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Abstract 
This paper proposes the short rate model with account of the stochastic dynamics of the 
short rates. Widely used financial products sensitive to the daily rate changes dictate 
importance of the adequate modelling of short rates. Their intrinsic properties are 
investigated based on the historical market data. We introduce the new model with the 
non-gaussian random driver and the auto-correlation factor. Special calibration 
procedures for the model are presented. Short rate stochastic dynamics and its display in 
an overnight indexed swap were investigated in several numerical experiments.    1 
 

 
1. Introduction 
 
An overnight rate (OR) modelling experiences a common problem how to impose 
simultaneously non-gaussian statistics and significant interdependence of daily changes. There 
are different approaches to address these issues: jump processes, fat-tail parameters, limiting 
boundaries (James 2000), mixture of normal distributions (Lee 1999 and Kim 2000), 
correlations in quiet and hectic days (Kim 2000) and (Embrechts 1999), volatilit y and 
correlation interdependence (Loretan 2000), using the Student t-distribution with non-integer 
values of degree of freedom as a simulation tool to approximate fat-tail distribution  (Heikkinen 
2002), a jump-diffusion model with the jump intensity as a time-dependent function was used 
by (Samuelides 2001), etc. We introduce here new stochastic model of the short rate based on 
the intrinsic properties of daily rate changes. 
 

2. Analysis of the historical data 
Statistics of overnight rates ir  is based on the nature of daily changes iii rrr −=∆ +1 . The 

stochastic characteristics of the OR changes ir∆ were derived from the available historical data 

(USD currency is used as an example). Typical pattern of OR daily changes is presented in 
Fig.1, and its probabilit y distribution - in Fig.2. 
 
                                                        
1 The views expressed in this paper are solely those of the authors and do not necessaril y reflect the views of the 
Bank of Montreal or the Photonics Research Ontario. 
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Fig.1. 
Overnight rate daily changes (USD, August 
1995 - August 2001) 

Fig.2. 
Probabilit y distribution of historical overnight 
rate daily changes (curve is the Gaussian 
function) 

 
This distribution represents narrow central peak ( %1.0± ) and wide background (“fat 

tails” ) expanding in the range of %5.0± . The first one reflects low volatilit y OR behavior, and 
the second one is due to relatively rare “hectic days” jumps in OR. For comparison, we plotted 
normal distribution function with the same standard deviation 

0
σ as the historical data 

probabilit y distribution. The difference is obvious. Stochastic distribution of this type cannot  
be characterized by standard deviation only. There are additional parameters: upper and lower 

bounds: ),(
u

pirpercentiler
u

∆=∆  and )1,(
u

pirpercentile
L

r −∆=∆ , upper and lower shortfall 

values: ),( uririraveragesur ∆≥∆∆=∆  and ),( LririraveragesLr ∆≤∆∆=∆ . Shortfall value (or tail 

conditional expectation (Artzner, Delbaen, Eber and Heath 1999)) is used as a risk coherent 
measure. In our case the shortfall value is an essential parameter for calibration of our model. 
Confidence level is assumed as 99.0=

u
p .  Statistical analysis results are summarized in the 

following table. 
 

Statistics on ∆r (USD) at the confidence level  99% 

sL
r∆  

L
r∆  Average Median 0

σ  
u

r∆  
su

r∆  Max | ∆r | 

-  0.651 % - 0.415 % 0.001 % 0.000 % 0.151 % 0.400 % 0.586 % 1.630 % 
 
The average of the rate daily changes is close to zero (less than 0.002%), and skewness 

is very low (we assume it negligible). Based on the historical experience one can anticipate 
correlation between daily changes within several days interval. Direct calculations of auto-
correlation parameter =kz covar( )kii rr +∆∆ ,  of the daily changes revealed that the one-day 

auto-correlation (“memory”) works as a strong stabili zer: 1z =-0.29  (USD). For most of other 

currencies parameter 1z  is also negative (for example, 1z = - 0.25 CAD, 1z = - 0.30 EUR). The 
influence of the negative correlation of this magnitude on the rate temporal behavior is 
obviously very significant (the "next day" rate change provides some compensation of the 
"previous day" rate change, thus keeping rate not too far from the initial value). 
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3. Overnight rate stochastic model 
 

Based in the analysis of the historical stochastic characteristics of the OR we introduce 
the following model. The daily change ( thi day) with m days of “memory” is chosen as a 
weighted sum of independent random values iε (each associated with ith day representing "non-

correlated" daily changes) 

( )∑
=

−=∆
m

j

ljijir
0

,2,1 σσεα ,     (1) 

where vector α  is normalized: ∑
=

=
m

j
j

0

2 1α . 

Auto-correlation vector z  is defined as 

( )2
i

kii
k

r

rr
z

∆

∆⋅∆
= +       (2) 

Here and below the ensemble averaging of a stochastic variable Ψ  or averaging of the 

historical data set iΨ  by i  is denoted as Ψ . Combining (1) and (2) we have  
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Assume that iε  are independent: ijiji δσεε 2=⋅  (symbol ijδ  denotes Kroneker symbol). Then 

 

kj

km

j
jkz +

−

=
⋅= ∑ αα

0

 ,   mk ...,0= , 10 =z     (4) 

 

Vector α  can be derived using values of z (from market data) by the following iterative 
procedure: 
 

Iteration procedure A 

1st iteration: Choose initial iteration values 2
1

)1(
0 1 z−=α , 0)1(

1 =≥jα ; 

(* )   sth iteration:  calculate 





⋅−= +

−

=

+ ∑ )(

1

)(
)(

0

)1( 1 s
kj

km

j

s
jks

s
k z αα

α
α  in the reverse order ( 0,....mk = ); 

 
Repeat (*) until equation (4) is satisfied with required precision. 
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Convergence of this procedure is 
quite reliable (see Fig.3 for maximal 
error of the equation (4) versus 
number of iterations). Dependence of 
auto-correlation factors zi and 

parameters αi on the number of days i 
is presented in Fig.4. 
       The dominant feature of the auto-
correlation pattern is the high 
negative “next-day” auto-correlation 
(z1 and α1). Parameters 

1σ  and 
2σ  of 

the stochastic process ( )l,2,
1

σσε  

with “fat tail” probabilit y distribution 
( )lx ,2; ,

1
σσΡ  represent the low-

volatilit y and the high-volatilit y 
components, and parameter l  is their 
relative contribution to the deviation. 

Fig.3. Convergence of the iterative procedure A 

 
 

 
Fig.4. 

 
 
The natural way to construct the probabilit y distribution function for modelling daily 

changes of the overnight rate is to use a linear combination (weighted sum) of two normal 
distributions with different standard deviations.  
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Similar approach (mixture of two lognormal densities as probabili ty density function) to model 
the short-term dynamics of the euro/dollar was used by (Rzepowski 2002). 

Parameters 
1σ , 

2σ  and l  can be found as a unique solution of the corresponding set of 

conditions: simultaneous fit of the model standard deviation, the upper bound and upper 
shortfall value to the historical ones. Calibration based on account of both the upper bound and 
shortfall provides efficient modelling of rare jump-like rate deviations. This solution can be 
found using iterative search of the minimum of the following objective function 

( ) dxlx

u
r

x
su

r
u

r

dxlx
u

pF ⋅∫
∞

∆
⋅−∆∫

∆

∞−
⋅−= +Ρ ),

2
,

1
;(),

2
,

1
;(

2
,

1 P σσσσσσ  (6) 

with )2
1

2
2/()2

1
2( 0 σσσσ −−=l . 

 A special random number generator is required to produce series of values 
( )l,2,

1
σσε  with probabilit y distribution (5). For simulation experiments it was used random 

number generator based on rejection method (Press1992).  Typically, volatilit y 
1σ  (quiet 

periods) is much lower than 
2σ  (hectic periods) by 3 to 6 times, and weight l  of the 

2σ -part 

of the distribution is less than 0.2. For example, results of the calibration procedure for USD 
OR are: 

1σ =0.12 %, 
2σ =0.38 % and l =0.06.  Convergence of the minimization procedure of 

the object function (6) is shown in Fig. 5. 

 
 Fig.5 

Objective function (6) versus iteration number 
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Calibration algorithm (resulting in identification of parameters αi (i=1..m), l, σ1 and σ2) 
satisfies conditions of a low risk model (precision fit is better than 10-4). Fig.6 illustrates best fit 
of the model probability distribution function (5) to historical distribution. For comparison 
there is the Gaussian function plotted with the historical standard deviation.  

 
Fig.6 

 Model “fat -tail” function fits much better the historical distribution than a Gaussian. It is 
even more persuasive in Fig.7 for the tail area of distributions. 

 

 
Fig.7.  

 
4. Overnight rate stochastic simulation 

 
An example of the historical rate path and two simulated scenarios for USD OR 

(starting from August 1, 1995) is presented in Fig.8. The simulated path of the OR (curve 
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"Autocorrelated") well illustrates two main features of the OR: periods with low volatilit y and 
periods with rapid fall or rise of the rate. The simulation path ("Non-correlated") illustrates 
importance of the auto-correlation account (simulation with zero correlation shows unstable 
behavior: rapid long-range deviations that are not observed historically) . This illustration 
cannot obviously be used for statistical risk estimations: it is merely visual aid in the model 
examination.  

 

 
Fig.8 

Statistical characteristics of the model and its abilit y to give “statistical forecast” are 
presented in Fig.9. Based on model parameters identified above using historical data from 
August 1, 1995 to August 1, 2001 (1450 days) we applied Monte Carlo simulation method to 
derive lower and upper shortfall values as well as lower and upper percentiles (with confidence 
level 99%) of the overnight rate for extended time horizon of 1740 days (to May 18, 2002). For 
comparison, the historical data are plotted on the same graph. 

One can see that historical OR curve is locked inside limit s of the 1st and 99th 
percentiles (open circles) during the whole time span used for model parameters estimation 
(1450 days). It is important to note that even unusually steep downturn of the OR beyond this 
time period (1450< t <1740) is still inside the limit s of shortfall curve (solid circles). It means 
that the model is able to “predict” (at given confidence level) the limit s of the OR path. 
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Fig.9 

    
 Tendency of the OR probabilit y distribution changes as the time period (term) increases 
is illustrated in Fig.10 and 11.  It is important to note that standard deviation of simulated rates 
increases as time term increases at much lower rate than it could in case of the normally 
(Gaussian) distributed stochastic process.  
 
   

 
Fig.10 
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Fig.11 

 
In case of a Gaussian process standard deviation increases as  

tHistG
t

⋅=

0

σσ  

where 151.0

0

=Histσ  corresponds to the historically identified standard deviation of rate daily 

changes (see dotted curve in Fig.11). The simulated rates have much lower standard deviation 
(see “simulated” curve) because of the negative auto-correlation influence.  

 
 
 

5. Overnight indexed swap modeling 
 
As an example of the OR model application we used the exposure valuation of the 

overnight indexed swaps (OIS) in the Monte Carlo methodology framework. Value MV  of the 

OIS (long position) was calculated as the sum of differential payments )( 0 irrP −⋅ at moments i 

compounded from i to the swap maturity M (commonly used formula): 

∑ ∏
= =

∆∆⋅+∆−=
M

i

M

ij
jiM

ttrtrrPV
1

0 )1()(  
(7) 

Here P=100% is the notional, rate 0r is fixed, and ir is the modeled floating rates, payment 

period is one day 360/1=∆t . 

 The Monte Carlo set )(k
MV  was calculated (k is the index of the kth scenario for the 

contract maturity M) using the OR model. In Fig.12 the 95th percentile of the OIS exposure as a 
function of the maturity M at various model parameters is plotted. 
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Fig.12 Fig.13 

 
The curve P+C corresponds to the complete (correct) OR model with account of auto-

correlations (C) and the fat-tail daily changes distribution (P). Modelling with a gaussian (G) 
distribution causes underestimation (curve G+C), lack of auto-correlations in the model causes 
significant overestimation (curve G is for normally distributed daily changes, and curve P is for 
non-correlated daily changes fat-tail distributed). The whole term profile of the "worst case" 
(0.95th percentile V(0.95)) value and corresponding shortfall <V (>0.95)> of the OIS exposures is 
presented in Fig.13. 
 
6. Conclusion   
 The paper presents a new model for the stochastic dynamics of the short rates that 
accounts both for fat-tail distribution and auto-correlation vector. The model originates from 
direct statistical analysis of market data. This analysis shows that probabilit y distribution of rate 
daily changes is far from gaussian and that next-day rate changes are anti-correlated. This fat-
tail probability distribution is modelled by weighted sum of two gaussian functions. The auto-
correlation function derived directly from market data is incorporated into the model. 
Calibration of the stochastic model is based on percentile measures and shortfall values of 
historical data. Numerical simulations of the overnight rate temporal behavior and its 
application to the exposure estimations of the overnight indexed swap illustrate that there is 
significant influence of the non-gaussian probabilit y distribution and auto-correlations. 
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