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Introduction: Johan Gielis (2003) showed that his superformula  
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describes almost any closed curve in terms of the deformed circle, ( ),g θ  and another 

function, ( ),f θ  and their parameters. The function ( )f θ  may be considered as a modifier of 

the Gielis function, ( )g θ .  

 

Ricardo Chacón (2004) pointed out that Gielis’ superformula [ ( )g θ in eqn-1 above] is 

inherently linear.  Hence it can generate only idealized (Platonic) rather than real-world forms. 
However, natural shapes and patterns emerge as a result of nonlinear dynamic processes and 
should therefore be expressed in terms of related nonlinear functions. In view of this, Gielis’ 
superformula can be reformulated and generalized in which the trigonometric functions in 

( )g θ  would be replaced by the Jacobian elliptic functions. The use of elliptic parameters on 

the angle coordinate is the key feature providing diverse variations of a given initial shape. The 
rate and nature of such variations on an initial theme (pattern) can be controlled by changing 
the parameters. Thus, one can obtain sequences that mimic transformations of biological 
shapes, including growth processes.  

 

One of the generalizations of Gielis’ superformula, ( )g θ , suggested by Chacón is:  
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In the expressions above, [ ; ]am u µ  is the Jacobian elliptic function (JEF) of the 

parameter µ ,  ( )K µ  is the complete elliptic integral of the first kind, and ( , )ϕ ϕ ′  are 

additional parameters (Whittaker and Watson, 1996; Abramowitz and  Stegun, 1964). The 

parameter m  signifies rotational symmetry as in the Gielis superformula. The function ( )γ θ  

degenerates into ( )g θ  for 0µ ϕ ϕ′= = =  and in this sense the Chacón-Gielis superformula in 

(2) is a generalization of the Gielis superformula in (1).  
 
Estimation of Chacón-Gielis Parameters: For a scientific purpose, Chacón-Gielis parameters 
in (2) and (3) above need to be estimated from empirical data. Presently, we are concerned 

with the possibilities of the same. Let the n true points be [ ( , ); 1,2,..., ]
i i i

z x y i n= = , of which 
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the corresponding observed values are ( , )
i i

z x y′ ′ ′= , possibly with errors of measurement and 

displacement of origin by ( , )
x y

c c , unknown to us. Let  ( , )
x y

c c� �  be the approximate or assumed 

values of ( , ).
x y

c c  Let us denote by ( , ) ( , ).
i i i i x i y

z x y x c y c′ ′= = − −� � � ��  We obtain 2 2( )i i ir x y= +� � �  

from these values. We also obtain 1tan ( / )
i i i

y xθ −=� � � . On the other hand, we obtain 

1 2 3
ˆ ( , , , , , , , , , '). ( ),
i i

r a b m n n n fγ θ µ ϕ ϕ θ= �� �� �� � � � � �  where (.)γ , the generalized form of Gielis’ ( )g θ� , is 

the Chacón-Gielis super-formula defined in (2) and ( )f θ  may be defined variously.  The wavy 

bar on the arguments of (.)γ  and (.)f  indicates that all parameters have taken on some 

arbitrary values, which may not be the correct values. The deviation of arbitrary values of 

parameters from their true values gives rise to ˆ( )
i i i

d abs r r= −�  and consequently 
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= ≥�  Only if the assumed values of parameters are the true values, 2
S  can be zero, 

but smaller it is, closer are the assumed values of the parameters from their true values 
(assuming empirical uniqueness of the parameters to a given set of data).  Thus we have to find 

the values of  Chacón-Gielis parameters in (.)γ  and (.)f  such that 2
S  is minimum. 

 

Minimization of 2
S  poses formidable problems due to two reasons. First, the Chacón-

Gielis parameters are not unique to data. The parameters of ( ),γ θ  and the modifying function, 

( ),f θ  interact among themselves. Moreover, the parameters span a highly nonlinear surface of 
2

S , which has innumerably many local minima (Mishra, 2006 (a), (b) & (c)). The minima 
(local as well as global) are located in the valleys or deep trenches. Therefore, estimation of the 
parameters in question is elusive to almost all methods of global optimization. Our experience 
with the Particle Swarm method of global optimization has elsewhere (Mishra, 2006(d)) been 
quite satisfactory in fitting the Gielis curves. We use this method for fitting the Chacón-Gielis 
curve here. The Generalized Simulated Annealing method did not work so well in this case too. 

Particle Swarm Method of Global Optimization: A swarm of birds or insects or a school of 
fish searches for food, protection, etc. in a very typical manner. If one of the members of the 
swarm sees a desirable path to go, the rest of the swarm will follow up quickly.  Every member 
of the swarm searches for the best in its locality - learns from its own experience. Additionally, 
each member learns from the others, typically from the best performer among them. Even 
human beings show a tendency to learn from their own experience, their immediate neighbours 
and the ideal performers.  

The Particle Swarm method of optimization mimics the said behaviour (see Wikipedia : 
http://en.wikipedia.org/wiki/Particle_swarm_optimization). Every individual of the swarm is 
considered as a particle in a multidimensional space that has a position and a velocity. These 
particles fly through hyperspace and remember the best position that they have seen. Members 
of a swarm communicate good positions to each other and adjust their own position and 
velocity based on these good positions. There are two main ways this communication is done: 
(i)  “swarm best” that is known to all (ii) “local bests”  are known in neighborhoods of 
particles. Updating the position and velocity is done at each iteration as follows: 
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•  

•  
o w is the inertial constant. Good values are usually slightly less than 1.  
o c1 and c2 are constants that say how much the particle is directed towards good 

positions. Good values are usually right around 1.  
o r1 and r2 are random values in the range [0,1].  

o is the best the particle has seen.  

o ˆ
g

x  is the global best seen by the swarm. This can be replaced by ˆ
l

x , the local 

best, if neighborhoods are being used.  

The Particle Swarm method (Eberhart and Kennedy, 1995) has many variants; 
(Parsopoulos and Vrahatis, 2002). Among them, the Repulsive Particle Swarm (RPS) method 
of optimization (see Wikipedia, http://en.wikipedia.org/wiki/RPSO) is particularly effective in 
finding out the global optimum in very complex search spaces (although it may be slower on 
certain types of optimization problems). Other variants use a dynamic scheme (Liang and 
Suganthan, 2005; Huang et al., 2006).   

In RPS the future velocity,  
next

v of a particle at position with a recent velocity is 

calculated by 

 

where, 

• 1 3 3, ,χ χ χ  : random numbers (0,1)∈  

• � : inertia weight (0.01,0.7)∈  

•  : best position of a particle  

•  : best position of a randomly chosen other particle from within the swarm  
•  : a random velocity vector  
• a,b,c : constants  

The future x  that is, 
next

x  is defined as .next next
x x v= +  Occasionally, when the 

process is caught in a local optimum, some perturbation of  v may be needed. 

The Simulation Experiments: We have experimented with four different models. All these 

models are instances of (.)γ  modified by different modifier functions, (.).f  Two typical 

instances of (.)γ have been chosen. The parameters of (.)γ  are given in table A.1. Three 

typical modifier functions are chosen, as given below. The chosen values of n4 and n5 are also 
given in table-A.1. 
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Model-1 modifier : 1( )f θ = 2 2 0.5

4 5[ (3cos( ) cos(3 )) (3sin( ) sin(3 )) ]r n t t n t t= − + −     

Model-2 modifier: 2 ( )f θ = r = n4 + n5 cos(t); Model-3 modifier: 2 ( )f θ = r = n4 + n5 cos(t)      

Model-4 modifier: 3( )f θ = r = n4 - n5 cos(t) + abs(cos(t))3  

In all modifier functions, n4 and n5 are parameters and 0 2 .t π≤ ≤  
 
In case of each model, hundred uniformly distributed random points have been 

generated with the parameters specified in the relevant (.)γ  and (.).f  The Repulsive Particle 

Swarm method of optimization (RPS) has been applied to estimate the parameters. The jointly 

estimated parameters of (.)γ  and (.)f  are presented in table-A.1. Their graphs are presented in 

Fig.A.1. The red points are those generated by the true parameters, the blue ones are generated 
by using the RPS-estimated parameters. For each model, the RPS-estimated (blue) points are 
superimposed on the generated (red) points to facilitate a visual assessment of the quality of fit, 
which is quantitatively represented by the value of S2.     
   
The Findings and Observations: Our experience of fitting the Chacón-Gielis curves to 
simulated data has been less satisfactory than fitting the simple Gielis curves by the Particle 
swarm method (see Mishra, 2006(d)). The reasons may lie in the severity of non-linearity 
introduced by elliptic functions into the original Gielis curves.  
 

So far as the closeness of estimated parameters to the true parameters (used to generate 
the data) is concerned, our observation on the lack of empirical uniqueness of these parameters 
to data is corroborated once again. A lack of empirical uniqueness, or otherwise, of estimated 

parameters, α̂ , of any function, say, 1 2 1 2( | ) ( , ,..., | , ,..., )
p p

x x x xα α α α℘ =℘  by minimization 

of any specified norm, say, ˆ ˆˆ ˆ( | ) ( | )x xσ α α= ℘ −℘  depends on the surface of σ̂ . The true 

surface of σ spanned by the true parameters, α , itself may have multiple global optima, in 
which case, a lack of uniqueness is inherent. An extravagant use of parameters in specification 
of the optimand function often may lead to this problem. But an inherent lack of uniqueness is 

not ubiquitous. The true surface may have unique .σ  However, this true value may not be 
achievable on account of several reasons. Numerical approximation in the process of search is 
one of the reasons. Secondly, no global optimization method can ensure its immunity to 
entrapment by local optima, especially in the vicinity of the true global optimum. Such local 
optima may attribute non-uniqueness to estimated parameters. These local optima themselves 
may be a creation of numerical approximation in computing. In general, global optimization of 
complicated functions is an extremely difficult exercise and no method developed so far can 
ensure that it will unfailingly obtain the global optimum on an arbitrarily defined surface.  

 
The ultimate utility of estimated parameters, nevertheless, lies in interpretability that 

suggests the process by which a particular shape might have been generated in nature. Fitness 
of a curve to data is only an index that guides us to this objective. But if fitness is not uniquely 
related to parameters through data, we cannot proceed to explanation of the process of 
generation of the concerned data in any reliable manner. Unfortunately, this lack of uniqueness 
has been observed in estimating the Gielis parameters and we obtain the same thing in 
estimating the parameters of Chacón-Gielis curves as well. Thus, interpretability or indication 
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to sequences that mimic transformations of biological shapes, including growth processes, 
continues to elude our efforts. 

 
It is well-known that the Jacobian elliptic functions may profitably be replaced by 

Weierstrass’s elliptic functions. The latter are simpler and elegant for developing a general 
theory of non-linear processes. However, irrespective of the fact whether elliptic functions 
(Jacobian or Weierstrass’s) or trigonometric functions are used to parametrize the real shapes 
in nature, a scientic explanation of the process of their genearation would remain elusive due to 
lack of uniqueness of parameters to data. In this sense, Gielis’ or Chacón-Gielis superformula 
will continue to be interesting only for graphics. 

 
Finally, a pertinent question arises. Is nature basically as complicated or complex as 

postulated by Gielis or Chacon-Gielis superformulas? Or, nature is intrinsically simple and the 
observed complexities are only apparent! This question was addressed in the late 1940’s by 
John von Neumann in his theory of automata.  This question was also addressed by S. Ulam in 
his theory of cellular automata. Since then, researches on identification of very simple rules 
underneath the apparent complexities observed in nature have progressed substantially.     

Along with this, the mathematics of fractals (that had a beginning in the 19th Century) 
and the theory of Chaos developed (Peitgen, et al. 1992). In the recent past, the traditional 
theory of automata was supplemented with self-improving functions. This led to the 
development of Learning Cellular Automata as an emergent system having some collective 
behaviour (Qian, et al. 2001).   

 
http://www.home.aone.net.au/~byzantium/ferns/fractal.html 

  Barnsley’s fern (1993) is an 
instance of generating a pattern, with 
simple fractal procedure, closely 
resembling natural fern. That gives us a 
hope that other patterns (a cyclosorus 
fern leaf, for example) also may be 
generated similarly. 

 
Yatapanage’s (2003) work is another interesting attempt in simulating nature by simple 

rules. The quest for simplicity undeneath the apparent complexity in nature has been so 
encouraging that Wolfram (2002) looks at nature and science from an entirely new angle. In 
view of all these facts, it would possibly be more rewarding to explain natural shapes in terms 
of simple rules than complicated nonlinear equations.   
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Appendix 

 

Table-A.1. True and Estimated Chacón-Gielis Parameters (Modified Curves) 

Model-1 Model-2 Model-3 Model-4  
Parameters True Estimated True Estimated True Estimated True Estimated 

cx 0.0000 -1.4847 0.0000 2.6874 0.0000 0.6768 0.0000 -0.0212 

cy 0.0000 -0.7819 0.0000 0.1766 0.0000 0.0011 0.0000 -0.0109 

a 1.0000 -0.0885 1.0000 3.6048 1.0000 0.8992 1.0000 -0.4045 

b 1.0000 1.1816 1.0000 1.0225 1.0000 0.0078 1.0000 -1.2066 

n1 
0.6000 3.7602 0.6000 3.7730 8.0000 1.5566 8.0000 0.9241 

n2 
2.0000 -0.7625 2.0000 0.0085 4.0000 2.6696 4.0000 0.8672 

n3 
3.0000 4.0648 3.0000 7.0168 -4.0000 0.4337 -4.0000 -0.0492 

m 3.0000 2.1139 3.0000 3.8572 6.0000 2.7388 6.0000 5.9588 

n4 
3.0000 2.7802 3.0000 3.8158 3.0000 1.3808 3.0000 2.9282 

n5 
2.0000 1.6498 2.0000 -1.0791 2.0000 0.6222 2.0000 1.9049 

� 0.5000 -0.9817 0.5000 0.9993 0.0000 0.4421 0.2000 1.0000 

ϕ  0.3142 -2.3663 0.3142 4.0068 0.0000 4.0216 0.0314 0.2830 

ϕ′  0.6283 -0.3029 0.6283 8.3493 0.0000 2.8652 0.1571 3.4126 

S2 0.0000 1.5028 0.0000 0.2697 0.0000  3.5440 0.0000 2.8337 

 

Figures-A.1. (Plots of Generated and RPS-estimated points) 
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