1|10
]

. (11.29)
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As such, the expected payoff functions are dependent only on the freely varying parame-

ters [p1, p1|00, p1|10] so the relevant gradient operator used by both players in their analysis

is

∇ =

[

∂

∂p1
,

∂

∂p1|00
,

∂

∂p1|10

]

. (11.30)

Consequently, optimization for player X gives

∂⟨ΠX⟩
∂p1|00

= [1− p1] ≥ 0

∂⟨ΠX⟩
∂p1|10

= p1 ≥ 0, (11.31)

leading, essentially, to defection on all second stage histories via p1|x10 = 1 on every

pathway. Taking account of these last stage results then gives

X : max
p1

⟨ΠX⟩ = 5− p1

∂⟨ΠX⟩
∂p1

= −1, (11.32)

so player X cooperates in the first stage with certainty through the choice p1 = 0.

Altogether, the PX
B × PY

B |y1=0,y2=x1 joint probability space leads players to the move

combinations (x1, y1, x2, y2) = (0, 0, 1, 0) to garner payoffs
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (5, 2).

x1:                                                            p0 p1y1:                                         q0 q1 q0 q1H2:                                          00                                    01                                    10    11ΠXΠY:                                     44                                    33                                    33         22
H1={}

Figure 11.5: The case where players (X, Y ) adopt Markovian versus Markovian strategies

in the PX
B |x2=y1 × PY

B |y2=x1 joint probability space. As both players functionally assign

their second stage choices, the only freely varying parameters are the first stage choices

of each player.

11.4.6 N = 2 stage: Markovian versus Markovian strategies

Suppose now that players (X, Y ) jointly assume they both adopt the PX
B |x2=y1 ×PY

B |y2=x1

probability space. After resolution of the adopted isomorphic constraints, the expected
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payoff function optimization problems become

X : max
p1

⟨ΠX⟩ = 4− p1 − q1

Y : max
q1

⟨ΠY ⟩ = 4− p1 − q1, (11.33)

which are dependent only on the freely varying parameters [p1, q1], so immediately, the

gradient operator used by each player in their analysis is

∇ =

[

∂

∂p1
,
∂

∂q1

]

. (11.34)

Optimization then proceeds straightforwardly giving respectively for each player

∂⟨ΠX⟩
∂p1

= −1

∂⟨ΠY ⟩
∂q1

= −1, (11.35)

ensuring that in this space, both players cooperate with certainty in the first stage by

setting p1 = q1 = 0. Altogether, when players (X, Y ) adopt the PX
B |x2=y1 ×PY

B |y2=x1 joint

probability space, they cooperate via the move combinations (x1, y1, x2, y2) = (0, 0, 0, 0)

to garner payoffs
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (4, 4). That is, under a joint constraint where each

player mimics their opponent’s previous moves, a strategy of cooperation is rational as

it maximizes expected payoffs for both players.x1:                                                          p0 p1ΠXΠY:                                                         14                                                                 22H2:                                                               0                                                            1H1={}
Figure 11.6: The case where players (X, Y ) adopt Markovian versus All Defect strategies

in the PX
B |x2=y1 × PY

B |y1=y2=1 joint probability space. As both players functionally assign

all of their second stage choices while player Y defects with certainty in the first stage,

the only freely varying parameter left is the first stage choice of player X reducing the

game to being a single-player-single-stage situation as shown.

11.4.7 N = 2 stage: Markovian versus All Defect strategies

Suppose now that players (X, Y ) analyze the case where they jointly adopt the PX
B |x2=y1×

PY
B |y1=y2=1 probability space. The resolution of the adopted constraints means that the

expected payoff function optimization problem for the players becomes

X : max
p1

⟨ΠX⟩ = 1 + p1

⟨ΠY ⟩ = 4− 2p1, (11.36)
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which are dependent only on the freely varying parameter p1, so immediately, the gradient

operator used by each player in their analysis is

∇ =
∂

∂p1
. (11.37)

Player X then evaluates
∂⟨ΠX⟩
∂p1

= 1, (11.38)

ensuring that this player defects with certainty in the first stage by setting p1 = 1.

Altogether, when players (X, Y ) jointly adopt the PX
B |x2=y1 × PY

B |y1=y2=1 probability

space, they generate the optimal move combination (x1, y1, x2, y2) = (1, 1, 1, 1) to garner

payoffs
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (2, 2).x1:                                                            p0 p1ΠXΠY:                                                           44                                                               33H2:                                                                 0                                                          1H1={}
Figure 11.7: The case where players (X, Y ) adopt Markovian verses Tit-For-Tat strategies

in the PX
B |x2=y1×PY

B |y1=0,y2=x1 joint probability space. As both players functionally assign

all of their second stage choices while player Y cooperates with certainty in the first stage,

the only freely varying parameter left is the first stage choice of player X reducing the

game to being a single-player-single-stage situation as shown.

11.4.8 N = 2 stage: Markovian verses Tit-For-Tat strategies

Suppose now that players (X, Y ) jointly assume that together they adopt the PX
B |x2=y1 ×

PY
B |y1=0,y2=x1 probability space. After resolution of the isomorphic constraints, the ex-

pected payoff function optimization problems become

X : max
p1

⟨ΠX⟩ = 4− p1

⟨ΠY ⟩ = 4− p1, (11.39)

which are dependent only on the freely varying parameter p1, so immediately, the gradient

operator used by each player in their analysis is

∇ =
∂

∂p1
. (11.40)

Player X then evaluates
∂⟨ΠX⟩
∂p1

= −1, (11.41)



11.4. THE N = 2 STAGE PRISONER’S DILEMMA 131

ensuring that this player cooperates with certainty in the first stage by setting p1 = 0.

Altogether, when players (X, Y ) jointly adopt the PX
B |x2=y1 × PY

B |y1=0,y2=x1 probability

space, they generate the optimal move combination (x1, y1, x2, y2) = (0, 0, 0, 0) to garner

payoffs
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (4, 4).

11.4.9 N = 2 stage: Comparing payoffs

The remainder of the possible probability spaces that the players might analyze, Tit-

For-Tat versus Tit-For-Tat (PX
B |x1=0,x2=y1 ×PY

B |y1=0,y2=x1), Tit-For-Tat versus All Defect

(PX
B |x1=0,x2=y1 ×PY

B |y1=y2=1), and All Defect versus All defect (PX
B |x1=x2=1×PY

B |y1=y2=1),

possess no free variables whatsoever and so merely involve an evaluation of the expected

payoffs in each case. Altogether, under the assumption that either player might adopt

any of the four probability spaces considered here, then players must compare 16 possible

isomorphically constrained optima to locate their optimal choice of probability space.

The comparison table showing every possible combination of adopted probability space

for either player is

(

⟨ΠX⟩, ⟨ΠY ⟩
)

PY
B |y2=x1 PY

B PY
B |y1=0,y2=x1 PY

B |y1=y2=1

PX
B |x2=y1 (4, 4) (3, 3) (4, 4) (2, 2)

PX
B (3, 3) (2, 2) (5, 2) (2, 2)

PX
B |x1=0,x2=y1 (4, 4) (2, 5) (4, 4) (1, 4)

PX
x1=x2=1 (2, 2) (2, 2) (4, 1) (2, 2).

(11.42)

This table of alternate expected payoffs makes it evident that the Tit-For-Tat and All

Defect probability spaces are weakly dominated by the Markovian and Independent prob-

ability spaces. Player’s choices of optimal probability spaces then come down effectively

to a comparison of the Markovian or the Independent probability spaces. Perusal of the

table shows that adopting the Markovian probability space offers the better returns to

either player.

Given this admittedly small set of possible strategy constraints, rational players will

maximize their expected payoffs by adopting a Markovian strategy and rationally co-

operate in the finite iterated prisoner’s dilemma. The traditional result of conventional

game analysis that mutual all defection is the unique Nash equilibria for this game is an

incomplete analysis based on the unjustified restriction that players can only employ a

restricted set of independent probability distributions.
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Figure 11.8: The generated trees and the equilibrium pathways (indicated by small dots,

with multiple dots indicating mixed equilibrium pathways) assuming that player X adopts

the probability space shown on the vertical axis and that player Y adopts the probability

space shown horizontally. (When the x2 choice is correlated and the y2 choice is indepen-

dent, a vertical line is shown to maintain the relative spacings of each tree.) The expected

payoffs under each strategy combination are shown in Table 11.1.
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11.4.10 N = 2 stage: Extended isomorphic constraints

An immediate question of interest is whether the conclusion that cooperation is rational

survives an extended analysis employing a wider class of possible isomorphic constraints

which we investigate now. We here examine a total of 256 alternate probability spaces for

the N = 2 stage iterated prisoner’s dilemma game. The resulting game trees are shown

in Fig. 11.8 (appearing in exploded form), with optimized expected payoffs derived in

each joint probability space shown in Table 11.1.

We suppose that each of our players, denoted Z ∈ {X, Y }, chooses whether each

of their four second stage behavioural strategies PZ(z2|x1y1) are either independent,

denoted “0”, or perfectly correlated to their opponent’s previous move, denoted “+”.

(Perfect anti-correlations are also possible, but these are not considered here.) There are

four histories (x1, y1) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. Admittedly, it is unusual to specify

whether a behavioural strategy implemented at a single node of a game tree is either

independent of previous events or correlated with previous events. However, there is

nothing preventing this from occurring—it might not be an optimal choice but it is a

possible set of choices that a player might make when optimizing their payoffs over a

game tree.

Consequently, if player Z chooses to make all of the second stage behavioural strategy

probability distributions PZ(z2|x1y1) independent then the adopted space is PZ
0000. This

means that the randomized choices player Z makes at every second stage node of the

game tree are independent of every other event (as is usually the case). However, if Z

chooses to functionally correlate all of their second stage behavioural strategy probability

distributions PZ(z2|x1y1) then the adopted space is PZ
++++. In this case, the dice roll that

Z uses to make their choice of y2 in the case (x1, y1) = (0, 0) will be perfectly correlated

to the previous event x1 = 0. As noted, this is an unusual choice but nevertheless

it is still a possible choice. Intermediate cases include when, for instance, Z decides

to make PZ(z2|00) and PZ(z2|10) independent, and to functionally correlate PZ(z2|01)
and PZ(z2|11), in which case the adopted space is PZ

0+0+, and so on. Altogether, there

are 16 possible choices that player Z might make about their probability space, namely

{PZ
0000,PZ

000+,PZ
00+0,PZ

00++, . . . ,PZ
++++}. In combination, both players can jointly adopt

one of 162 = 256 different joint probability spaces, in each of which a potentially different

constrained equilibria exists, and all of these optima must be compared so that players

can decide which probability space they can rationally choose.

Here, without presenting the details of the calculations, we show the results of com-

paring all 16 possible probability spaces of each player against all 16 of their opponent’s

possible probability spaces—see Fig. 11.8 and Table 11.1. (In cases where players are

indifferent to move choice, we arbitrarily choose cooperation.) We also note that it turns

out that there is only one isomorphically constrained equilibria in each probability space

and some of these are in mixed strategies.

It is of course possible to use Table 11.1 to locate globally optimal choices of proba-
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, 7
3
) (2,2) (2,2) (2,2) (2,2)

PX
+000 (4,4) (4,4) (4,4) (4,4) (4,4) (4,4) (4,4) (4,4) ( 8

3
, 7
3
) ( 8

3
, 7
3
) ( 8

3
, 7
3
) ( 8

3
, 7
3
) (2,2) (2,2) (2,2) (2,2)

PX
0+++ (3,3) (3,3) (3,3) (3,3) ( 7

3
, 8
3
) ( 7

3
, 8
3
) ( 7

3
, 8
3
) ( 7

3
, 8
3
) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3)

PX
0++0 (3,3) (3,3) (3,3) (3,3) ( 7

3
, 8
3
) ( 7

3
, 8
3
) ( 7

3
, 8
3
) ( 7

3
, 8
3
) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3)

PX
0+0+ (3,3) (3,3) (3,3) (3,3) (2,2) (2,2) (2,2) (2,2) (3,3) (3,3) (3,3) (3,3) (2,2) (2,2) (2,2) (2,2)

PX
0+00 (3,3) (3,3) (3,3) (3,3) (2,2) (2,2) (2,2) (2,2) (3,3) (3,3) (3,3) (3,3) (2,2) (2,2) (2,2) (2,2)

PX
00++ (3,3) (3,3) (3,3) (3,3) ( 7

3
, 8
3
) ( 7

3
, 8
3
) ( 7

3
, 8
3
) ( 7

3
, 8
3
) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3)

PX
00+0 (3,3) (3,3) (3,3) (3,3) ( 7

3
, 8
3
) ( 7

3
, 8
3
) ( 7

3
, 8
3
) ( 7

3
, 8
3
) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3)

PX
000+ (3,3) (3,3) (3,3) (3,3) (2,2) (2,2) (2,2) (2,2) (3,3) (3,3) (3,3) (3,3) (2,2) (2,2) (2,2) (2,2)

PX
0000 (3,3) (3,3) (3,3) (3,3) (2,2) (2,2) (2,2) (2,2) (3,3) (3,3) (3,3) (3,3) (2,2) (2,2) (2,2) (2,2)
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bility space. Examination of this table shows that many rows and columns are identical.

Numbering each row from top to bottom by ri and each column from left to right by cj

(1 ≤ i, j ≤ 16), we have r1 = r2 = r5 = r6, r3 = r4 = r7 = r8, r9 = r10 = r13 = r14,

and r11 = r12 = r15 = r16. As well, we have c1 = c2 = c3 = c4, c5 = c6 = c7 = c8,

c9 = c10 = c11 = c12, and c13 = c14 = c15 = c16. Removing all identical rows and columns

leaves the variational payoff table
(

⟨ΠX⟩, ⟨ΠY ⟩
)

PY
++++ PY

+000 PY
0+++ PY

0000

PX
++++ (4, 4) (4, 4) (3, 3) (3, 3)

PX
+000 (4, 4) (4, 4) (8

3
, 7
3
) (2, 2)

PX
0+++ (3, 3) (7

3
, 8
3
) (3, 3) (3, 3)

PX
0000 (3, 3) (2, 2) (3, 3) (2, 2)

. (11.43)

An inspection by eye (checked by numerical calculation) confirms that the only “equi-

libria” in this reduced table of constrained equilibria are the uninteresting combina-

tions in the bottom right of
(

PX
0000,PY

0+++

)

,
(

PX
0+++,PY

0000

)

, and
(

PX
0+++,PY

0+++

)

, and

the more interesting payoff maximizing equilibria in the top left of
(

PX
++++,PY

++++

)

,
(

PX
++++,PY

+000

)

,
(

PX
+000,PY

++++

)

, and
(

PX
+000,PY

+000

)

. In these latter equilibria, as long

as players functionally correlate their behavioural strategies in the second stage follow-

ing from the history (x1, y1) = (0, 0), then they will conclude that it is payoff maxi-

mizing to cooperate in this finite iterated prisoner’s dilemma to garner joint payoffs of
(

⟨ΠX⟩, ⟨ΠY ⟩
)

= (4, 4). Any other choice is not rational.

Again, we conclude that players of unrestricted rationality will cooperate in the finite

iterated prisoner’s dilemma. As such, our analysis reconciles game theoretic predictions

and the cooperative human behaviours observed in experimental tests [96, 97].

11.5 N > 2 stages: A limited investigation

We now consider the case where the number of stages is known and finite and greater

than two. We will consider how players might vary their choice of probability space or of

isomorphic constraints so as to optimize the expected payoffs of Eq. 11.4 when the number

of stages N > 2. Our analysis will be limited as with each additional stage the number

of possible joint probability spaces that might be considered by the players increases

exponentially. In the present section, we suppose that players adopt either a conventional

independent behavioural space or a Markovian space in which current stage choices are

correlated to the immediately preceding stage choices. In more detail, the choices open

to the players include adopting either a conventional independent behavioural strategy
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space PX
B and PY

B , or a Markovian probability space PX
B |xn=yn−1 and PY

B |yn=xn−1 . In

subsequent sections, we will examine the various combinations of probability space that

might be adopted, and we will finally allow players to try preemptive defection near

the terminal stages of the game. This will allow us to check whether these defections

propagate backwards as required by a standard backwards induction analysis.

11.5.1 N ≥ 2: Independent strategies

We first presume that players X and Y each examine the case where they jointly adopt

the space PX
B × PY

B in which all of their behavioural strategies on every possible history

set are independent of any other event. The players seek to optimize their respective

expected payoff functions in Eq. 11.4.

Every behavioural probability parameter (after normalization) is independent so the

gradient operator used by both players to analyze optimal play are

∇ =

[

d

dPX(1)
,

d

dP Y (1)
,

d

dPX(1|H1)
,

d

dP Y (1|H1)
, . . . ,

d

dPX(1|HN)
,

d

dP Y (1|HN)

]

.

(11.44)

where gradients are taken with respect to all possible history sets Hn. Also, gradients are

taken via total derivatives rather than partial derivatives to facilitate calculations—the

normalization constraint PX(0|Hn) = 1−PX(1|Hn) allows writing the total rate of change

of the expected payoff function with respect to the changing probability parameters as

d⟨ΠX⟩
dPX(1|Hn)

=
∂⟨ΠX⟩

∂PX(1|Hn)
− ∂⟨ΠX⟩

∂PX(0|Hn)
. (11.45)

Each player can then straightforwardly use this gradient operator defined within the

joint probability space PX
B × PY

B to evaluate their optimal choices. In particular, the

shorthand notationHn = {Hn−1, xn, yn} and some algebra allows writing the optimization

conditions for player X as the set of simultaneous equations

d⟨ΠX⟩
dPX(1)

= . . .

...
d⟨ΠX⟩

dPX(1|Hn−1)
= 1 +

1
∑

x1...xN−2=0

y1...yN−2=0

PX(x1)P
Y (y1) . . . P

X(xN−2|HN−2)P
Y (yN−2|HN−2)×

1
∑

yN−1=0

P Y (yN−1|HN−1)
1
∑

xNyN=0

(xN − 2yN)×

[ PX(xN |HN−1, 1, yN−1)P
Y (yN |HN−1, 1, yN−1)−

PX(xN |HN−1, 0, yN−1)P
Y (yN |HN−1, 0, yN−1) ]

d⟨ΠX⟩
dPX(1|HN)

= 1. (11.46)
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The equivalent simultaneous optimization conditions for player Py are

d⟨ΠY ⟩
dP Y (1)

= . . .

...
d⟨ΠY ⟩

dP Y (1|HN−1)
= 1 +

1
∑

x1...xN−2=0

y1...yN−2=0

PX(x1)P
Y (y1) . . . P

X(xN−2|HN−2)P
Y (yN−2|HN−2)×

1
∑

xN−1=0

PX(xN−1|HN−1)
1
∑

xNyN=0

(yN − 2xN)×

[ PX(xN |HN−1, xN−1, 1)P
Y (yN |HN−1, xN−1, 1)−

PX(xN |HN−1, xN−1, 0)P
Y (yN |HN−1, xN−1, 0) ]

d⟨ΠY ⟩
dP Y (1|HN)

= 1. (11.47)

Subsequently each player solves their respective sets of simultaneous equations to maxi-

mize their expected payoff in the joint probability space PX
B ×PY

B by setting PX(1|HN) =

1 and P Y (1|HN) = 1 for all history sets HN , and by setting PX(1|HN−1) = 1 and

P Y (1|HN−1) = 1 for all history sets HN−1, and so on. The final result is that both

players defect at every stage giving optimal choices as (xn, yn) = (1, 1) ≡ (D,D) for all

n. At this point, payoffs are (⟨ΠX
B ⟩, ⟨ΠY

B⟩) = (N,N).

11.5.2 N ≥ 2: Markovian versus Independent spaces

Suppose now that players X and Y jointly examine the case where Y adopts the indepen-

dent probability space while X adopts isomorphic constraints to implement Markovian

play. In this case the joint probability space is PX
B |xn=yn−1 × PY

B . Here, X adopts the

isomorphic constraints

xn = yn−1

PX(xn|Hn) = δxnyn−1 , (11.48)

for 2 ≤ n ≤ N and on every history Hn. As usual, these isomorphic constraints must

be resolved before the optimization can proceed rendering the optimization problem for

each player as

X : max
PX(1)

⟨ΠX⟩ = 2N +





1
∑

x1=0

PX(x1)x1



+

−
N−1
∑

n=1

1
∑

x1y1...yn=0

PX(x1)P
Y (y1) . . . P

Y (yn|H ′
n)yn +

−2
1
∑

x1y1...yN=0

PX(x1)P
Y (y1) . . . P

Y (yN |H ′
N)yN ,
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Y : max
PY (1),PY (1|Hn)

⟨ΠY ⟩ = 2N − 2





1
∑

x1=0

PX(x1)x1



+ (11.49)

−
N−1
∑

n=1

1
∑

x1y1...yn=0

PX(x1)P
Y (y1) . . . P

Y (yn|H ′
n)yn

+
1
∑

x1y1...yN=0

PX(x1)P
Y (y1) . . . P

Y (yN |H ′
N)yN .

Here, a modified history set appears due to the delta-function constraints so that, for

instance, H ′
3 = {x1, y1, x2, y2} = {x1, y1, y1, y2}. Hereinafter, primes are dropped.

The shorthand notation Hn = {Hn−1, yn} for n ≥ 2 and some algebra allows writing

the optimization conditions for player Y as the set of simultaneous equations

d⟨ΠY ⟩
dP Y (1)

= . . . ,

...
d⟨ΠY ⟩

dP Y (1|HN−1)
= −1 +

+
1
∑

x1y1...yN−2=0

PX(x1)P
Y (y1) . . . P

Y (yN−2|HN−2)×

1
∑

yN=0

yN
[

P Y (yN |HN−1, 1)− P Y (yN |HN−1, 0)
]

,

d⟨ΠY ⟩
dP (1|HN)

= 1. (11.50)

Hence, player Y optimizes their payoff by setting P Y (1|HN) = 1 for every history set HN ,

and by setting P Y (1|HN−1) = 0 for every history set HN−1, and eventually by setting

P Y (1|Hn) = 0 for 1 ≤ n ≤ (N − 1). That is, Y maximizes their expected payoff by

cooperating in every stage but the last.

Player X is well able to calculate the same optimal choices for their opponent, and

uses this knowledge to simplify their own optimization problem to eventually give the

condition
d⟨ΠX⟩
dPX(1)

= 1. (11.51)

Consequently, X optimizes their expected payoff by setting PX(1) = 1 and so defects in

this first stage.

In the joint probability space PX
B |xn=yn−1 × PY

B , the players locate the constrained

equilibria at the point (x1, y1, . . . , yN) = (1, 0, . . . , 0, 1) generating the play sequence

(xn, yn) = (1, 0), (0, 0), . . . , (0, 0), (0, 1)

= (D,C)(C,C) . . . (C,C)(C,D), (11.52)

to give expected payoffs (⟨ΠX⟩, ⟨ΠY ⟩) = (2N − 1, 2N − 1). Here, X defects in the first

stage as their opponent cannot respond without decreasing their payoff, while Y can

defect in the last stage when X can no longer respond.
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11.5.3 N ≥ 2: Markovian versus Markovian strategies

Each player might well then analyze the case where both players adopt Markovian strate-

gies and thereby implement the joint probability space PX
B |xn=yn−1 × PY

B |yn=xn−1 . Here,

X adopts the isomorphic constraints

xn = yn−1

PX(xn|Hn) = δxnyn−1 , (11.53)

for 2 ≤ n ≤ N and every history set Hn, while Y adopts the isomorphic constraints

yn = xn−1

P Y (yn|Hn) = δynxn−1 , (11.54)

for 2 ≤ n ≤ N and every history set Hn. These constraints must be resolved before the

optimization can proceed reducing the optimization problem for each player to

X : max
PX(1)

⟨ΠX⟩ =
1
∑

x1,y1=0

PX(x1)P
Y (y1)Π

X(x1, y1),

Y : max
PY (1)

⟨ΠY ⟩ =
1
∑

x1,y1=0

PX(x1)P
Y (y1)Π

Y (x1, y1), (11.55)

where the payoffs for a given play sequence (x1, y1) are

ΠX(x1, y1) =















2N − N
2
x1 − N

2
y1, N even,

2N − N−3
2

x1 − N+3
2

y1, N odd,

ΠY (x1, y1) =















2N − N
2
x1 − N

2
y1, N even,

2N − N+3
2

x1 − N−3
2

y1, N odd.

(11.56)

The adoption of the joint probability space PX
B |xn=yn−1 × PY

B |yn=xn−1 has effectively re-

duced the N stage supergame to a single stage game with variables x1 and y1 and payoff

matrices, for N even of

Y

X

(ΠX ,ΠY ) C D

C (2N, 2N) (3
2
N, 3

2
N)

D (3
2
N, 3

2
N) (N,N),

(11.57)

and for odd N of

Y

X

(ΠX ,ΠY ) C D

C (2N, 2N) 3
2
[N − 1, N + 1]

D 3
2
[N + 1, N − 1] (N,N).

(11.58)
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That is, in the joint probability space PX
B |xn=yn−1 × PY

B |yn=xn−1 , the normal form game

(and equivalent game tree) is described by an effective payoff matrix with altered off-

diagonal elements which naturally modify equilibria.

As usual, the constrained equilibria in the joint space PX
B |xn=yn−1 × PY

B |yn=xn−1 are

now located via

d⟨ΠX⟩
dPX(1)

=















−N
2
, N even,

−1
2
(N − 3), N odd,

d⟨ΠY ⟩
dP Y (1)

=















−N
2
, N even,

−1
2
(N − 3), N odd.

(11.59)

Thus, for either N even or for N odd and greater than 3 we have the equilibrium points

PX(1) = 0 and P Y (1) = 0 or (x1, y1) = (0, 0) ≡ (C,C). Alternatively, for N = 1 the

equilibria is PX(1) = 1 and P Y (1) = 1 or (x1, y1) = (1, 1) ≡ (D,D). When N = 3 these

conditions are satisfied for any values of (x1, y1) requiring examination of actual payoffs

motivating the selection (x1, y1) = (0, 0) ≡ (C,C). The generated sequences of play are

N (x1, y1) (⟨ΠX⟩, ⟨ΠY ⟩)

1 (1, 1) (DD) (1, 1)

N ≥ 2 (0, 0) (CC) . . . (CC) (2N, 2N).

(11.60)

11.5.4 N ≥ 2: Comparing payoffs

Each player must then compare the payoffs they expect given that together they jointly

adopt the probability space combinations examined above. A table of all possible out-

comes for an N ≥ 2 stage game given the probability spaces under consideration takes

the form
(

⟨ΠX⟩, ⟨ΠY ⟩
)

PY
B |yn=xn−1 PY

B

PX
B |xn=yn−1 (2N, 2N) (2N − 1, 2N − 1)

PX
B (2N − 1, 2N − 1) (N,N)

. (11.61)

This table makes it clear that in all the games considered here with two or more stages,

players of unbounded rationality maximize their payoffs by each adopting the joint prob-

ability space PX
B |xn=yn−1 × PY

B |yn=xn−1 in which they adopt isomorphic constraints to

correlate all of their choices in every stage after the first with their opponents. Once each

player has adopted this particular probability space, this means that they have adopted a
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“roulette” randomization device which allows them no further choices in any stage after

the first, and they have done this as it maximizes their expected payoff.

As in the N = 2 stage game, we conclude that while players of bounded rationality

implementing a conventional analysis will defect in the multiple stage game, players of

unrestricted rationality will cooperate in the finite iterated prisoner’s dilemma. Again,

our analysis is consistent with observed human behaviours [96, 97].

11.5.5 N ≥ 2: Endgame analysis

The simplified analysis of the previous section does not allow consideration of “endgame”

strategies where players seek to defect in the final stages of a multiple stage game to

preempt the defection of their opponent. It is these preemptive defections in backwards

induction which conventionally require players of bounded rationality to defect in every

stage of the finite iterated prisoner’s dilemma. The question now is, does such mutual

preemption apply in an unbounded rational analysis where players consider a wider range

of possible alternate probability spaces. To this end, we suppose that player X adopts

a probability space PX
k where they functionally correlate their moves for stage 2 ≤ n ≤

(N − k) to their opponent’s previous choices via

xn = yn−1

PX(xn|Hn) = δxnyn−1 , (11.62)

for 2 ≤ n ≤ N − k and for every history Hn, but chooses to make their choices in subse-

quent stages independently so that for (N−k+1) ≤ n ≤ N , all distributions PX(xn|Hn)

for all histories Hn represent independent behavioural random variables. Similarly, we

suppose that player Y adopts a probability space PY
j where they functionally correlate

their moves for stage 2 ≤ n ≤ (N − j) to their opponent’s previous choices N via

yn = xn−1

P Y (yn|Hn) = δynxn−1 , (11.63)

for 2 ≤ n ≤ N − j and for every history Hn, but chooses to make their choices in

subsequent stages independently so that for (N − j + 1) ≤ n ≤ N , all distributions

P Y (yn|Hn) for all histories Hn represent independent behavioural random variables.

For either player, the probability space PZ
k subsumes a number of other possible

probability spaces of interest. For instance, setting either k = N − 1 or k = N makes

all of player Z’s behavioural variables throughout the entire game independent, so PZ
N =

PZ
N−1 = PZ

B . More interestingly, this probability space subsumes certain deterministic

alternatives. To see this, suppose that player Z considers a probability space enforcing

defection with certainty in the last k stages. However, it is not difficult to see that this

probability space is weakly dominated by space PZ
k —this latter space allows players to

either defect whenever that is payoff maximizing so they will do as well as defecting

with certainty, or to cooperate whenever that is payoff maximizing so they will do as
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well as cooperating with certainty. That is, the motivation to preemptively defect in the

endgame for a larger payoff is taken into account when considering the probability space

PZ
k . Exactly similar considerations establish that PZ

k weakly dominates spaces enforcing

a deterministic play of Tit-For-Tat which specify cooperation in the first stage.

We now suppose that players X and Y together adopt the joint probability spaces

PX
k ×PY

j to examine rational choices for the cessation of cooperative play and the onset

of preemptive defections. In this particular joint probability space, the optimization

problem for each player becomes

X : max
p1,PX(1|HN−k+1),...,PX(1|HN )

⟨ΠX
kj⟩ =

1
∑

x1,xN−k+1,...,xN=0

y1,yN−j+1,...yN=0

PX(x1)P
Y (y1)P

X(xN−k+1|H ′
N−k+1)P

Y (yN−j+1|H ′
N−j+1)× . . .

. . .× PX(xN |H ′
N)P

Y (yN |H ′
N)Π

X
kj(x1, xN−k+1, . . . , xN , y1, yN−j+1, . . . , yN)

Y : max
q1,PY (1|HN−j+1),...,PY (1|HN )

⟨ΠY
kj⟩ = (11.64)

1
∑

x1,xN−k+1,...,xN=0

y1,yN−j+1,...yN=0

PX(x1)P
Y (y1)P

X(xN−k+1|H ′
N−k+1)P

Y (yN−j+1|H ′
N−j+1)× . . .

. . .× PX(xN |H ′
N)P

Y (yN |H ′
N)Π

Y
kj(x1, xN−k+1, . . . , xN , y1, yN−j+1, . . . yN),

where again, care must be taken in writing the delta-function modified history sets H ′
n.

In this equation, the attained payoffs for any given play

sequence (x1, xN−k+1, . . . , xN , y1, yN−j+1 . . . , yN), assuming for simplicity that N ≥ 3,

are variously:

1 ≤ k ≤ (N − 1), j = 0 : independent variables: x1, xN−k+1, . . . , xN , y1 (11.65)

ΠX
kj =















2N + k−N
2

x1 +
k−4−N

2
y1 −

∑N−1
n=N−k+1 xn + xN , (N − k) even

2N + k−1−N
2

x1 +
k−3−N

2
y1 −

∑N−1
n=N−k+1 xn + xN , (N − k) odd.

ΠY
kj =















2N + k−N
2

x1 +
2+k−N

2
y1 −

∑N−1
n=N−k+1 xn − 2xN , (N − k) even

2N + k−1−N
2

x1 +
3+k−N

2
y1 −

∑N−1
n=N−k+1 xn − 2xN , (N − k) odd.

1 ≤ k ≤ (N − 1), j = (N − 1) : independent variables: x1, xN−k+1, . . . , xN , y1, . . . , yN
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ΠX
kj = 2N + x1 +

N
∑

n=N−k+1

xn −
N−k−1
∑

n=1

yn − 2
N
∑

n=N−k

yn,

ΠY
kj = 2N − 2x1 − 2

N
∑

n=N−k+1

xn −
N−k−1
∑

n=1

yn +
N
∑

n=N−k

yn

k = j, 1 ≤ k ≤ (N − 1) : independent variables: x1, xN−k+1, . . . , xN , y1, yN−k+1, . . . , yN

ΠX
kj =















2N + k−N
2

x1 +
k−N
2

y1 +
∑N

n=N−k+1 xn − 2
∑N

n=N−k+1 yn, (N − k) even

2N + 3+k−N
2

x1 +
k−3−N

2
y1 +

∑N
n=N−k+1 xn − 2

∑N
n=N−k+1 yn, (N − k) odd

ΠY
kj =















2N + k−N
2

x1 +
k−N
2

y1 − 2
∑N

n=N−k+1 xn +
∑N

n=N−k+1 yn, (N − k) even

2N + k−3−N
2

x1 +
3+k−N

2
y1 − 2

∑N
n=N−k+1 xn +

∑N
n=N−k+1 yn, (N − k) odd.

k > j, 1 ≤ k, j ≤ (N − 1) : independent variables: x1, xN−k+1, . . . , xN , y1, yN−j+1, . . . , yN

ΠX
kj =







































2N + k−N
2

x1 +
k−4−N

2
y1 −

∑N−j−1
n=N−k+1 xn +

∑N
n=N−j xn − 2

∑N
n=N−j+1 yn,

(N − k) even

2N + k−1−N
2

x1 +
k−3−N

2
y1 −

∑N−j−1
n=N−k+1 xn +

∑N
n=N−j xn − 2

∑N
n=N−j+1 yn,

(N − k) odd

ΠY
kj =







































2N + k−N
2

x1 +
2+k−N

2
y1 −

∑N−j−1
n=N−k+1 xn − 2

∑N
n=N−j xn +

∑N
n=N−j+1 yn,

(N − k) even

2N + k−1−N
2

x1 +
3+k−N

2
y1 −

∑N−j−1
n=N−k+1 xn − 2

∑N
n=N−j xn +

∑N
n=N−j+1 yn,

(N − k) odd.

The respective constrained equilibria with the optimized payoffs as shown in Table

11.2 for all combinations of k and j. Every listed payoff pair in Table 11.2 is an iso-

morphically constrained equilibrium point optimizing payoffs given imposed constraints.

As noted previously, there is no generally accepted method to choose between alternate

equilibria. However, it is tempting to use the rules of game theory to try to select an

optimal choice of play. In Table 11.2, each alternate probability space becomes a strategy

choice, and each equilibrium point becomes a pair of payoffs. Standard techniques can
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Table 11.2: A partial listing of isomorphic equilibria when players X and Y jointly adopt

the probability space PX
k × PY

j . In this space, X functionally correlates their moves for

stage 2 ≤ n ≤ (N − k) to their opponent’s previous choices but adopts independent

behavioural strategies in stages (N − k + 1) to N , while player Y functionally correlates

their moves for stage 2 ≤ n ≤ (N − j) to their opponent’s previous choices but adopts

independent behavioural strategies in stages (N − j +1) to N . Here, every shown payoff

pair is a isomorphic equilibrium point making selection of a single best payoff maximiza-

tion strategy difficult. Fractions indicate alternate equilibria with distinct payoffs shown

in the numerator and denominator. Ditto signs (”) and equal signs (=) copy values

downwards and to the right respectively.
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then be applied to determine global equilibria among the located constrained equilibria.

However, we note that in general we have to take care to deal with multiple equilib-

ria generated by particular joint probability spaces. By applying the Nash equilibrium

definition to Table 11.2, we obtain global equilibria at PX
k × PY

j for either k = 0 and

3 ≤ j ≤ (N − 2), or j = 0 and 3 ≤ k ≤ (N − 2).

These global equilibria can be considered rational for the iterated prisoner’s dilemma

in this restricted class of joint probability spaces, and there is no established way to select

a particular one among these. The more important feature given from this analysis is

that cooperation still naturally arises from these equilibria. The pathways produced by

these equilibria are dominated by cooperation apart from some different choices at the last

stage. This cooperative behaviour results when players of unbounded rationality examine

alterative probability spaces to optimize their payoffs, in contrast to the conventionally

mandated analysis wherein players are able to examine only a single probability space

and are thus of bounded rationality.
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Chapter 12

Conclusion

12.1 The foundations of strategic analysis

Strategic game analysis begins by defining the set of players

I = {1, 2, . . . , n} (12.1)

with n ≥ 2. The choice n = 1 corresponds to decision theory. This immediately begs

the question as to whether n is fixed or variable, and what effect this might have on the

structure of the game analysis space. The number of players n acts as an index denoting

the size of all subsequent spaces, and n would normally be considered as a constant taking

different values. Suppose however, that a player wanted to construct a single space which

“contained” all the possible spaces defined by each value of n. Would this single space

adopt isomorphic mappings or allow uncertainty in the number of players to influence

strategic decisions?

Subsequently, each player i has a set of pure strategies Si = {1, 2, . . . ,mi} which

combine together to give a set of pure strategy profiles S = S1 × . . . × Sn. It is com-

monly assumed that an unconstrained rational player must consider every one of their

moves with some (possibly infinitesimal) probability and thus that the structure of the

strategy set specifies the structure of the game. In contrast, we have shown that differ-

ent probability spaces can be applied to the set of all possible strategies. Hence, it is a

mistake to assume that the dimensionality of the strategy set somehow determines the

dimensionality of the game space.

A payoff function Π : S → ℜn with Π(s) = [Π1(s), . . . ,Πn(s)] then defines the payoff

that player i receives when strategy profile s ∈ S is played. Subsequently, a player i’s

mixed strategy is defined as a probability distribution over the pure strategy set Si to

locate a point in an (mi − 1)−dimensional standard simplex

∆i =







xi ∈ Rmi : ∀j = 1 . . .mi : xij ≥ 0 :
mi
∑

j=1

xij = 1







. (12.2)

The mixed strategy profile is then a vector x = {x1, . . . , xn}. The mixed strategy space

is a multi-simplex ∆ = ∆1 × . . . × ∆n. This simplex is held to be “complete” and to
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contain every possible probability distribution that might describe a game. It certainly

contains every possible value of every possible probability distribution, but optimization

requires it to contain every possible value and gradient of each probability distribution

at a minimum. (Situations requiring greater generality could well be envisaged.)

Finally, following Von Neumann and Morgenstern, it is universally held that every

player’s randomizations are independent and hence that there are no constraints acting

on the probability distributions of the mixed strategy space. Thus, the probability of a

pure strategy profile s given x is

x(s) =
n
∏

i=1

xisi (12.3)

and the expected payoff to player i is

ui(x) =
∑

s∈S
xi(s)Πi(s). (12.4)

This payoff definition acts to limit the scope of possible games considered in game theory.

There is no reason why games have to be restricted to consider only poly-linear expected

payoff functions, and we argue here that these restrictions have limited the ability to

analyze games. Payoffs can be assigned to players based on the probability distributions

that they adopt, or on the gradients of the adopted probability distributions, or on their

ability to maximize entropy or uncertainty or mutual information or Fisher information.

Game probability distributions can be actualized by having players adjust the probability

of light transmission through painted glass, or by altering the placement and number of

pins effecting the fall of balls or of water streams. More mundanely, players can instruct

agents allowing referees to repeat games many times to deduce adopted probability dis-

tributions to assign payoffs. Further, in the absence of a complete theory of games, we

simply do not know if players of unbounded rationality would optimize their outcomes

by calculating the Fisher Information of a game, or by maximizing the Log Likelihood

function. No limits should be placed on rationality in formulating a complete theory of

games.

Present practice in game theory discards isomorphism constraints allowing the mixed

strategy space to take the form of a compact convex polyhedron in which expected payoff

functions are quasiconcave and continuous polylinear functions of the mixed strategies

of each player. This, in turn, allows the use of fixed point theorems to locate Nash

equilibria, points at which no player can unilaterally improve their expected payoffs

by changing their mixed strategy [2, 3]. However, no rationale has ever been offered

for why the tangent spaces of the embedded source probability distributions need to

be overwritten. That is, the strength of the isomorphisms underlying the construction

of mixed strategy spaces has never been considered. Whenever analysis is transferred

from one space to another, then the strength of the isomorphism underlying the transfer

mapping must be established. Von Neumann did precisely this when he provided the

mathematical foundations of quantum mechanics. In its early stages, quantum mechanics

appeared in two seemingly distinct forms, matrix mechanics and wave mechanics. Von
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Nuemann unified these approaches by establishing an exact isomorphism between the

space of states in matrix mechanics and the space of wave functions including all relevant

derivatives using theorems from functional analysis [124]. From that point on, the proven

existence of this isomorphic mapping allowed quantum analysis to use either matrix or

wave approaches as desired. In game theory, the strength of the isomorphic mapping

underlying the embedding of probability spaces within mixed strategy spaces has not yet

been established.

If, following probability theory, the original tangent spaces of the source probability

distributions describing a game are retained within the mixed strategy space, then this

impacts on the boundaries, shape, dimensionality, and geometry of the mixed strategy

space. In turn, this alters the strategic analysis. For example, different tangent spaces

can change the convexity and polylinearity properties of expected payoff functions—

one tangent space might ensure expected payoff functions are convex and polylinear so

established existence theorems can define Nash equilibria, while a different tangent space

might support nonconvex and non-polylinear expected payoff functions. In such spaces

established existence theorems cannot be used to define Nash equilibria.

Probability theory models two perfectly correlated variables as necessarily possessing

perfectly correlated trembles, and accomplishes this by using a one-dimensional tan-

gent space. In contrast, in the mixed strategy space two perfectly correlated variables

can exhibit independent trembles because the mixed strategy tangent space permits this.

Similarly, probability theory models independent variables as necessarily possessing inde-

pendent trembles in a two dimensional tangent space. In contrast, independent variables

in the mixed strategy space must exhibit correlated trembles if they are to remain inde-

pendent in the enlarged tangent space of the mixed strategy space. (They must fluctuate

together to maintain the separability of their joint distribution.) The different tangent

spaces adopted by probability theory and game theory impact on which probabilities can

be trembled and on the possibility of equilibrium refinements. As trembles are the differ-

ential variations of probability parameters within the adopted tangent space, so different

tangent spaces modify both possible trembles and defined gradient operators. Altering

the differential fluctuations and gradients of a probability space correspond to altering

which moves can occur at each stage of a game and even of the number of stages in a

game. In turn, these altered move trees impact on the implementation of optimization

algorithms such as “backwards induction”. In general, the adopted tangent space un-

derlies all optimization algorithms in both game and probability theory. Game theory

imposes the tangent space of the mixed strategy simplex on all the probability distribu-

tions modelling a game, while probability theory associates different tangent spaces with

each probability distribution. It is natural to expect that these different adopted tangent

spaces will lead to different optimization outcomes.

In this work, we have shown that we can define and employ probability distributions

possessing properties which differ from any “contained” within the mixed strategy sim-

plex. These probability distributions possess a different differential geometry to that of
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the simplex. This has not generally been considered as probability spaces are not sup-

posed to possess a geometrical interpretation. However, optimizing random functions

within probability spaces often takes advantage of the geometrical properties of those

spaces, and when those spaces are isomorphically embedded within enlarged probability

spaces, then those geometrical properties must be preserved.

We further note that mixed strategy spaces are supposed to contain all cases of deter-

ministic dependencies. Every deterministic dependency equates to every possible func-

tional dependency, and there are standard techniques for dealing with these functional

dependencies. Players can embed their decision making processes within determinis-

tic functional spaces of arbitrary dimension and scope. The resulting analysis must be

consistent with multi-variate calculus and differential geometry. Should probability dis-

tributions be applied to these analytical structures, then the analysis should be consistent

with probability theory.

There are essentially no limits to the scope of the analysis that can be brought to bear

by a rational optimizing agent in a game. And game theory needs to provide a treatment

consistent with these other approaches. If a player, following the rules of game theory,

cannot accurately calculate properties of a game, then they have bounded rationality.

In order to properly calculate game properties, players must use isomorphic probability

spaces. Isomorphic mappings are necessary in order to exhibit unbounded rationality.

In this paper, we hold that game theory must be fully consistent with both probability

theory and optimization theory in general. Further, we hold that rational players must

be able to reproduce any result from probability theory or optimization theory when

analyzing a game or a decision tree. Indeed, a rational player should, if they chose, be

able to exclusively use techniques from probability theory and find perfect accord with

the results of game theory. Probability theory mandates that appropriate constraints

designed to preserve tangent spaces must be used whenever probability distributions are

embedded within an enlarged space in order to preserve all properties. Game theory

has eschewed use of any constraints when embedding distributions within the mixed

strategy probability space, and this leads to contradictions with probability theory. These

discrepancies stem from the different tangent spaces adopted by probability theory and

game theory, and an examination of these issues promises to cast light on some of the

paradoxes of game theory. At the very least, these issues require examination even if

only to establish their irrelevance.

In this work, we consider how to locate the best possible optima from many differ-

ent functions defined over different incommensurate spaces. One way to approach this

problem is to sequentially select each space, and then each function within that space,

and then to locate each of the optima of that function, and finally to compare all op-

tima to locate the best outcome. An alternative approach is to embed every possible

function from each space into a single enlarged function, and then to apply standard

techniques to locate the optima of that function. This approach is in common use in

decision theory, game theory, and in artificial intelligence where multistage search and
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decision problems are concatenated together into a single, enlarged, multivariate map-

ping from choices to outcomes. However, the typical embeddings used in these fields do

not preserve gradient information specific to the source function. That is, an embedding

of a source function f(x) within a surface g(x, y) can be via either limy→y0g(x, y) = f(x)

or g(x, y)|y=y0 = f(x). The first of these methods does not necessarily preserve gradient

information as limy→y0 ∇g(x, y) ̸= ∇g(x, y)|y=y0 = ∇f(x). In other words, the surface

gradient generally does not replicate the line gradient of the function embedded within

it. This means that a single surface containing many embedded functions can’t repro-

duce gradient information and hence can’t be used to locate optima of those embedded

functions.
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[73] W. Güth and M. Yaari. An evolutionary approach to explain reciprocal behavior

in a simple strategic game. In U. Witt, editor, Explaining Process and Change:

Appproaches to Evolutionary Economics, pages 23–34, Ann Arbor, 1992.

[74] R. Peters. Evolutionary stability in the ultimatum game. Group Decision and

Negotiation, 9(4):315–324, 2000.

[75] G. Hardin. The tragedy of the commons. Science, 162:1243–1248, 1968.

[76] E. Fehr and S. Gachter. Cooperation and punishment in public goods experiments.

American Economic Review, 90:980–994, 2000.

[77] M. A. Nowak and K. Sigmund. Evolution of indirect reciprocity by image scoring.

Nature, 393:573–577, 1998.

[78] C. Wedekind and M. Milinski. Cooperation through image scoring in humans.

Science, 288:850–852, 2000.

[79] E. Fehr and U. Fischbacher. Social norms and human cooperation. Trends in

Cognitive Sciences, 8(4):185–190, 2004.

[80] M. A. Nowak and K. Sigmund. Evolution of indirect reciprocity. Nature, 437:1291–

1298, 2005.

[81] R. Beausoleil K.-Y. Chen, T. Hogg. A practical quantum mechanism for the public

goods game. Eprint Archive:quant-phys/0301013 (See http://arxiv.org/abs/quant-

ph/0301013), 2003.

[82] D. M. Kreps. A Course in Microeconomic Theory. Harvester Wheatsheaf, New

York, 1990.

[83] R. McKelvey and T. Palfrey. An experimental study of the centipede game. Econo-

metrica, 60(4):803–836, 1992.

[84] R. Nagel and F. F. Tang. An experimental study on the centipede game in normal

form: An investigation on learning. Journal of Mathematical Psychology, 42:356–

384, 1998.

[85] K. Binmore. Modeling rational players: Part I. Economics and Philosophy, 3:179–

214, 1987.

[86] K. Binmore. Modeling rational players: Part II. Economics and Philosophy, 4:9–55,

1988.

[87] K. Binmore. Rationality in the centipede. In R. Fagin, editor, Theoretical Aspects

Of Rationality And Knowledge (TARK 1994): Proceedings of the 5th Conference on

Theoretical Aspects of Reasoning about Knowledge, pages 150–159, Pacific Grove,

California, 1994. Morgan Kaufmann.



BIBLIOGRAPHY 159

[88] R. J. Aumann. Backward induction and common knowledge of rationality. Games

and Economic Behavior, 8:6–19, 1995.

[89] K. Binmore. A note on backward induction. Games and Economic Behavior,

17:135–137, 1996.

[90] R. J. Aumann. Reply to Binmore. Games and Economic Behavior, 17:138–146,

1996.

[91] R. J. Aumann. Note on the centipede game. Games and Economic Behavior,

23:97–105, 1998.

[92] P. Pettit and R. Sugden. The backward induction paradox. The Journal of Phi-

losophy, 136(4):169–182, 1999.

[93] J. Broome and W. Rabinowicz. Backwards induction in the centipede game. Anal-

ysis, 59(4):237–242, 1999.

[94] J. H. Sobel. Backward-induction arguments: A paradox regained. Philosophy of

Science, 60(1):114–133, 1993.

[95] K. Sigmund and M. A. Nowak. A tale of two selves. Science, 290:949–950, 2000.

[96] R. Cooper, D. V. De Jong, R. Forsythe, and T. W. Ross. Cooperation without

reputation: Experimental evidence from prisoner’s dilemma games. Games and

Economic Behavior, 12(2):187–218, 1996.

[97] M. Milinski and C. Wedekind. Working memory constrains human cooperation in

the prisoner’s dilemma. Proceedings of the National Academy of Sciences of the

United States of America, 95(23):13755–13758, 1998.

[98] D. D. Davis and C. A. Holt. Equilibrium cooperation in two-stage games: Experi-

mental evidence. International Journal of Game Theory, 28(1):89–109, 1999.

[99] R. T. A. Croson. Thinking like a game theorist: Factors affecting the frequency of

equilibrium play. Journal of Economic Behavior and Organization, 41(3):299–314,

2000.

[100] R. Radner. Collusive behaviour in non-cooperative epsilon-equilibria in oligopolies

with long but finite lives. Journal of Economic Theory, 22:136–154, 1980.

[101] R. Radner. Can bounded rationality resolve the prisoner’s dilemma. In A. Mas-

Colell and W. Hildenbrand, editors, Essays in Honor of Gerard Debreu, pages

387–399, Amsterdam, 1986. North-Holland.

[102] F. Vegaredondo. Bayesian boundedly rational agents play the finitely repeated

prisoner’s dilemma. Theory and Decision, 36(2):187–206, 1994.



160 BIBLIOGRAPHY

[103] S. W. Harborne Jr. Common belief of rationality in the finitely repeated prisoners’

dilemma. Games and Economic Behavior, 19(1):133–143, 1997.

[104] N. Anthonisen. Strong rationalizability for two-player noncooperative games. Eco-

nomic Theory, 13:143–169, 1999.

[105] E. Fehr and U. Fischbacher. The nature of human altruism. Nature, 425:785–791,

2003.

[106] R. Axelrod. The Evolution of Cooperation. Basic Books, New York, 1984.

[107] J. C. Harsanyi. Games with incomplete information played by “Bayesian” players.

Management Science, 14(3):159–182, 1967.

[108] D. M. Kreps, P. Milgrom, J. Roberts, and R. Wilson. Rational cooperation in

the finitely repeated prisoner’s dilemma. Journal of Economic Theory, 27:245–252,

1982.

[109] D. Fudenberg and E. Maskin. The Folk Theorem in repeated games with discount-

ing and incomplete information. Econometrica, 54:533–554, 1986.

[110] R. Sarin. Simple play in the prisoner’s dilemma. Journal of Economic Behavior

and Organization, 40(1):105–113, 1999.

[111] A. Neyman. Cooperation in repeated games when the number of stages is not

known. Econometrica, 67(1):45–64, 1999.

[112] A. Neyman. Bounded complexity justifies cooperation in the finitely repeated pris-

oner’s dilemma. Economics Letters, 19:227–229, 1985.

[113] A. Rubinstein. Finite automata play the repeated prisoner’s dilemma. Journal of

Economic Theory, 39:83–96, 1986.

[114] I.-K. Cho and H. Li. How complex are networks playing repeated games. Economic

Theory, 13:93–123, 1999.

[115] H. Raff and D. Schmidt. Cumbersome coordination in repeated games. Interna-

tional Journal of Game Theory, 29(1):101–118, 2000.

[116] R. Evans and J. P. Thomas. Reputation and experimentation in repeated games

with two long-run players. Econometrica, 65(5):1153–1173, 1997.

[117] C. L. Sheng. A note on the prisoner dilemma. Theory and Decision, 36(3):233–246,

1994.

[118] E. Groes, H. J. Jacobsen, and B. Sloth. Adaptive learning in extensive form games

and sequential equilibria. Economic Theory, 13:125–142, 1999.



BIBLIOGRAPHY 161

[119] Q. A. Song and A. Kandel. A fuzzy approach to strategic games. IEEE Transactions

on Fuzzy Systems, 7(6):634–642, 1999.

[120] N. Howard. Paradoxes of Rationality: Theory of Metagames and Political Behavior.

MIT Press, Cambridge, Mass, 1971.

[121] A. Rapoport. Escape from paradox. Scientific American, 217:50–56, July 1967.

[122] P. D. Straffin. Game Theory and Strategy. Mathematical Association of America,

Washington, 1993.

[123] J. Eisert, M. Wilkens, and M. Lewenstein. Quantum games and quantum strategies.

Physical Review Letters, 83(15):3077–3080, 1999.

[124] J. von Neumann. Mathematical Foundations of Quantum Mechanics. Princeton

University Press, Princeton, 1955. First published in 1932.


