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Abstract

This paper shows through a Monte Carlo analysis the effect of ne-
glecting seasonal deterministics on the seasonal KPSS test. We found
that the test is most of the time heavily oversized and not convergent
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error variances did not signally change the test’s rejection frequencies
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1 Introduction

Unit root testing in macroeconomic time series has been a focus of interest of
several theoretical and applied research over the last three decades. Impor-
tantly, unit root tests help assess non-stationarity of many macroeconomic
data. In particular, they help determine whether the trend is stochastic, de-
terministic or a combination of both. Following Nelson and Plosser (1982),
many empirical studies have shown that macroeconomic variables have unit
root structures.

Although order of integration of time series is usually tested using unit
root tests, some authors suggest to change the null hypotheses of these tests
and, therefore, proceed to test the null hypothesis of stationarity against the
alternative hypothesis of unit roots as a means of consolidating the unit root
test results, see e.g. Park (1990). In this respect, one can mention the test
of Kwiatkowski et al. (1992), simply called KPSS test, which gained ground
in empirical research. In practice, using tests with no seasonal unit root
null hypothesis is also recorded albeit in a reduced dimension compared to
the use of stationarity tests involving non-seasonal data. In this framework,
Lyhagen ( 2006 ) proposed a seasonal version of the KPSS test. While being
interesting in terms of extension, such a version has a rather complicated
asymptotic theory particularly regarding complex unit roots. Khédhiri and
El Montasser (2010), through a simulation analysis, show that the seasonal
KPSS test is robust to the size and number of outliers and the obtained sta-
tistical results reveal a good overall performance of the test’s finite-sample
properties. In the same vein, Khédhiri and El Montasser (2012) has in-
cluded in the test’s regression-based model dummy variables for a modified
test whose null hypothesis is deterministic seasonality and the alternative
invoking some seasonal unit roots.

What type of models should we choose for seasonality? This issue has
been the subject of several studies in the literature. Several economists
agree that the indicator variable model is most appropriate for macroeco-
nomic data. However, many econometricians found seasonal unit roots in
a variety of economic time series. This controversy regarding such a pres-
ence can be exacerbated by interrelated patterns displayed by both models.
For example, when a time series exhibits seasonal unit roots, deterministic
seasonality is also usually present at some extent [ see Abeysinghe (1994)
and Lopes(1999), inter alia ]. Recently, Franses, Hylleberg and Lee (1995)
pointed out that solely considering seasonality as deterministic while the
time series is actually affected by seasonal unit roots results in spurious sta-
tistical inference. However, ignoring or avoiding deterministic seasonality
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in integrated time series should not be drawn from the conclusions of these
authors. In fact, Demetrescu and Hassler (2007) found that neglecting sea-
sonally varying means may inflate the size and at the same time reduce the
power of the Dickey-Fuller test [DF] (Dickey and Fuller, 1979). Similarly,
they have shown that the KPSS test also leads to distorted decisions in
presence of neglected seasonal dummies under the null hypothesis. More-
over, using a Monte Carlo analysis, Hassler and Rodrigues (2004) studied
the impact of neglecting the structural changes on seasonal unit roots. In
this regard, we believe that neglecting structural changes is similar to some
extent to neglecting deterministic seasonality in finit sample analyses. The
authors have shown indeed that the seasonal unit root test of Hylleberg et
al. (1990) as well as an LM variant thereof are asymptotically robust to
seasonal mean shifts of finite magnitude.

In this paper, we will extend the analysis of Demetrescu and Hassler
(2007) to seasonal stationarity tests. Specifically, we focus, through a Monte
Carlo analysis, on the impacts of neglecting seasonal dummies on the sea-
sonal KPSS test which is but the seasonal version of stationarity tests as
defined by Busetti and Taylor (2003). Remember that other most commonly
used tests of seasonal stationarity adopt also the KPSS framework, either
in the specification of the basic regression equation or in the construction of
the test statistic. This justifies our choice to study only the seasonal KPSS
test.

The rest of the paper is structured as follows. In section 2, we give
some preliminaries on the seasonal KPSS test. In section 3, a systematic
Monte Carlo analysis, in which quarterly data are simulated, is described
to examine the effects of neglecting seasonal dummies on the test statistic.
The final section concludes.

2 Seasonal KPSS Test: Preliminaries

Consider a time series yt with periodicity S. To simplify the presentation,
we examine in what follows quarterly data, i.e. S = 4. Furthermore, the
following model is considered to accommodate the seasonal KPSS statistic:

yt = x
′

tβ + rt + ut, t = 1, ..., T, (1)

with T = 4N , β
′

xt =
∑S

i=1 aiDit and the shorthand notation Dit = δ(i, t−

4[ (t−1)
4 ]), where we use [.] for the largest integer function and δ(i, j) for

Kroneckerâs δ function. The term ut is zero mean weakly dependent process
with an autocovariogram γh = E(utut+h) and a strictly positive long run
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variance ω2
u. rt is an autoregressive process which may contain seasonal unit

roots. For example, if the unit root at the Nyquist frequency is to be tested
for quarterly data , the process rt can be expressed as follows:

rt = −ρrt−1 + vt, (2)

where vt is weakly dependent and ρ > 0. Then, the null hypothesis of the
seasonal KPSS test is: H0 : ρ = k, with k < 1, under which the time
series is stationary and does not contain a Nyquist frequency unit root. The
alternative H1 : ρ = 1 indicates the presence of such a unit root.

In general, the process rt, corresponding to the seasonal unit root in
question, can be defined from ∆(θ) as the difference operator at frequency
θ ∈ [0, π] and described as follows:

∆(θ) =

{
1− cos θL, θ ∈ {0, π},

1− 2 cos θL+ L2, θ ∈]0, π[,
(3)

where L is the usual lag operator. The operator ∆(θ) is a difference filter
having a zero gain at the spectral frequency θ ∈ [0, π]; in other words it
removes unit roots at that frequency. Consistent with what, inter alia,
Hylleberg et al. (1990), Gregoir (1999), Cubadda (1999) and Busetti (2006)
proposed, a real-valued time series process yt is said to be integrated of order
d at frequency θ ∈ [0, π], denoted I(d, θ), if its d-th θ-difference,∆(θ)dyt, is
a linear process with a continuous and positive definite spectrum at θ.

At this level, we focus on the seasonal frequencies, i.e., the fundamental
one and its harmonics. The seasonal KPSS statistic corresponding to the
seasonal frequency λ = 2πj

S , j = 1, ..., [S/2], is formulated as follows:

ηλc,l =
1

T 2

∑T
t=1 S̃tS̃t

ω̃2
u(l)

, (4)

where S̃t =
∑t

j=1 exp
iλj ŷcj and ŷcj = yj − y. ŷcj in (4) implies that series has

to be demeaned and not seasonally demeaned to refer to seasonal dummies
omission problem. Obviously, if deterministic seasonality is to be tested,
the series should be seasonally adjusted using OLS estimates of seasonal
coefficients. In this case, the test statistic is denoted ηλd,l ; for more details,

see Khédhiri and El Montasser (2012). Eq. (4) uses ω̃2
u(l) the Newey-West

nonparametric correction of the long-run variance of the residuals ŷct . Note
that in testing for seasonal unit roots, this nonparametric correction should
not be carried out regardless of the seasonal context. More specifically, ω̃2

u(l)
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is the estimator of the spectral generating function is defined as follows:

ω̃2
u(l) =

l∑

τ=−l

ω(τ, l)γ̂u(τ) cosλjτ, (5)

where γ̂u(τ) = T−1
∑T

t=τ+1 y
c
ty

c
t−τ is the sample autocovariance at lag τ and

ω(τ, l) is a weighting function or kernel, such as ω(τ, l) = 1− |τ |
(l+1) .

One can use, following the example of Nyblom and Makelainen (1983),
the standard variance estimator defined as follows:

ω̂2
u =

1

T

T∑

t=1

(ŷct )
2. (6)

In this case, the seasonal Kpss statistic will be noted as:

ηλc =
1

T 2

∑T
t=1 S̃tS̃t

ω̂2
u

. (7)

Similarly, ηλd denotes the test statistic obtained by correcting the se-
ries for their seasonal means and without using HAC estimators of residual
variances. However, it is recognized that the standard variance estimator
defined in Eq.(6) is not widely used in literature since the autocorrelation
of residuals is a commonly observed feature in empirical applications.

3 Effects of neglected seasonal dummies: a Monte

Carlo evidence

We start by specifying the data generating processes (DGPs) considered in
this sesction. For the unit root of -1, the DGP follows Eqs. (1) and (2). For
complex unit roots, the component rt in (1) is generated by:

rt = 2ρ cos θrt−1 − ρ2rt−2 + vt, (8)

where θ denotes the fundamental frequency or any harmonic frequency other
than the Nyquist one and ρ ∈ [0, 1]. As it was mentioned above, the seasonal
periodicities used in this study are the quarterly ones. Our choice to work
with this data frequency is motivated by the fact that the seasonal KPSS test
was originally introduced for quarterly data. Therefore, it would be useful
to see the effects of neglecting seasonal means at this frequency. In addition,
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the considered sample sizes are T = 80 and T = 200. Moreover, we chose
ρ = 0.5 and ρ = 1 for respectively size and power experiments. Furthermore,
we take into account two choices of the bandwith as in Kwiatkowski et al.
(1992):

l4 =
[
4(T/100)0.25

]
, l12 =

[
12(T/100)0.25

]
.

All experiments rely on 30000 replications and were performed by means of
Matlab. The simulated series to be tested are set up from Eqs. (1), (2) and
(8), where the deterministic seasonality is controlled by one parameter a:

(i) a1 = a, a2 = a3 = a4 = 0

(ii) a1 = −a2 = a, a3 = a4 = 0

(iii) a1 = −a2 = a3 = −a4 = a

We report here the results for a = 3. We considered as well other values
ranging from 1 to 10 were also considered. The results are not significantly
different and are available upon request.

In a similar context, such as structural changes, the level stationarity
statistic of the standard KPSS test rejects too often the true null hypothesis
when we have a shift in the intercept; see, inter alia, Lee et al. (1997).
This is even true in the seasonal context. Indeed, observing Tables 1, 2,
and 3, we note that the statistics ηλc , η

λ
c,l4 and ηλc,l12, where λ can be equal

to π or π/2, tend to reject the null hypothesis almost perfectly. Worse,
by comparing the rejection frequencies relating to the size and power, it
is clear that the test is not convergent. The exception to this observation

can be seen in Table 3, where the test relating to the statistic η
π/2
c is very

conservative since it never rejects the null hypothesis of seasonal stationarity
when ρ = 0. This can be interpreted by the fact that the case (iii) promotes
trigonometric seasonality attached to the seasonal frequency π/2, and which
has not received any treatment. At this stage, the nonparametric correction
of error variances gave rejection frequencies notable enough for T = 80, but
they tend to 0 when T = 200.

On the other hand, the empirical sizes of the statistics ηλd built with
or without nonparametric correction of error variances are very close to
theoretical levels. In this regard, we note that their values did not differ
across the three tables. Still, these statistics show very high power slightly
superior to that of the statistics ηλc .
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Table 1: Rejection frequencies of the seasonal KPSS test, case (i)

T=80 T=200

1% 5% 10% 1% 5% 10%

ρ = 0 ηπc 0.9863 0.9994 0.9999 1 1 1
ηπd 0.0112 0.0535 0.1103 0.0091 0.0501 0.1010

η
π/2
c 1 1 1 1 1 1

η
π/2
d 0.0081 0.0487 0.1044 0.0103 0.0523 0.1036
ηπc,l4 0.9998 1 1 1 1 1

ηπd,l4 0.0197 0.0717 0.1291 0.0134 0.0598 0.1127

η
π/2
c,l4 1 1 1 1 1 1

η
π/2
d,l4 0.0225 0.0778 0.1367 0.0171 0.0660 0.1219

ηπc,l12 0.9996 1 1 1 1 1

ηπd,l12 0.0474 0.1214 0.1923 0.0243 0.0822 0.1414

η
π/2
c,l12 1 1 1 1 1 1

η
π/2
d,l12 0.0691 0.1578 0.2314 0.0357 0.1025 0.1684

ρ = −1 ηπc 0.8613 0.9373 0.9667 0.9716 0.9910 0.9968
ηπd 0.9598 0.9895 0.9962 0.9972 0.9998 1

η
π/2
c 0.9351 0.9724 0.9863 0.9941 0.9988 0.9996

η
π/2
d 0.9844 0.9962 0.9986 0.9998 1 1
ηπc,l4 0.9982 0.9997 0.9999 0.9999 1 1

ηπd,l4 0.9997 1 1 1 1 1

η
π/2
c,l4 0.9998 0.9999 1 1 1 1

η
π/2
d,l4 0.9997 1 1 1 1 1

ηπc,l12 0.9990 0.9998 1 1 1 1

ηπd,l12 1 1 1 1 1 1

η
π/2
c,l12 0.9999 0.9999 1 1 1 1

η
π/2
d,l12 0.9999 1 1 1 1 1

Note: ηλc,l4 and ηλc,l2, λ ∈ {π, π/2}, stand for seasonal KPSS statistics in (7)with respectively

nonparametric corrections of variance errors l4 and l12. Nevertheless ηλc,l4 and ηλc,l2, λ ∈ {π, π/2},

stand for seasonal KPSS statistics constructed from demeaned residuals and with nonparametric
corrections of variance errors l4 and l12 respectively.
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Table 2: Rejection frequencies of the seasonal KPSS test, case (ii)

T=80 T=200

1% 5% 10% 1% 5% 10%

ρ = 0 ηπc 1 1 1 1 1 1
ηπd 0.0112 0.0535 0.1103 0.0091 0.0501 0.1010

η
π/2
c 1 1 1 1 1 1

η
π/2
d 0.0081 0.0487 0.1044 0.0103 0.0523 0.1036
ηπc,l4 1 1 1 1 1 1

ηπd,l4 0.0197 0.0717 0.1291 0.0134 0.0598 0.1127

η
π/2
c,l4 1 1 1 1 1 1

η
π/2
d,l4 0.0225 0.0778 0.1367 0.0171 0.0660 0.1219

ηπc,l12 1 1 1 1 1 1

ηπd,l12 0.0474 0.1214 0.1923 0.0243 0.0822 0.1414

η
π/2
c,l12 1 1 1 1 1 1

η
π/2
d,l12 0.0691 0.1578 0.2314 0.0357 0.1025 0.1684

ρ = −1 ηπc 0.8573 0.9322 0.9601 0.9698 0.9902 0.9961
ηπd 0.9598 0.9895 0.9962 0.9972 0.9998 1

η
π/2
c 0.9179 0.9596 0.9774 0.9915 0.9976 0.9992

η
π/2
d 0.9844 0.9962 0.9986 0.9998 1 1
ηπc,l4 0.9987 0.9996 0.9998 0.9997 0.9999 1

ηπd,l4 0.9997 1 1 1 1 1

η
π/2
c,l4 0.9998 0.9999 1 1 1 1

η
π/2
d,l4 0.9997 1 1 1 1 1

ηπc,l12 0.9991 0.9998 1 1 1 1

ηπd,l12 1 1 1 1 1 1

η
π/2
c,l12 0.9999 0.9999 1 1 1 1

η
π/2
d,l12 0.9999 1 1 1 1 1

Note: See Table 1.
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Table 3: Rejection frequencies of the seasonal KPSS test, case (iii)

T=80 T=200

1% 5% 10% 1% 5% 10%

ρ = 0 ηπc 1 1 1 1 1 1
ηπd 0.0112 0.0535 0.1103 0.0091 0.0501 0.1010

η
π/2
c 0 0 0 0 0 0

η
π/2
d 0.0081 0.0487 0.1044 0.0103 0.0523 0.1036
ηπc,l4 1 1 1 1 1 1

ηπd,l4 0.0197 0.0717 0.1291 0.0134 0.0598 0.1127

η
π/2
c,l4 0.0217 0.0806 0.1443 0 0.0003 0.0016

η
π/2
d,l4 0.0225 0.0778 0.1367 0.0171 0.0660 0.1219

ηπc,l12 1 1 1 1 1 1

ηπd,l12 0.0474 0.1214 0.1923 0.0243 0.0822 0.1414

η
π/2
c,l12 0.0532 0.1392 0.2151 0.0020 0.0162 0.0396

η
π/2
d,l12 0.0691 0.1578 0.2314 0.0357 0.1025 0.1684

ρ = −1 ηπc 0.9103 0.9675 0.9836 0.9825 0.9960 0.9984
ηπd 0.9598 0.9895 0.9962 0.9972 0.9998 1

η
π/2
c 0.7880 0.8765 0.9115 0.9767 0.9918 0.9956

η
π/2
d 0.9844 0.9962 0.9986 0.9998 1 1
ηπc,l4 0.9990 0.9997 0.999 0.9999 1 1

ηπd,l4 0.9997 1 1 1 1 1

η
π/2
c,l4 0.9992 0.9998 0.9999 0.9998 1 1

η
π/2
d,l4 0.9997 1 1 1 1 1

ηπc,l12 0.9994 0.9999 0.9999 1 1 1

ηπd,l12 1 1 1 1 1 1

η
π/2
c,l12 0.9994 0.9999 1 1 1 1

η
π/2
d,l12 0.9999 1 1 1 1 1

Note: See Table 1.
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Overall, our results confirm those of Demetrescu and Hassler (2007) for
the standard KPSS test. Still, if we neglect the determinist seasonality, the
seasonal KPSS test undergoes serious size distortions.

4 Conclusion

The belief that deterministic seasonality had nothing to do with testing
for the long-run propreties of the data is invalid. Moreover, the fact of
neglecting this type of seasonality can seriously affect stationarity tests. The
seasonal extension ended with the same observations. This paper showed
that neglecting deterministic seasonality using seasonal stationarity tests
may lead us to the wrong conclusions. It is in this sense that these tests reject
too often the null hypothesis. More specifically, when neglecting seasonal
dummies, the seasonal KPSS test suffers large size distortions. However, if
one takes into account the deterministic seasonal variable, the empirical test
sizes closely approximate their theoretical levels.
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