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ABSTRACT: This paper investigates the impact of the Kolmogorov-Sinai entropy on both the accuracy of probabilistic 

forecasts and the sluggishness of economic growth. It first posits the Gaussian process Zt (indexed by the Hurst exponent H) as 

the output of a reflexive dynamic input/output system governed by some type of attractor. It next indexes families of attractors by 

the Hausdorff measure (D0) and assesses the uncertainty level plaguing probabilistic forecast in each family. The D0 signature of 

attractors is next applied to the S&P-500 Index The result allows the construction of the dynamic history of the index and 

establishes robust links between the Hausdorff dimension, investors’ behavior, and economic growth 
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1-INTRODUCTION  

Economists and architects of financial theory have spent a considerable time studying random stochastic fields, and  

sequences of random variables evolving in time in the hope of finding one that would mimic the evolution of prices 

and or returns of financial variables. A large portion of the ensuing literature is devoted to processes such as -stable 

Levy, self-similar, random walk, brownian motion with drift, and other constructed Wiener processes, etc. with 

particular emphasis on explaining “volatility clustering” in view of predicting the future course of financial 

variables. This paper is intended to show, among other things, the difficulty of reaching these objectives if one 

focusses solely on studying process’ “characteristics” rather than on the mechanisms that drive them.    

To be more specific, it is no exaggeration to say that the experts had embarked on an all-out effort to discover 

whether or not the property known as “long-term dependence” (LTD) exists in financial returns. LTD, another name 

for volatility clustering, according to Mandelbrot (1963), hinges either on specications such as ARCH and GARCH 

(1 1) or on the behavior of autocorrelation functions at large lags. If the autocorrelation function is observed to 

decay at a geometric rate, they conclude that short-term dependence (STD) exists; whereas a decay rate that is as 

slow as  a power law decay is assumed to reflect  long-term dependence (LTD).  

There are, however, a few drawbacks connected with that procedure. The nonstationarity of returns may generate 

spurious results that may be interpreted as LTD. When LTD and heavy tails occur together, autocorrelation 

functions may fail to be consistent estimators. And there exist many decay rates located between geometric and 

power law. Hence, the results obtained either from autocorrelation functions or from the GARCH specification do 

not convince because they can explain neither “market memory” nor the “dependence” of future volatity on present 

volatility. There are also two important omissions in the autocorrelation approach that stand to cloud the picture 

even further. The first is that financial time series are outputs of some “complex” dynamic systems. Even though 

position, behavior, and the future course of complex dynamical systems are fraught with uncertainty (see 

Morishima, 1976; Stokey et al., 1989; Orrel, 2009, among others). there are, however, no substitutes for them. The 

second omission relates to the total neglect of STD, which is full of pertinent information about the state of dynamic 

systems, as other sciences such as seismology, acoustics, hydrology, etc. have already discovered. If markets are 



dynamic constructs whose outputs (in terms of time series) vary in space and time, then variations of that nature 

reinforce the belief that modern markets may indeed be governed by attractors that are either “strange” or “complex” 

or even “chaotic”. And to shed light on the behavior of marlet attractors, there is no viable alternative but dynamic 

analyses.     

This paper will steer in that direction. More specifically, the second part will be concerned with the evolution of 

market prices as observed outputs of complex dynamic systems while assuming  that such outputs are best depicted 

by the so-called “fractional Brownian motion” (fBm), originally proposed by Mandelbrot and van Ness (1968), and 

augmented to “Mixed fractional Brownian motion” (MfBm) by Zili (2006), Thale (2009), Dominique and Rivera 

(2011), among others; in the MfBm process, it is easier to pinpoint the shrtcomings of autocorrelation functions, for 

example. Part III will briefly review the salient characteristics of attracting sets, indexes, and color-codes families of 

attractors by the Hausdorff measure in view of assessing the extent of the Kolmogorov-Sinai entropy, assumed to be 

the main source of the pervasive uncertainty associated with the motion of prices. Finally, Part IV will examine the 

S&P-500 Index as a collection of self-affine functions in an attempt to determine whether attractors’ noise colors 

reflect investors’ behavior as an important determinant of economic growth.     

 

2-THE MIXED FRACTIONAL BROWNIAN MOTION   

Consider first the Mandelbrot-van Ness (1968) specification: 

                                                                  Xt
H
 = {X

H (t, ω), t  , ω  }.                                                           (1)  

It is a real-valued intersection of self-similar and Gaussian processes defined on (, , Ρ}, indexed by H  (0, 1), 

satisfying E (X
H
 (t, ω)) = 0,  t  . Here, E denotes the expectation with respect to the probability law Ρ for X

H
, 

(, ) is a measurable space, H is the Hurst (1951) exponent, and. Xt
H
 are considered non-observable inputs into the 

observable output Zt given by:  

                                                       Zt = i bi (Xt
Hi

),  where bi  , i  n, Hi  n, Hi  (0, 1),                                (2)  

Zt is a linear combination of quasi self-similar Gaussian processes or a superposition of n independent input streams 

(Xt
Hi

), each with its own H. Zt has stationary but correlated increments, and is invariant under a whole family of 

transformations. As in input storage and teletraffic, Xt
Hi

 is assumed to arrive into Zt as “cars” (short-term 

expectations) or as “trains” (long-term expectations).   

Zt is conventionally assumed to be completely characterized by its zero mean and its covariance function, given by:  

                               Cov (Zt, Zs) = R(t, s) = i
n
 (bi)

2
 [ t

2 Hi
 + s

 2Hi
 -- t – s 2Hi

,    t, s  , i  n.                          (3)  

Additionally, the probability law is interpreted as follows: Denote a positive move at time t as Δzt
+
 and a negative 

move as Δzt
-
. Similarly for a positive and negative moves at t + 1 as Δ z+

t + 1 and Δ z -
t + 1,  respectively. . Next assign 

probability p1 to Δ z+
t + 1 and p2 to Δ z –t + 1. Then:  



Given H > ½, and (Δ z+
t ), then :                             p1 (Δ z+

t + 1)  >> p2 (Δ z –t + 1)                                                  (4)            

          H > ½, and (Δ zt
 –
) :                                       p2 (Δ z –t + 1) >> p1( Δ z +t + 1) .              

Given H < ½, and (Δ zt 
+
), then :                             p2 (Δ z –

t + 1)  >> p1 (Δ z +
t + 1)   

           H < ½,  and (Δ zt 
-
 ):                                     p1 (Δ z+

t + 1)    >> p2 (Δ z –t + 1)          

Given H = ½:                                                          p1 = p2  and  p1 + p2 = 1  

 

In other words, if H > ½ and today’s move is positive, then the probability of having a positive move tomorrow (p1) 

is much greater than the probability of having a negative move tomorrow (p2). Similarly, p2 is much greater than p1 

if todays’ move is negative and H > ½, etc. However, at H = ½, p1 = p2 is equivalent to having no useful 

information.  

Given the conventional interpretation in (3) and (4), why then probabilistic forecasts are so wide-off their marks? To 

proffer an answer, consider a vector u = [t. s], where t > 0, s > 0, t > s, and the second derivatives of (3).  Denote R tt 

=  [  Rt, s) /  t] /  t and similarly for Rss and Rts = Rst, etc. Then:  

                                                                                                                   > 0  for Hi > ½   

              Rtt = 2
-1

 i (bi) 
2
 (2 Hi ) (2 Hi – 1) [ t 

2Hi – 2
 –  t – s 2Hi – 2 

]        = 0  for Hi = ½                                (5)    

                                                                                                                  < 0  for Hi < ½  

                                                                                                                   > 0  for Hi > ½                                       

             Rss = 2
-1 i (bi)

 2 
(2 Hi ) (2 Hi – 1) [ s 

2Hi – 2
 +  t – s 2Hi – 2 

]          = 0  for Hi = ½  

                                                                                                                   < 0  for Hi < ½   

                                                                                                                    > 0 for Hi > ½    

                                                                                             Rts = Rst          = 0 for Hi = ½   

                                                                                                                    < 0 for Hi < ½ . 

From the Hessian matrix (Ħ) of (5), we have : 

i)                                            u
 T

 Ħ u > 0, i.,e positive definite for Hi > ½                                 (6) 

ii)                                            u 
T
 Ħ u < 0, negative definite for Hi < ½.   

iii)                                           det (Ħ) = 0  for Hi = ½,     

where the T stands for the transpose operator.  

Denote the autocorrelation function as C (), where  is the lag, then:  

                                            C () = C (Zt , Zt + ) = [L (t, h) ( 1 / ( (1 – 2c)
 ) ] / L (t) = 1/ ((1 – 2c) 

) ,                       (7)  



where L (t, h) / L (t)  1 as t,   ,  0 <  c < ½, and Hi > ½. That decay rate is observable in the persistence 

region. Whereas in the anti-persistence segment of H, the rate is given by:   

                                                      C ()  A c
 
  for A > 0, c  (0, 1) and Hi < ½.                                                    (7’) 

Equations (7)and (7) imply that for Hi > ½, C () decays as a power law of the lag  as t moves forward. But for Hi < 

½, the autocorrelation function decays  at a geometric rate of the lag. Further, as the determinant is zero at Hi = ½ 

that point is a (non-Morse) degenarate critical point of (3), indicating the exact location of a cusp. Put differently, for 

reasons that will be explicited later, (3) is in reality not strictly concave at Hi < ½ nor strictly convex at Hi > ½. 

Additionally, the usual assertion to the effect that a Brownian motion is recovered at Hi = ½ is not supported by (6), 

(7) and (7’). This is not surprising because Brownian motions are idealized and mathematically convenient 

intersections of self-similar and  - stable Levy processes.    

The above provides an  explanation as to: 1) why the probability law in (4) offers so little guidance to forecasters; 2) 

why the jump in decay rate in (7) and (7’), and 3) why it is so difficult to come up with a convincing explanation for 

the presence of LTD, or volatility clustering. In fact, volatility clustering only refers to the first part of the 

probability law in (4), while the likelhood of high frequencies in the H < ½ region is all but ignored. 

It is more promissing, it seems, to focus on the signal to noise ratios, or on upper and lower bounds in information 

thrown-off by dynamical systems. Recalling also that statistical mechanics allows macroscopic predictionis based on 

micro-properties of systems mrdiated by entropy. Then, it can be said that it is a description of how information 

changes as systems evolve from their initial states (Clement and Taylor, 2003; Engelberg et al., 2009). And such 

changes are measured by the so-called Kolmogorov-Sinai entropy which, according to the Persin’s Theorem (1977), 

may easily be evaluated by the Lyapunov characteristic exponents (LCE) or  Mainly for tractability, therefore, the 

next section briefly reviews the basic notions needed for an evaluation of information in dynamic systems.  

3- CHARCTERISTICS AND NOISE COLORS OF ATTRACTING SETS 

3.1 Salient Characteristics of Attractors 

As already indicated, each segment of Zt is the output of an attractor which may be strange or chaotic. As Zt varies 

over time (and space) (see Kaplan and Kuo, 1993; Preciado and Morris, 2008; Baraktur et al., 2003), it is essential 

therefore that the whole family of attractors be examined before Zt can be completely characterized.  

Let g: m
 m

 be a diffeomorphism of a smooth global manifold, where N (B) is the neighborhood of B, and t 

(B) is the flow or the evolution operator telling how the state of the system changes over time. If t (B)  N (.) at t  

0 and t (,) B as t  , then B is a compact hyperbolic attracting set for g. Moreover, in such a dissipative 

system, it can easily be shown that the volume of a fiducial phase space shrinks to zero as t  .  



Next denote the locally stable and unstable manifolds for a small neighborhood of B as S and U, respectively. Next, 

let points in S flow foreward in time, while points of U flow backward, then the globally stable and unstable 

manifolds of g are: 

                                                             M
s
 = t  t (B)   and   M

u
 = t -  t (B).   

These manifolds being unique and invariant under the flow, it then follows that:  

                                           z  Ms
 lim as t   t (.) = B    and     z  Mu 

lim as t  -  t (.) = B  

Moreover, let +
(z) ={z  z = t (zo), t  0},  and   --

(z) ={z  z = t (zo), t  0} be positive and negative half 

trajectories through zo, respectively, such that +
  --

 = . Then:  

                                           M
s
 (+

) = t  t (S (+
))  and   M

u
 (--

) = t  - t (U ( --
)).                                  (8)  

Thus, the attracting set is a “thin” set comprising two interleaved subsets of points of zero volume that do intersect. 

Trajectories, on the other hand, do not intersect, but they may nove from M
s
 to M

u
 as they circulate.  

There are three characteristics of hyperbolic attractors that are of interest here:  

1) If the attractor is strange, it resembles a Cantor point set containing a countable subset of periodic orbits of 

large periods; an uncountable subset of non-periodic orbits, and a dense orbit (Dominique and Rivera, 

2012);  

2) some attractors are termed “complex”, or high dimensional chaotic, if the sum of their positive Lyapunov 

characteristic exponents () exceeds the sum of their negative s but in the absence of sensitive dependence 

on initial conditions (SDIC). Put differently, the number of effective degrees of freedom of these attractors 

is lower than the dimension of the embedding space (m) but higher (hence Hausdorff dimension (D0) than 

that of “chaotic” attractors;  

3) attractors that are termed “chaotic”, or low dimensional chaotic, do have SDIC, and still a lower number of 

effective degrees of freedom than complex attractors. This is due to the concept of self-organization 

whereby these attractors have managed to reduce their own entropy by discharging chunk of it to an 

external reservoir to satisfy the Second Law of thermodynamics.  

The Hausdorff dimension of an attractor is a non-probabilistic measure of how orbits fill up the space available to 

them. Estimating the D0 of segments of Zt is therefore an easy way of identifying complex and chaotic attractors, as 

will be shown in the next section. But for now, let us reemphasize two points that will guide the reader for the rest of 

the discussion. That is, the hallmark of chaotic attractors is SDIC which may be quantified in terms of s which, in 

turn, measure the rate of exponential divergence of nearby trajectories. The second is the concept of the Kolmogorov 

entropy which measures the rate of information not available in dynamic systems. The next section will use iterated 

function systems (IFS) to first classify attractors by broad classes, and next will attempt to estimate the level of 

entropy in each class.     



3.2 Indexing Attractors with the Hausdorff Dimension                                                                   

The easiest way to separate attractors by broad classes and index them either by the Hurst exponent or the Hausdorff 

measure is to consider a family of Iterated Function Systems (F) (see Dominique and Rivera, 2013 and reference 

therein). That is,  

                                                                F = {fi},  fi: (0, 1)  (0, 1),  i  n, where  

                                                                    fi (zt ) = z t + 1 = K zt – K h zt 
 + 1

,                                                         (9)  

Equation (9) is quite general. Its mean (z
--
), control factor (K), equilibrium (z*) and stability condition are given by:  

z
--
= {1/ [ h ( + 1)

 
]

 1/
 },  K = 1/[ z

--
  (1 – h z

--
 ],  z* = [(K  - 1) / h K ]  and  dfi/ dzt = K [ 1 – h z


 ( + 1)]  [-1, 1].                                  

However  if h =1 and  = 1, (9) is reduced to a modified version of Jean-Francois Verhult’s growth equation , a. k.a, 

the logistic parabola. In that form, solutions exist for 1 K  4, but solutions for 1 K  3 yield fixed-point    

attractors, while those between 3 < K  4 generate period-doubling, complex, and chaotic attractors. Another 

important feature to note is that every fi between 3 < K  4 may be indexed either by H  (0 ,1) or by D0  (1, 2), 

starting with the highest member, denoted f 
max

 for which H = 0 or D0 = 2. Thus, K = 4 - H = 2 + D0 describes any f 

in the range of D0 and indexes its output at the same time. Equation (9) can then be written as:  

                                                           f (z) = ( 2 + D0 ) zt (1 – zt),  for h =1,  = 1                                                    (10)  

The iteration process identifies attractors, beginning with the first bifurcation given by:   

                                                 f (f (zt )) = K { K z* (1- z*) [1–K z* (1– z*)]} = z* ,                                           (11)   

but z* = ½ is the first superstable orbit encountered (dfi /dz = 0) and it happens to be a member of the list of all 

equilibria of sucessive iterates. The nest iterates are f (f (f (z))) = z*, f (f (f (f (z)))) = z*, etc. The result is such that 

every fi  has a D0 signature distinguishing it from another, and each describes a prototypical attractor.  

We use the Wavelet Multi-resolution BenoitTM of Trusoft International to compute D0 in the range of 3 < K  4. The 

result given in Figure 1and Table 1 below allows for 5 classes of attractors according to their characteristics. The 

pertinent conclusions that can be drwn are as follows:  

In one-hump maps such as (10), centered at z = ½, scale invariance should theoretivally be broken at K = 3.23, 

which is a root of (11). However, as a first surprise, scale invariance is experimentally broken well after a phase shift 

located before the second bifurcation occurring at K = 3.49…The second surprise is that the lower bound of the 

Hausdorff measure is at D0 = 1.08 rather  than 1.0. Incidentally, the fact that scale invariance is broken beyond the 

first bifurcation explains the black band observed at the beginning of the phase of period-doubling (see Figure 2).  

In period-doubling attractors, stable equilibria on M
s 

(.) jump to M
u 

(.) just before bifurcating. However, LCEs 

remain negative; a similar remark applies to the Li and York’s (1975) window at 3.82… K  3.84… 
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                   Figure 1: D0 vs. K. Over the interval 3.0 < K  < 3.44, the process is a persistent monofractal. Over the interval  3.45 < 

K < 3.84 it is an anti-persistent multifractal. The interval 3.82….  K  3.84 …is the Li & Yorke’s period-3 window. 

The interval 3.84 < K < 4.0 is persistent- multifractal and chaotic  

 

Type of attra-

ctors 

   Range of D0 Concentra-

tion 

Power spectral 

density () 

LCEs ()  Noise colors              Remark 

Fixed-point 1.0 < D0 < 1.2         ---    2.6 <  < 3.0     < 0      Black Experimentally, lower   

bound of D0 is 1.08 

Period-doubl-

ing 

1.41 < D0 < 1.59          ---   1.8 <  < 2.18     < 0    Dark pink Black band at 1.42 < D0 

< 1.47 

Fractal    D0  1.59         ---         1.82    < 0   Dark pink   Cantor-point set; no 

SDIC 

Complex 1.59 < D0 < 2.    D0  1.7   1.0 <  < 1.8     > 0       Pink No SDIC; high dimen-

sional chaos 

Chaotic 1.2 < D0 < 1.42    D0 =1.3  2.16 <  < 2.6     > 0   Dark grey SDIC; low-dimensional 

chaos 

Table 1: Salient characteristics of families of attractors indexed by the Hausdorff dimension D0. 



In fractal or strange attractors, LCEs are zero as orbits are either periodic or aperiodic, but no SDIC is observed. 

Consequently, there is no chaotic motion in the sense of Eckmann and Ruelle (1985). 

Attractors that exhibit complex motion are also high-dimensional chaotic. Their D0 is higher than those of other 

types, indicating thereby the highest level of Kolmogorov-Sinai entropy. Attractors in that family are able to 

decrease their entropy by dissipation. That is, they simply organize motion around fewer effective degrees of 

freedom by dischharging entropy into an esternal reservoir. However, until they can self-organize themselves, the 

area of their attracting set visited by orbits is the largest by definition. Their average D0 is approximately 1.7. 

The family of low-dimensional chaotic attractors has a lower D0 than the above category; their average D0 is anout 

1.3. A good example of that type is the Henon map even though the latter is 2-ditmensional and posesses a number 

of features that distinguish them from (10).  

It is tempting at this juncture to confront these results with computed values available in the literature. It is found 

that complex attractors have a larger D0, averaging 1.7, and the area of the attracting set visited by orbits is also 

larger than that of  chaotic attractors. For example, the complex Ikeda map, at a = 1.0, R = 0.9,  = 0.4, p = 6, and 

iterated more than 1000 times, has a D0 = 1.7 (see Hammel et al., 1985; Theiler,1990). On the other hand, the family 

of low dimensional chaotic attractors has an average D0 of 1.3 and the area of the attracting set visited by orbits is 

smaller than in the above case. An example of that type is the Henon map: 

                                                                                x t+1 = 1.0 + yt – a xt   

                                                                                yt + 1 = b xt ;  

for a = 1.4, and b = 0.3, its D0 = 1.3. Moreover, the subset of B visited by orbits is much smaller than that of the 

Ikeda attractor. In (10) at K = 4, one enters into a regime of complete chaos with a D0 = 1.42. Whereas in the Henon 

attractor, at a > 1.55, all orbits similarly escape to infinity.   

Finally, it is hypothesized that that fractal attractors should appear as a Cantor point-set. Grassberger (1981) has 

carried out theoretical and analytical computations on a map such as (10) but in 1-D and has found a D0 = 0.538… at 

aperiodicity, close to the Cantor set whose D0 = 0.6309. In this study, the value found  in 1-D is 0.58 <  D0 < 0.6.  

3.3 Assessing the Entropy Level  

The laws of physics do not permit the destruction of information. Then the Kolmogorov entropy must be interpreted 

as a a measure of information not available. Figure 2 (Plate a) below is a schetch of the findings of Table 1. The 

Kolmogorov entropy is equal to the sum of positive LCEs of an attractor. The entropy of each type is presented in 

Plate (a) of Figure 2 as the depths of  the valleys. As it can then be seen, a significant amount of entropy (or 

information I not available) is present in complex attractors. This then explains why probabilistic predictions would 

be inadvisable for time series whose D0 falls in the ranges of 1.6 to 2.0 and 1.2 and 1.42. Whereas in the black 

regions of Figure 2, representing linearity, predictions should be a trivial matter.  



 

                              

 

Figure  2 : Families of attractors indexed by the Hurst exponent ( H) and the Hausdorff dimension (D0). Plate (a): Information 

level vs. H. The depth of the valleys (white space) indicates the extent of infornation not available due to the Kolmogorov 

entropy. Plate (b): Distance c is pink; distance d is dark pink and black (e); distance f is dark grey; distance g is black, point j 

indicates the location of strange attractors.          

                                    



4- INFORMATION, INVESTORS’ BEHAVIOR, AND ECONOMIC GROWTH  

As shown in Figure 2, black noise output depicts fixed-point attractors of monofractal processes. Economists call 

them “perfectly competitive” processes in which participants are assumed to be small but have all the market 

information available. The main drawback in such idealized set-ups though is the total absence of economic growth. 

This seems to suggest that growth is a characteristic of imperfect competition or large modern markets, but in such 

markets information sets of participants are necessarily incomplete. This section will show that the more incomplete 

the information sets of participants are (hence higher entropy) the lower is the real rate of  economic growth 

4.1 The Correlation of Economic growth and Investors’ Behavior  

This section uses the Grand Microsoft Excel data set of the S&P-500 Index, sampled daily from January 3
rd

 1950 to 

February 28
th

 2011. The index was first detrended using logarithmic differences and divided into 12 segments of 

various lengths and according to quasi self-similar scales. Each segment was next filtered for white noise. For each 

segment, the Hausdorff dimension (D0) was computed using the Wavelet Multi-resolution BenoitTM of Trusoft 

International. Next, the D0 of each segment was matched with the average real rate of growth of the US economy 

over the same period. The reader should be made aware, however, that this is a coarse comparison since the series of 

real economic growth rates was sampled at yearly intervals. Despite this lack of sampling concordance between the 

series, the assertion of a correlation between investors’ behavior and economic growth is borne out from at three 

points of view.  

In teletraffic, attractors’ characteristics vary with inputs’ arrivals. Similarly in this study, markets characteristics 

vary with participants’ behavior. Put differently, investors’ confidence hinges information availability. The results 

are given in Table 2 below.  

Observe first that none of the segments of the index falls within the interval 1.0 < D0 > 1.2. This is interpreted to 

mean that over the sampling period the US economy could not have been characterized by perfect competition. 

However, as already indicated above, scale symmetry is not broken at the expected theoretical value. Hence, when 

the economy was either within the interval 1.42 < D0 < 1.47 (black band)  or within the interval 1.47 < D0 < 1.6 

(dark pink) or the remaining of the period-doubling region, the average rate of real growth was the highest on 

record. Thus, the conclusion to the effect that growth occurs when investors can rely on market information seems 

compelling. Further, the period-doubling region being composed of period -2 cycles, it also means that investors had 

no trouble “riding” these cycles, as the entropy level is low. The only exception to that rule is during the period 

1972-80, when the economy was in a period of heavy inflation, i. e. in one case on twelve.   

The other point of interest is that the real rates of growth appeared low when the market noise was pink. In the same 

vein, it is interesting to note the evolution of the average rate of growth of fixed assets over the pink region of Plate 

(a) of Figure 2. For example, from 2004 and 2011, private fixed assets, measured in billions of 2005 dollars, grew at 

an average yearly rate of 0.59 percent, while that of total fixed assets was even lower at  0.20 percent. The obvious 

explanation that can be found for this state of affairs is that investors’ long-term perspective was chattered by the  



            Period                    D0 Average Yearly Rate of Growth of 

Real GDP in Percent (1) 
             Noise Color 

         1950- 58  1.52                          3.56                Dark Pink 

         1958-61               1.41                            4.10                Dark Pink 

         1961-72                 1.47                          5.69                Black 

         1983-87                1.44                          4.80                Black 

         1988-92                 1.47                          3.32                Black 

         1992-97              1.54                          3.78                Dark Pink     

         1998-02                1.39                           3.08                Dark Grey 

         2003-07                1.89                           2.31                Pink     

         2007-08              1.72                               0.99                                      Pink 

         2009-11              1.86                           1.06                Pink 

        1972-80 (2) 
             1.78                                      3.20                Pink 

Table 2: Noise Color vs The average yearly rate of growth of real  US GDP, 1950-2011. (1) Real US GDP in 2005 dollars from 

US Bureau of Economic Analysis, retrived from www.BEA.gov on March 26th 2013. (2) Exception to the color-coded rule. 

 

extent of the Kolmogorov entropy during that period. That also may have forced them to become “short-termists” 

relying more and more on high frequency trading, which seems anathema to economic growth. 

Finally, Table 2 shows that at no time the market was low-dimensional-chaotic in the sense of Scheinkman and Le 

Baron (1989).    

As hypothesized, the real rate of growth appears low when the noise is color-coded pink. If noise colors were to vary 

as K remains constant, such changes could be attributed to the phenomenon called “intermittency” (where stable or- 

bits may wander into M
u
 before returning to M

 s
 or due to an incomplete intersection of M

 s
 and M

 u
, or even due to a 

reduction of effective degrees of freedom). The fact that K underwent changes rules out intermittency. In all and to 

be consistent with the initial hypothesis, it seems compelling to conclude that markets are indeed reflexive dynamic 

input/output constructs.  

CONCLUSIONS  

This paper posits process Zt as the output of a dynamic system whose attractor may be strange, period-doubling, 

complex or chaotic. When Zt is modeled as an MfBm, it reveals the limitations of the conventional approaches used 

to explain volatility clustering and to predict future values of financial stochastic processes. This study instead ex-

plains volatility clustering as a matter of investors’ confidence, and establishes the scaling histories of these process-

es in terms of the noise colors of their attractors.  

http://www.bea.gov/


In that context, iterated function systems were next used to index various families of attractors by their Hausdorff 

measure (D0). As a result, it is found that the D0 of period-doubling attractors lies between 1.41 and 1.59; that of 

strange attractors is about 1.59, while the average values of complex and chaotic attractors are 1.7 and 1.3, respec-

tively. In addition, that approach allows the assessment of the Kolmogorov-Sinai entropy of each family of attrac-

tors, which appears to be the root cause of the pervasive uncertainty surrounding probabilistic forecasts.   

The above results were then applied to the S&P-500 Index as a proxy for the US economy. It is found that, over the 

period 1950-2011 examined, the D0 of the attractor of the economy fluctuated in values between those of period-

doubling and complex. Interestingly, it is also found that the yearly real rates of economic growth were significantly 

higher when the noise color of the attractor was either black or dark pink rather than when it was pink. As the dy-

namic system in question is obviously reflexive, the paper concludes that input behavior begetting changes in attrac-

tors’ noise colors is therefore a major determinant of economic growth.    
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