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Abstract

We study the stability of monetary steady states in a random match-
ing model of money where money is indivisible, the bound on in-
dividual money holding is �nite, and the trading protocol is buyer
take-it-or-leave-it o¤ers. The class of steady states we study have a
non-full-support money-holding distribution and are constructed from
the steady states of Zhu (2003). We show that no equilibrium path
converges to such steady states if the initial distribution has a di¤erent
support.
(JEL classi�cation: C62, C78, E40)
Keywords: random matching model; monetary steady state; instabil-
ity; Zhu (2003).

1 Introduction

Trejos and Wright (1995) show the existence of a monetary steady state in
a model where an agent�s money holding is in f0; 1g. For buyer take-it-or-
leave-it o¤ers in that model but money holdings in f0;�; 2�; :::; B�g, Zhu
(2003) provides su¢cient conditions for the existence of a steady state with a
full-support money-holding distribution and a strictly increasing and strictly
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concave value function. This paper is concerned with the stability of a class
non-full support steady states.
In Zhu�s model, there are three exogenous nominal quantities: (�; B�;m),

where m is the per capita stock of money. If, for some positive integer l,
we compare that economy to an otherwise identical economy with nominal
quantities (l�; lB�; lm), then we have neutrality. But what if we compare
(�; B�;m) to (�; lB�; lm)? As Zhu shows, any steady state for (�; B�;m)
is also a steady state for (�; lB�; lm), one in which all owned/traded quan-
tities of money are multiplied by l and the value function is a step function
with jumps at and only at integer multiples of an l-bundle. We call this
class of non-full-support steady states l-replica. Here we show that such a
steady state is unstable if the support of the initial distribution di¤ers from
f0; l�; 2l�; :::; Bl�g. In particular, if the economy starts with a positive
measure of people holding what we call change, then there is no equilib-
rium that converges to a monetary steady state that is identical to that for
economy (�; B�;m).
Our result reinforces that in Wallace and Zhu (2004), who show for the

same model that a commodity-money re�nement rules out l-replica steady
states. Both their result and ours are consistent with the observation that
ten one-dollar bills have more roles than just being a perfect substitute for a
ten-dollar bill.1

Depending on whether agents are indi¤erent between di¤erent trades,
there are two kinds of Zhu steady states: those with a pure strategy and
those with a mixed strategy. [2] gives an example where both kinds are
generic. One can construct l-replicas from both kinds. Our instability result
holds for l-replicas of pure-strategy steady state. The extension to cover
the two kinds of steady states is not trivial. We have no conclusion about
stability properties of l-replicas of mixed-strategy steady state.

2 Model

The model is that in Zhu (2003). Time is discrete, dated as t � 0. There is
a non-atomic unit measure of in�nitely-lived agents. There is a consumption
good that is perfectly divisible and perishable. Each agent maximizes the
discounted sum of expected utility with discount factor � 2 (0; 1). Utility

1The model in Green and Zhou (2002) also has a multiplicity of steady states. However,
their model is very di¤erent, as is their stability result.
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in a period is u(c) � q, where c 2 R+ is the amount of good consumed
and q 2 R+ is the amount of good produced. u : R+ ! R is continuously
di¤erentiable, strictly increasing and strictly concave, and satis�es u(0) = 0
and u0(1) = 0. In addition, u0(0) is su¢ciently large but �nite.
There is a �xed stock m of intrinsically useless money that is perfectly

storable. Money is indivisible and the size of the smallest unit is normalized
to one. Each agent can hold no more than B 2 N units of money and it is
assumed that m 2 (0; B). Let B = f0; 1; � � � ; Bg denote the set of possible
individual money holdings.
In each period, agents are randomly matched in pairs. With probability

1=N , where N � 2, an agent is a consumer (producer) and the partner is
a producer (consumer). Such meetings are called single-coincidence meet-
ing. With probability 1 � 2=N , the match is a no-coincidence meeting.2 In
meetings, agents� money holdings are observable, but any other information
about an agent�s trading history is private.
In a single-coincidence meeting between a consumer with i units of money

and a producer with j units of money, an (i; j)-meeting, the consumer makes
a take-it-or-leave-it o¤er consisting of the amount to be produced, q, and
the amount of money to be paid, p. The o¤er must be feasible, 0 � p �
minfi; B � jgg; and must satisfy the producer�s participation constraint,
�q + �wt+1j+p � �w

t+1
j , where wtk is the expected discounted value of holding

k 2 B units of money, prior to date-t matching. Because the optimal o¤er
leaves no positive gain to the producer, the consumer�s problem reduces to
choosing p in the set of optimal o¤ers of money

pt(i; j; wt+1) = argmax
0�p�minfi;B�jgg

fu
�
�wt+1j+p � �w

t+1
j

�
+ �wt+1i�pg. (1)

Because pt(i; j; wt+1) is discrete and may be multi-valued, randomizations
over the elements of pt(i; j; wt+1) are allowed. Let �t(p; i; j) be the probability
that consumers with i (pre-trade) in meetings with producers with j o¤er p
at date t. It has support in pt(i; j; wt+1) at the equilibrium,

X

p2pt(i;j;wt+1)

�t(p; i; j) = 1. (2)

2One foundation is that there are N types of agents and N types of consumption goods,
that type-n agents can produce type-n goods only and consume type-(n+ 1) goods only,
and that the money is symmetrically distributed across the types.
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Let �tk denote the fraction of agents holding k units of money prior to
date-t matching. The law of motion is

�t+1k = �tk +
1

N

X

fi;jji>kg

�ti�
t
j�
t(i� k; i; j) (3)

+
1

N

X

fi;jjj<kg

�ti�
t
j�
t(k � j; i; j)

�
1

N

X

j

�tk�
t
j

X

p>0

�t(p; k; j)

�
1

N

X

i

�ti�
t
k

X

p>0

�t(p; i; k):

The Bellman equation is

wti =
N � 1

N
�wt+1i +

1

N

BX

j=0

�tj
X

p

�t(p; i; j)
�
u
�
�wt+1j+p � �w

t+1
j

�
+ �wt+1i�p

	
:

(4)
The �rst term on the r.h.s. corresponds to entering a no-coincidence meeting
or becoming a producer who is indi¤erent between accepting and rejecting.
Free disposal of money is allowed, so the value function must satisfy

wti � w
t
i�1; for i = 1; � � �B; and w

t
0 = 0: (5)

De�nition 1 Given �0, an equilibrium is a sequence f(�t; �t; wt)g1t=0 that
satis�es (1)-(5). A monetary steady state is (�; �; w) with w 6= 0 such that
(�t; �t; wt) = (�; �; w) for all t is an equilibrium. Pure-strategy steady states
are those for which (1) has a unique solution for all meetings. Other steady
states are called mixed-strategy steady states. A Zhu steady state is a steady
state for which � has a full support and w is strictly increasing and strictly
concave.3

This di¤ers from Zhu�s de�nition of equilibrium in that trades are an ex-
plicit part of the de�nition. We include the trades because we want stability
to include the convergence of trades. Later, we will be doing a proof. In
such a proof, the greater the number of objects that have to converge, the

3See the existence result of such steady state in [9].
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easier it is to produce such a proof. And we do not view such a requirement
as strong because the trades are what people do and are what an outside
observer would see. Given that trades is required to be convergent along the
equilbrium path, the only candidate for the limit is one of the strategies that
support l-replica as a steady state. Thus, the description of optimal trades
at the steady state, even for those meetings that occur with zero probability,
will be provided in Lemma 1.
The above de�nition divides full-support steady states into two types. [2]

investigates the B = 2 economy. Along with other discussion about these
two types, it �nds that the existence of a Zhu pure-strategy steady state is
generic. Our main proposition will apply to non-full-support steady states
that are associated with some pure-strategy steady state.
Call a bundle of l units of money a �bundle� and any amount less than

l �change.� In what follows, non-prime letters (i, j, etc.) indicate numbers
of �bundles,� and letters with primes (i0, j0 2 L, etc.) indicate units of
�change.� Replacing each unit of money in a monetary steady state by a
bundle while keeping the smallest unit of money unchanged gives the follow-
ing.

De�nition 2 Let s = (�̂; �̂; ŵ) be a Zhu pure-strategy steady state of (B;m)
economy. For integer l � 2, an l-replica of s, denoted s(l) = (��; ��; w�), is
a steady state of (Bl;ml) economy that satis�es (6) and (7):

��il = �̂i; and ��il+i0 = 0; 8i
0 2 L; (6)

w�il = ŵi; and w�il+i0 = w
�
il; 8i

0 2 L; (7)

with L � f1; � � � ; l � 1g.

Equation (6) implies that an l-neutral replica has a non-full support, and
equation (7) implies that the value of money has a step function form, so
only a bundle has value. Equation (6) and (7) together imply that trading
bundles replicates trading money in the associated monetary steady state.
Because s is pure-strategy, randomization doe not occur in trading bundles.
The de�nition allows randomization in trading change both at the steady

state and in its vicinity. Because the space of such randomization is con-
tinuous, there are a continuum of l-replicas, that have the same � and w
but di¤erent �, for each full-support steady state. Our main proposition are
going to rule out any equilibrium path convergent to any of the associated
l-replicas.
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De�nition 2 de�nes l-replica only for a pure-strategy steady state with
full-support and a strictly increasing and strictly concave value function. And
[2] provides an example where pure-strategy steady states are generic. Our
argument only apply to l-replicas associated with pure-strategy steady state.
We also assume strict concavity and it can be dropped in the main result.
But this will only complicate the description about �� (See Lemma 1) and
generality is not our sole purpose. The strict increasing value function does
not appear restrictive and it guarantees that holding an extra unit of money
(bundle) is strictly preferred at the steady state (l-replica). (See the strict
positive matrix K in Lemma 3)
Lemma 1 shows that there can be a steady state corresponding to an l-

replica, a steady state with the features that de�ne an l-replica. For such the
l-replica, the following has some instability result when s has pure strategy.

Proposition 1 If s(l) is an l-replica, and if �0 has a support di¤erent from
that of the l-replica, then there is no equilibrium that converges to s(l).

In other words, if the initial distribution �0 has �0il+i0 > 0 for some i
0 2 L

and some i 2 f0; 1; � � � ; B� 1g, then the economy cannot reach the l-neutral
replica steady state.
The standard approach to stability analysis of di¤erence equation systems

(see, for example, [5]) is to compare the number of eigenvalues of the dynamic
system that are strictly smaller than one in absolute value, say a, and the
number of initial conditions, say b. If a = b (a > b), then there is a unique
(an in�nity of) convergent path(s). If a < b, then there is no convergent
solution. Our analysis must go beyond those results for two reasons. First,
our dynamic system necessarily involves unit roots convergence. Second, the
l-replica steady state is on the boundary of the state space in two senses: ��

does not have full support and w� is not strictly increasing. It is necessary
to ensure that sign restriction (5) holds all along the path.

3 A simple example

We start with an example in which B = 1 (i.e., Trejos-Wright) and l = 2.
This example is simple for several reasons. The Trejos-Wright steady state
is pure-strategy and the trade is easy to describe. Therefore, it is easy to
describe the trades in the l = 2 replica. In addition, the aggregate state of the
l = 2 replica is one-dimensional and can be described by the fraction of people
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with one unit of money. Despite its simplicity, it captures some of the main
ingredients of our stability analysis. The proof is by way of contradiction
and we rule out any potential convergent path by showing that either the
consumer�s optimality conditions or no-disposal of money is violated in the
limit.
Following Trejos-Wright, we assume that (8) has a positive solution. Be-

cause (��; ��; w�) is identical to the Trejos-Wright steady state, we have
��(2; 2; 0) = 1, (��0; �

�
2) = (1 � m;m) and w�0 = 0, and w�2 is the unique

positive solution to

�
N=� �N

��0
+ 1

�
�w�2 = u(�w

�
2). (8)

Also, (6) and (7) imply ��1 = 0 and w
�
1 = 0. Given such w

�
1 and w

�
2, it is

shown that ��(1; 1; 1) = 1 and ��(1; 2; 1) = 1. Randomization could occur in
meeting(1; 0).4

Assume by way of contradiction that there exists an equilibrium (�t; �t; wt)
that converges to a 2-replica (��; ��; w�) starting with �01 > 0. The following
argument excludes zero-unit payment in meeting (1; 0) and identi�es the one
described in Table 1 as the equilibrium payment strategy. If the economy is
close to (��; w�), then (4) and �01 > 0 imply w

0
1 > 0 because there is a positive

probability that a consumer with one unit meets a producer with one unit
and the consumer can get a positive amount of utility from such a meeting.
Equation (8) implies u(x) > x for all x < �w�2. Therefore u(�w

t
1) > �wt1

holds all along the path, so in meeting (1; 0), paying one unit is strictly pre-
ferred to paying nothing. That is, �t(1; 1; 0) = 1 is the only possibility for
such a convergent equilibrium path. This conclusion and convergence implies
��(1; 1; 0) = 1, a conclusion we could not get simply from the de�nition of a
steady state. We call such payment strategy described in Table 1 Payment
Strategy 1.
Using �0 + �1 + �2 = 1 and 0�0 + 1�1 + 2�2 = 2m, the money-holding

4One can show that the step function form of the value function in (7) is in fact
necessary in this example. The proof involves a guess-and-verify process: that is, �xing
�
� that is consistent with ��

1
= 0, then solving (4) for w�

1
, and �nally checking that ��

satis�es (2). Tedious as it is, such a process proves the uniqueness of the forementioned
non-full-support steady state in this {0,1,2} case. However the non-full-support steady
state is not unique in general. Throughout this paper, we only take such an l replica as
an example and focus on stability.

7



Table 1: The equilibrium payment rule (Payment Rule 1)

Seller�s money holding
0 1 2

Buyer�s 0 - - -
money 1 1 unit 1 unit -
holdings 2 2 units 1 unit -

distribution can be characterized by �t1 only:

(�t0; �
t
1; �

t
2) =

�
1�m�

�t1
2
; �t1; m�

�t1
2

�
: (9)

Let �t1 2 [0; 2min(m; 1 � m)] to ensure �t0; �
t
2 2 [0; 1]. Under Payment

Strategy 1, the law of motion is

�t+11 = 	(�t1) � �
t
1 �

2(�t1)
2

N
: (10)

Figure 1 shows the convergence behavior of the law of motion. The law of
motion is locally stable at ��1 = 0, but it has unit root convergence; the slope
at the �xed point is one. This happens because there are no net in�ows into
holdings of one unit and there are net out�ows, but only from meeting (1; 1).
The unit root arises because the frequency of meeting (1; 1) converges to zero
as �t1 goes to zero.
Under Payment Strategy 1, the Bellman equation is

8
>>><

>>>:

wt1 =
N�1+�t

2

N
�wt+11 +

�t
0

N
u(�wt+11 ) +

�t
1

N
u(�wt+12 � �wt+11 )

wt2 =
N�1+�t

2

N
�wt+12 +

�t
0

N
u(�wt+12 ) +

�t
1

N
[u(�wt+12 � �wt+11 ) + �wt+11 ]

:

(11)
The Jacobian of the r.h.s. of (11) with respect to wt+1 = (wt+11 ; wt+12 ) evalu-
ated at the l = 2 replica is

�
�� 0
0 �

�
; (12)

8



Figure 1: Law of Motion

where

�� �
��0
N
u0(0)� +

N � 1 + ��2
N

� > 1 (13)

� �
��0
N
u0(�w�2)� +

N � 1 + ��2
N

� 2 (0; 1). (14)

If (8) has a positive solution, then (13) and (14) hold. Because the matrix
(12) has an inverse and because we can extend the domain of u to include an
open neighborhood around 0, the implicit function theorem can be applied
to (11) to get

wt+1 = �(�t; wt); (15)

which we refer to as the forward-looking Bellman equation and which is valid
in the neighborhood of an l = 2 replica.
(10) and (15) form our dynamic system. The Jacobian matrix of the joint

system evaluated at the l = 2 replica is

�
	� O
�� �w

�
=

2

4
1 0 0

�=�� 1=�� 0
��=(2�) 0 1=�

3

5 , (16)
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where

 �
1

N
u(�w�2) > 0 (17)

� �
1

N
[u(�w�2)� �w

�
2] > 0; (18)

and where the last inequality follows from (8).
Since, initially, �01 6= 0 and the law of motion has unit root convergence,

the convergence trajectory will eventually be parallel to the eigenspace of
(16) associated with the unit eigenvalue5. One associated eigenvector, which
constitutes a base of the space, has the form

2

4
1
�
���1

�

3

5 ;

where � is a number irrelevant to our argument. Note that �=(��� 1) < 0.
Since the �rst variable of the linearized system, �t1��

�
1, is always positive in

the process of convergence, the second variable, wt1 � w
�
1 (and therefore w

t
1)

will eventually become negative, which violates (5). We conclude that there
is no convergent equilibrium path.

4 Proof for the general case

The argument for the f0; 1; 2g case uses knowledge of the trades in the pure-
strategy monetary steady state. In the general case, we know very little
about those trades. Nevertheless, as we now show, a proof can be constructed
using similar ideas. The proof is by way of contradiction and relies on four
lemmas. Lemma 1 describes what we know about the payment strategy in
the l-replica steady state. Lemma 2 studies the law of motion and shows
that unit root convergence holds. Lemma 3 describes the features of the
Jacobian for the Bellman equation. Lemma 4 combines the results from the
previous lemmas and considers the stacked system of the law of motion and
the Bellman equation. The proofs of the lemmas are in the Appendix.
Even though no one holds change at s(l), the equilibrium has implications

for how change is traded. This is especially relevant for us because change

5See Subsection �dominant eigenvector� on page 165 of [4].
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is actually traded in the vicinity of s(l). The following gives equilibrium
properties of change-trading.

Lemma 1 Suppose that s = (�̂; �̂; ŵ) is a pure-strategy steady state with
strictly concave value function. Let p̂(i; j) be the unique solution of (1). The
trade of s(l) satis�es the following:
(i) If i0+ j0 < l, then after the meeting, consumer has i� p̂(i; j) bundles and
producer has j + p̂(i; j) bundles.
(ii) If i0+j0 � l, then after the meeting, consumer has i+1�max(1; p̂(i+1; j))
bundles and producer has j +max(1; p̂(i+ 1; j)) bundles.

Although change has zero value at s(l), when the sum of change in a
meeting exceeds l, the producer can form an extra bundle by receiving enough
change from the consumer. Therefore, when the total amount of change in
a single-coincidence meeting exceeds l (case (ii)), the consumer behaves as if
he had an extra bundle. The strictly concave value function makes sure that
(ii) has a simple bundle-trading strategy. Any extension will lead to a more
complicate bundle-trading strategy but it will not change the main message
in the Lemma 1. That is, only change trading is arbitrary. Also, under the
conditions of lemma 1, the strategy � implies a degenerate bundle-trading
strategy. We will keep this implicit in equations thoughout the paper to
simplify the notations.
Before we proceed, it is helpful to rearrange components in the �t and wt

vectors. First, we eliminate �t0 and �
t
Bl in �

t using the following adding-up
conditions:

BlX

i=0

�ti = 1; and

BlX

i=0

i�ti = lm: (19)

Then the remaining components of �t are divided into l groups, where each
group consists of �i�s that have the same amount of change. That is, we
now let the state be described by (�tN ; �

t
F ), where �

t
N � (�t(i0))i02L with

�t(i0) � (�til+i0)i2BnB, and �
t
F � (�til)i2Bnf0;Bg. As regards w

t, we use the
incremental values of change, wtil+i0 � w

t
il and group them into l � 1 groups

according to the amount of change. Let �wt � (�wti0)i02L, where �w
t
i0 �

(wtil+i0 � w
t
il)i2BnfBg and let w

t
F = (wtil)i2B. Note that w

t can be recovered
from (�wt; wtF ). The one-to-one transformation of variables from (�t; wt) to
(�tN ;�w

t; �tF ; w
t
F ) turns out to be useful because, as will be shown in Lemmas

2 and 3, the Jacobians of law of motion (20) and Bellman equation (21) have
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tractable triangular forms. In addition, the linearized system for (�tN ;�w
t)

does not depend upon the other two variables.
The main proof assumes by contradiction that there exists a sequence

f�t; �t; wtg convergent to a Lemma-1 steady state. Such sequence must sat-
isfy six conditions: the convergences of value function, money holding distri-
bution and payment strategy, and Bellman equation (4), law of motion (3),
optimality conditions (1), which can involves some indi¤erence conditions
over solutions in (1) if randomization occurs. This section as well as the pre-
vious one show that the three convergence conditions together with Bellman
equation and law of motion will lead to a contradiction to the optimality
conditions of not throwing away money in the limit.
If the optimality conditions of not throwing way money in a particular

�nite date are violated, then we have a contradiction. If not, this section will
show that such conditions are violated as t!1. Di¤erent from the simple
example, our analysis here might involve randomization. The argument in
the simple example uses the fact that �t1 > 0 for some t implies w

t
1 > 0. Then

wt1 ! 0 and the shape of u rule out no trade and hence leave trading one
unit of money as the only option. One can extend the argument to general
l-replica to show that �tjl+j0 > 0 implies w

t
l�j0 > 0 for l � j

0 > 1, and hence
can rule out no trade in meeting (l � j0; 0). This is not su¢cient to exclude
randomization over trading di¤erent amounts of change. In fact, we cannot
rule out randomization in general. Consider 6-replica of a Trejos-Wright
steady state for instance. Start with �03 > 0 and �

0
j0 = 0 for j

0 = 1; 2; 4 and
5. Such deviation is equivalent to that in the simple example. Along the
convergent path, we can has step value function and hence randomization
could occur in meetings with overall change less than three units of money.
When randomization occurs, we can view f�t; wtg as a nonautonomous

system. Particularly, we start with (4) and (3) assuming that such payment
strategy sequence f�tg is chosen optimally by agents. In general, randomiza-
tion might be involved and the payment strategy could change across dates.
The law of motion and Bellman equation become time dependence or nonau-
tonomous due to the variation in change-trading strategy. But no matter
how the strategy evolves over time, it is assumed by contradiction to be con-
vergent. By continuity, the implied system must have a convergent sequence
of di¤erence equations de�ned by law of motion and Bellman equation, and a
convergent sequence of the associated phase diagrams. With all these conver-
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gence, we can apply a trick often used in engineering6. That is to introduce
an additional variable that itself forms an autonomous system. Any variable
that de�nes a convergent autonomous sequence will be appropriate. Without
loss of generality, we use yt = 1

t+1
, that satis�es the di¤erence equation

yt+1 = �(yt) �
yt

1 + yt
.

The sequence fytg is autonomous and converges to the �xed point y� = 0
corresponding to the fact that f�tg converges to ��.
We express the law of motion and the Bellman equation after introducing

yt and �wt as
(�t+1N ; �t+1F ) = 	(yt; �tN ; �

t
F ) (20)

and
(�wt; wtF ) = �(y

t; �tN ;�w
t+1; �tF ; w

t+1
F ): (21)

We let 	 and � to refer to each component of the mappings. For example
��w indicates the subvector that de�nes �wt.
Following the literature, we will approximate the dynamic system by the

linearized system. Conclusions will be reached by studying the associated
Jacobians. We �rst examine the properties of the Jacobian of 	, the most
important of which concerns the existence of unit eigenvalues, and then turn
to ��w.

Lemma 2 (i) The Jacobian of 	 evaluated at (y�; ��) has the following tri-
angular form:

	� =

�
	�N�N O
	�F�N 	�F�F

�
with 	�N�N =

2

6
4

	
�(1)
�(1) � � � 	

�(1)
�(l�1)

O
. . .

...

O O 	
�(l�1)
�(l�1)

3

7
5 , (22)

where

	
�(k0)
�(v0) =

 
@�t+1kl+k0

@�tvl+v0

!

k;v=0;1;��� ;B�1

:

(ii) 	�N�N has at least one unit eigenvalue.
(iii) If 	�N�N has a positive eigenvalue that is strictly less than one, then the
associated eigenvector has both strictly positive and strictly negative elements.

6See section 1.2 in [6].
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The proof of the above lemma involves studying the derivative of 	. Parts
(ii) and (iii) are similar to their analogues in the f0; 1; 2g case. In order for
the measure of people holding positive change to go to zero, it is necessary
for them to be matched with others with change. However, the frequency
of such meetings goes to zero as the measure of people with change goes to
zero. Thus, �tN involves unit roots convergence.
We now investigate the Jacobians of �, equation (21). For that purpose,

we do not need the explicit form of equation (21); because the change of vari-
ables from wt to (�wt; wtF ) is a linear transformation, we can �rst linearize
the original Bellman equation and then do the variable transformation. Let
wx+p � wx � �w(x; p). The original Bellman equation can be written as

wtil+i0 =

X

j2BnfBg;j02L[f0g

�tjl+j0

N

X

p

�t(p; il + i0; jl + j0)u(��wt+1(jl + j0; p))

+
X

j2BnfBg;j02L[f0g

�tjl+j0

N
�
X

p

�t(p; il + i0; jl + j0)wt+1il+i0�p +
N � 1 + �tBl

N
�wt+1il+i0 .

(23)

Taking the linear expansion of equation (23) at the steady state and then
subtracting wtil from wtil+i0 for i

0 2 L, we get the linear expansion of (21) or,
equivalently, the Jacobian of (21). A careful study of the linear expansion
proves several important properties of the Jacobian, as summarized in the
following lemma.

Lemma 3 (i) The linear approximation of ��w around the l-replica has the
form

�wt = ��w�w�w
t+1 + ��w�N �

t
N : (24)

That is, it does not depend on �tF or w
t+1
F .

(ii) The Jacobian ��w�N consists of (l�1)�(l�1) blocks and has a lower-right
triangular form:

��w�N =

2

666
4

O � � � O K
... � �

...

O �
...

K � � � � � � K

3

777
5
: (25)
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Furthermore, if s has a strictly increasing value function, then K is a B by
B matrix that only has strictly positive elements.
(iii) The Jacobian ��w�w has a lower-left triangular form:

��w�w =

2

6666
4

��w1�w1
O � � � O

...
. . .

. . .
...

...
. . . O

�
�wl�1
�w1

� � � � � � �
�wl�1
�wl�1

3

7777
5
; (26)

where each diagonal block �
�w

i0

�w
i0
is a B by B matrix that only has nonnegative

elements.

An strictly increasing value function, one of the two major conditions
in proposition 1, makes sure that consumers are strictly better o¤ with one
extra bundle. This in turn implies that K only has strictly positive elements.
The proof uses Lemma 1 to get the triangular forms.
All of the above lemmas are about non-full-support steady states that is

associated with a pure-strategy steady state. Then bundle-trading is unaf-
fected if the consumer with some change meets a producer without change.
When we drop such restrictions, s could have multiple solutions in the in-
di¤erent set p. And bundle-trading could vary if the consumer has di¤erent
amount of change. Then our trick of introducing incremental value of holding
change is not enough to simplify the analysis on these steady states. The in-
cremental value of holding change could also depend on the incremental value
of holding bundles in the linearized Bellman equation. Speci�cally, equation
(24) would depend on wF . The properties in lemma 1 is not enough to guar-
antee the triangular form of matrix (27), whose last block of the fourth row
might not be a zero matrix. It might no longer be valid to only focus on
matrix A, a submatrix of the joint system.
We are now ready to obtain a stacked system and study its Jacobian. We

apply the implicit function theorem to solve for (�wt+1; wt+1F ) as a function
of (yt; �tN ;�w

t) from Bellman equation (21) around the l-replica and refer
to it as the forward-looking Bellman equation, denoted by �. Then we stack
the law of motion and the forward-looking Bellman equation:

yt+1 = �(yt)

(�t+1N ; �t+1F ) = 	(yt; �tN ; �
t
F )

(�wt+1; wt+1F ) = �(yt; �tN ;�w
t; �tF ; w

t
F ):

15



By Lemmas 2(i) and 3(i), the Jacobian of the stacked system has the following
form: 2

6666
4

�0 O O O O
� 	�N�N O O O
� �[��w�w]

�1��w�N [��w�w]
�1 O O

� 	�F�N O 	�F�F O
� � � � �

3

7777
5
, (27)

where the �s are blocks irrelevant to our analysis.
There might be a potential problem associated with linearization ap-

proach. That is, if f�tg can be speci�ed such that �t reaches and stays at
�� after �nite dates, then the original system is stable, even though the lin-
earized system might have a di¤erent dynamic properties. However, reaching
steady state �� in �nite dates is impossible, because always a proportion of
�tN miss the trading opportunity, and, to make sure the money stock un-
changed along the path, they cannot throwing away change.
The equilibrium path starts with deviation �0N 6= 0 and hence �w

0 6= 0
by Bellman equation. Therefore, the crucial submatrix is

A ,

�
	�N�N O

�[��w�w]
�1��w�N [��w�w]

�1

�
.

Since the upper-right block of A is a zero matrix, the eigenvalues of A are
those of 	�N�N and [�

�w
�w]

�1. By Lemma 2(ii)-(iii), 	�N�N has unit eigenvalues
and they are essential to the law of motion. Then, relevant to our analysis are
the eigenvectors of A associated with those unit eigenvalues. The following
lemma characterizes the subvector of any such eigenvector that corresponds
to the evolution of �wti0 . It provides a su¢cient condition under which the
relevant subvector (i.e., the trajectory of the values of change) has strictly
negative elements. This will lead to a contradiction in the proof of Proposi-
tion 1.

Lemma 4 Denote an eigenvector of 	�N�N associated with a unit eigenvalue
by z = (zT1 ; � � � ; z

T
l�1)

T � 0, where each zi0 is a B-dimensional column vector.

Let '�w
i0
, (I � �

�w
i0

�w
i0
)�1Kzl�i0, with i

0 2 L.

(i) The matrix A has a unit eigenvalue, and its associated eigenvector has
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the form (z;$1; � � � ; $l�1), with

2

6
4
$1
...

$l�1

3

7
5 =

2

666
4

0
...
0

'�wl�1

3

777
5
+

2

666
4

0
...

'�wl�2
�

3

777
5
+ � � �+

2

666
4

'�w1
�
...
�

3

777
5
. (28)

(ii) If zl�i0 � 0, zl�i0 6= 0 and '�w
i0
� 0, then '�w

i0
> 0.

(iii) If zl�i0 � 0, zl�i0 6= 0 and �
�(i0; i0; 0) = 1, then '�w

i0
has strictly negative

elements.

Proof of Proposition 1. Suppose by way of contradiction that there
exists an equilibrium path (�t; �t; wt) convergent to a Lemma 1 steady state
(��; ��; w�). Such sequence must satisfy (4), (3) and indi¤erence condition
across solutions in (1) if randomization occurs. The following shows that
just (4) and (3) are enough to give rise to a contradiction. With these fea-
tures, the sequence f�t; wtg can be viewed as a nonautonomous system and
can be transformed into an autonomous system. Then we consider the lin-
earized system (27). The crucial submatrix is A, corresponding to (�tN ;�w

t),
assumed by contradiction to converge to zero vector.
The dominant eigenvalue is assumed by contradiction to be positive and

no greater than one. Suppose the dominant eigenvalue is strictly less than
one. It is enough to consider the evaluation of �tN in this case. By Lemma
2 (iii), the associated eigenvector of 	�N�N has strictly negative elements. The
dominant mode argument (see [4]) implies that �tN eventually becomes par-
allel to the associated eigenspace. It follows that some elements in �tN will
become strictly negative, contradicting �tN � 0.
Therefore the law of motion involves unit root convergence. The dominant

mode argument implies that (�tN ;�w
t) eventually becomes parallel to an

eigenspace, vectors of which have the form of (z;$1; � � � ; $l�1) in Lemma 4.
And (z;$1; � � � ; $l�1) must be nonnegative because (�

t
N � �

�
N ;�w

t ��w�)
is nonnegative along the convergent path. Let h0 = maxfi0jzi0 6= 0g. Then
by Lemma 4(i), we have

2

6
4
$1
...

$l�1

3

7
5 =

2

666
4

0
...
0

'�wl�1

3

777
5
+ � � �+

2

666
4

0
...

'�w
l�h0

�

3

777
5
: (29)
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Case 1: Suppose h0 < l � 1. Equation (29) implies 0 � $l�h0 = '�w
l�h0

and

$l�i0 = 0 for i
0 > h0. By Lemma 4(ii), '�w

l�h0
� 0 implies '�w

l�h0
> 0 and

hence $l�h0 > 0. With the dominant mode argument, �w
t becomes parallel

to (0; � � � ; 0; $l�h0 ; � � � ; $l�1). In other words, the value of less than l � h
0

units of change will become negligible compared with the values of l�h0 units
of change. Furthermore, that �wt(0; l�h0) is strictly positive and converges
to zero implies u0(0)��wt(0; l � h0) > ��wt(0; l � h0). Hence, the value of
trading all the change dominates the value of no trade in meeting (l� h0; 0):
Therefore we have ��(l � h0; l � h0; 0) = 1. Then lemma 4(iii) implies that
'�w

l�h0
has negative elements, a contradiction to '�w

l�h0
� 0.

Case 2: Suppose h0 = l � 1. Argument similar to those of case 1 leads
to ��(1; 1; 0) = 1 for all j 2 BnfBg. Lemma 4(iii) implies that '�w1 has
negative elements, which contradicts '�w1 � 0.

5 Concluding remarks

This paper shows the instability of the non-full-support steady states that
are l-replicas of some pure-strategy monetary steady state with full-support
money-holding distribution. A possible extension is to consider the case
when the full-support steady state is a mixed-strategy steady state. Our
argument can rule out the convergent path where the same strategy in trading
bundles is played across meetings (vl + i0; jl) for di¤erent i0 2 L. But if
the strategy of trading bundles in such meeting depends on change-holding
positions i0, the same argument does not go through. In particular, The
linearized Bellman equation �wt in Lemma 3 will depend on wF and (27)
fails to have a triangular form. Our matrix computation does not �t in this
case and further study is needed.

6 Appendix

Proof of Lemma 1. (Necessity) The optimality of the bundle trading
speci�ed in (i) is obvious and proof is omitted. For the optimality of (ii),
note �rst that under i0 + j0 � l, the consumer pays at least l� j0(� i0) units
in order for the producer to form one bundle and produce a positive amount
of goods. Suppose that the consumer pays another s bundles and s0 units of
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change to the producer such that (s; s0) solves the following.

max
s2f0;1;��� ;min(i;B�j�1)g

s02f0;��� ;i0+j0�lg
(j+1)l+sl+s0�Bl

u[�(w�(j+1)l+sl+s0 � w
�
jl+j0)] + �w

�
il+i0�(l�j0)�(sl+s0)

= max
s+12f1;��� ;min(i+1;B�j)g

u[�(w�jl+(s+1)l � w
�
jl)] + �w

�
((i+1)�(s+1))l, (30)

where the equality follows from the step-function form (7). If p̂(i + 1; j) is
not equal to zero, then s+ 1 is equal to p̂(i+ 1; j).
If p̂(i + 1; j) = 0, then s + 1 = 0 is not possible. In this case, we will

consider any second best solution. Given that the objective function in (30) is
concave in s, s = 0 will achieve the optimum in (30). Overall, the consumer�s
post-trade bundle holding is i + 1 � max(1; p̂(i + 1; j)) and the producer�s
post-trade bundle holding is j +max(1; p̂(i+ 1; j)).
(Su¢ciency) Equation (7) implies that change is worthless and hence the

consumer cares only about his post-trade bundle holding and is indi¤erent
about his post-trade change holding. Hence as long as �� satis�es (i) and
(ii), the optimality of �� holds.
Proof of Lemma 2. First, we rewrite the law of motion (3) in terms of
�change� and �bundles� as follows:

�t+1kl+k0 = �
t
kl+k0

+
1

N

X

i0;i;j0;j;il+i0>kl+k0

�til+i0�
t
jl+j0�

t(il + i0 � kl � k0; il + i0; jl + j0)

+
1

N

X

i0;i;j0;j;jl+j0<kl+k0

�til+i0�
t
jl+j0�

t(kl + k0 � jl � j0; il + i0; jl + j0)

�
1

N

X

j0;j

�tkl+k0�
t
jl+j0

X

p>0

�
t(p; vl + v0; jl)

�
1

N

X

i0;i

�til+i0�
t
kl+k0

X

p>0

�
t(p; il; vl + v0); (31)

where �t0 and �
t
Bl are given by two adding-up conditions (19). The conclusion

is reached by di¤erentiating this law of motion and evaluating the result at ��.
Because most of the terms in the law of motion are quadratic and ��il+i0 = 0
for i0 > 0, after di¤erentiating and evaluating them at ��, many of the terms
will disappear. Throughout this paper, the derivatives are evaluated at the
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steady state. We suppress such dependence to simplify the notations. One
can show that for (v0; v) 6= (k0; k) and v0; k0 2 L,

@�t+1kl+k0

@�tvl+v0

=
1

N

BX

j=0

��jl�
�(vl + v0 � kl � k0; vl + v0; jl)

+
1

N

BX

i=0

��il�
�(il � kl � k0; il; vl + v0)

+
1

N

BX

j=0

��jl�
�(kl + k0 � jl; vl + v0; jl)

+
1

N

BX

i=0

��il�
�(kl + k0 � vl � v0; il; vl + v0)

� 0; (32)

and

@�t+1kl+k0

@�tkl+k0

= 1�
1

N

BX

i=0

��il
X

p>0;p 6=il�kl�k0

�
�(p; il; kl + k0)

�
1

N

BX

j=0

��jl
X

p>0;p 6=kl+k0�jl

�
�(p; kl + k0; jl) � 0: (33)

Consider the case where k0 > v0. Note that all the terms in (32) are associated
with meetings where the total amount of change is v0. By Lemma 1, nobody
ends up with k0 units of change after such meetings. Thus, all the terms are
zero, and hence 	� in (22) has a block-triangular form.
To prove (ii) and (iii), we �rst establish several claims:

Claim 1 If k0 < v0, then 	
�(k0)
�(v0) � 0. Moreover, the equality for the (k; v)

element holds if and only if for all i 2 B, meetings between il and vl + v0

leave no one with kl + k0 units of money with probability one.
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Claim 2 Each diagonal block is positive. Moreover, in the vth column of

	
�(v0)
�(v0), the sum of elements is no greater than one, and it is equal to one if

and only if for all i 2 B, meetings between il and vl+ v0 leave one agent with
v0 units of change with probability one.

Claim 3 The vth column of 	
�(k0)
�(v0) for all k

0 = 1; � � � ; v0 � 1 is equal to zero

if and only if in the vth column of 	
�(v0)
�(v0), the sum of elements is equal to one.

Claim 1 is exactly what equation (32) states. The �rst part of Claim 2
follows from the inequalities in (32) and (33). The second part is shown as
follows:

[The sum of the vth column of 	
�(v0)
�(v0)]

=
@�t+1vl+v0

@�tvl+v0
+

B�1X

k=0;k 6=v

@�t+1kl+v0

@�tvl+v0

= 1�
1

N

BX

i=0

��il
X

p>0;p6=il�vl�v0

�
�(p; il; vl + v0)

+
1

N

BX

i=0

��il

B�1X

k=0;k 6=v

�
�(il � kl � v0; il; vl + v0)

+
1

N

BX

i=0

��il

B�1X

k=0;k 6=v

�
�(kl � vl; il; vl + v0)

�
1

N

BX

j=0

��jl
X

p>0;p6=vl+v0�jl

�
�(p; vl + v0; jl)

+
1

N

BX

j=0

��jl

B�1X

k=0;k 6=v

�
�(vl � kl; vl + v0; jl)

+
1

N

BX

j=0

��jl

B�1X

k=0;k 6=v

�
�(kl + v0 � jl; vl + v0; jl)
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= 1 �
1

N

BX

i=0

��il
X

p>0;p6=il�kl�v0 or (k�v)l for k2B

�
�(p; il; vl + v0)

�
1

N

BX

j=0

��jl
X

p>0;p 6=kl+v0�jl or (v�k)l for k2B

�
�(p; vl + v0; jl) :

Note that
P

p>0;p6=il�kl�v0 or (k�v)l for k2B �
�(p; il; vl + v0) = 0 is equivalent to

the fact that the meeting (il; vl + v0) leaves no one with v0 units of change
with probability one. A similar statement holds for the second term in the
above. Therefore we have Claim 2. Combining Claims 1 and 2 leads to Claim
3.

(ii) In the following discussion, we denote the transpose of a vector by
superscript T . For any x 2 N, we let 1x = (1; � � � ; 1)

T and 0x = (0; � � � ; 0)
T ,

both of which are x-dimensional. Because 	�� is an upper-triangular block

matrix, the eigenvalues of 	�� are those of 	
�(v0)
�(v0), with v

0 2 L. Consider 	
�(1)
�(1),

the block corresponding to one-unit change. Claim 2 implies that in each
column of 	

�(1)
�(1), the sum of elements is equal to one: 1TB	

�(1)
�(1) = 1

T
B = 1 � 1

T
B.

Hence, 	
�(1)
�(1) has a unit eigenvalue, and therefore, 	

�
� has a unit eigenvalue.

(iii) Suppose by way of contradiction that 	�� has an eigenvalue that is
smaller than one, say � 2 (0; 1), and that its associated eigenvector has only
non-negative elements such that the law of motion could have exponential
convergence to �� along this eigenvector. Denote that eigenvector by � =
(�T1 ; � � � ; �

T
l�1)

T � 0, where for each v0 2 L, �v0 is a B-dimensional vector.
We have B(l � 1) equations:

0B(l�1) = (	
�
� � �I) �:

Sum up the �rst B equations, the second B equations, etc.

0l�1 =

2

6666666
4

1TB	
�(1)
�(1) � 1

T
B� 1TB	

�(1)
�(2) � � � 1TB	

�(1)
�(l�1)

0TB 1TB	
�(2)
�(2) � 1

T
B� � � �

0TB 0TB
. . .

...
...

...
. . . 1TB	

�(l�2)
�(l�1)

0TB 0TB � � � 1TB	
�(l�1)
�(l�1) � 1

T
B�

3

7777777
5

2

666
4

�1
...
...
�l�1

3

777
5

(34)
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By Claim 1, we have 1TB	
�(k0)
�(v0) � 0 for k0 < v0 and thus the upper right

blocks of the �rst matrix of the above equation are positive matrices. More-
over, the previous argument implies that 1TB	

�(1)
�(1) � �1

T
B = 1TB � �1

T
B =

(1� �)1TB > 0. Therefore, we have �1 = 0.
We use mathematical induction and assume that �1 = � � � = �v0�1 = 0.

In what follows, we want to show �v0 = 0. The following discussion is divided
into two cases.

Case 1: Consider any v 2 BnB such that
PB�1

k=0

@�t+1
kl+v0

@�t
vl+v0

6= 1. Then by

Claim 3, there exists k0 smaller than v
0

such that the vth column of 	
�(k0)
�(v0),

which corresponds to the (k0; v0) block in the �rst matrix of (34), has strictly

positive elements. The sum of elements in this column
PB�1

k=0

@�t+1
kl+k0

@�t
vl+v0

is strictly

greater than 0. If we look into the k0th row in the r.h.s. of (34), given that

�1 = � � � = �v0�1 = 0, the resulting vector is equal to
Pl�1

r0=v0 1
T
B	

�(k0)
�(r0)�r0 . It

satis�es the following condition:

0 =

l�1X

r0=v0

1TB	
�(k0)
�(r0)�r0 � 1

T
B	

�(k0)
�(v0)�v0 �

B�1X

k=0

@�t+1kl+k0

@�tvl+v0
�v0(v) � 0, (35)

where �v0(v) is the vth element of vector �v0 . The equality is by (34). The

�rst inequality is because 1TB	
�(k0)
�(r0)�r0 � 0 for all r0 � v

0

. If we write out

the matrix multiplication in 1TB	
�(k0)
�(v0)�v0 , (32), (33) and �v0 � 0 imply the

second inequality. Since
PB�1

k=0

@�t+1
kl+k0

@�t
vl+v0

is strictly greater than 0, we must

have �v0(v) = 0.

Case 2: Consider any v 2 BnB such that
PB�1

k=0

@�t+1
kl+v0

@�t
vl+v0

= 1. If we look into

the v0th row in the r.h.s. of (34), the resulting vector is equal to (1TB	
�(v0)
�(v0)�
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�1TB)�v0 +
Pl

r0=v0+1 1
T
B	

�(v0)
�(r0)�r0 . It satis�es

0 = (1TB	
�(v0)
�(v0) � �1

T
B)�v0 +

l�1X

r0=v0+1

1TB	
�(v0)
�(r0)�r0

� (1TB	
�(v0)
�(v0) � �1

T
B)�v0

� (

B�1X

k=0

@�t+1kl+v0

@�tvl+v0
� �)�v0(v)

� 0. (36)

The equality is by (34). The �rst inequality is because 1TB	
�(v0)
�(r0)�r0 � 0 for

all r0 > v
0

. If we write out the matrix multiplication in (1TB	
�(v0)
�(v0) � �1

T
B)�v0 ,

we have the sum over (
PB�1

k=0

@�t+1
kl+v0

@�t
vl+v0

� �)�v0(v) for all v 2 BnB. For those

v 2 BnB such that
PB�1

k=0

@�t+1
kl+v0

@�t
vl+v0

6= 1, we have �v0(v) = 0 by Case 1, and

therefore (
PB�1

k=0

@�t+1
kl+v0

@�t
vl+v0

� �)�v0(v) = 0 for such v. For those v 2 BnB such

that
PB�1

k=0

@�t+1
kl+v0

@�t
vl+v0

= 1, we have (
PB�1

k=0

@�t+1
kl+v0

@�t
vl+v0

� �)�v0(v) � 0. Combining

these results for the two types of v gives the second inequality.

Since
PB�1

k=0

@�t+1
kl+v0

@�t
vl+v0

� � is strictly greater than 0, (36) implies �v0(v) = 0.

Combining these two cases, we have �v0 = 0.
Proof of Lemma 3. (i) Using Lemma 1, we can rewrite Bellman equation
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(4) by linearizing the equations and then subtracting wtil from wtil+i0 :

wtil+i0 � w
t
il

=
X

j2BnB
p2p̂(i;j)

v02f0;��� ;i0g

��jl
N
u0(��w�(jl; pl))���(pl + v0; il + i0; jl)�wt+1(jl + pl; v0)

+
X

j2BnB
p2p̂(i;j)

v02f0;��� ;i0g

��jl
N
���(pl + v0; il + i0; jl)�wt+1(jl � pl; i0 � v0)

+
��Bl +N � 1

N
�(wt+1il+i0 � w

t+1
il )

+
X

jl+j0 62f0;Blg

�(il+i0;jl+j0)(�
t
jl+j0 � �

�
jl+j0); (37)

where

�(il+i0;jl+j0) �
1

N
f
X

p

��(p; il + i0; jl + j0)
�
u(��w�(jl + j0; p)) + �w�il+i0�p

�

�
X

p

��(p; il; jl + j0)
�
u(��w�(jl + j0; p)) + �w�il�p

�
g:

By Lemma 1, �(il+i0;jl+j0) = 0 if j0 = 0. Thus, the r.h.s. of (37) does not
depend on �tF . Lemma 1 implies the same pure strategy in trading bundles
across meetings (il + i0; jl) for di¤erent change holding i0. Thus, the r.h.s.
depends on wt+1 only throught incremental values �wt+1.

(ii) Looking into the coe¢cients with respect to �tN in (37) gives �
�w
�N
. Be-

cause of (7) and Lemma 1, two facts follow: (I) �(il+i0;jl+j0) = 0 for all i
0; j0

such that i0 + j0 < l, and (II) as long as both i0 + j0 and i00 + j00 are greater
than l, �(il+i0;jl+j0) = �(i00+il;j00+jl). Therefore, it is valid to let Ki;j be equal
to �(il+i0;jl+j0) for i

0 + j0 � l, and we have the statement.
The strict positiveness of Ki;j is due to the following. The �rst term of

Ki;j is the consumer�s payo¤ in the meeting (il + i
0; jl + j0), and the second

term is that in the meeting (il; jl+j0). Because i0+j0 � l, l�j0 units of money
have the same value as a bundle to the producer. The consumer gets a higher
payo¤ from giving that much change than she does in the meeting (il; jl+j0).
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(iii) Looking into the coe¢cients with respect to the incremental values of
change gives ��w�w. Because the total amount of change in a meeting cannot
increase after trade, we have

d(wtil+i0 � w
t
il)

d(wt+1vl+v0 � w
t+1
vl )

= 0

if i0 < v0. Hence, all the blocks to the right of the diagonal are zero. For the
diagonal blocks, we have

�
�
�w

i0

�w
i0

�

i+1;v+1
=

d(wtil+i0 � w
t
il)

d(wt+1vl+i0 � w
t+1
vl )

=
X

j2BnB

��jl
N
u0(��w�(jl; vl � jl))���(vl + i0 � jl; il + i0; jl)

+
X

j2BnB

��jl
N
���(il � vl; il + i0; jl)

+
��Bl +N � 1

N
�1fi = vg (38)

� 0;

where the terms in the summation correspond to in�ows into vl+i0 generated
by meetings (il + i0; jl) for j 2 BnB.
Proof of Lemma 4. (i) Suppose � = (z; �2) is the eigenvector of A
associated with a unit eigenvalue of 	�N�N :

�
	�N�N 0

�[��w�w]
�1��w�N [��w�w]

�1

� �
z
�2

�
=

�
z
�2

�
.

Hence, we have �[��w�w]
�1��w�N z + [�

�w
�w]

�1�2 = �2. Note that the inverse of
the lower-triangular matrix is a lower-triangular matrix. Therefore, we have

�2 = (I��
�w
�w)

�1��w�N z =

2

666
4

0
...
0

(I � �
�wl�1
�wl�1

)�1Kz1

3

777
5
+� � �+

2

666
4

(I � ��w1�w1
)�1Kzl�1
�
...
�

3

777
5
:

(ii) Assume by way of contradiction that ('�w
i0
)i = 0 for some i. By the

de�nition of ', We have

(I � �
�w

i0

�w
i0
)'�w

i0
= Kzl�i0 ; (39)
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where the r.h.s. is strictly positive because of zl�i0 � 0 and Lemma 3 (ii). The

i-th element of the l.h.s. of (39) is �
P

v 6=i

�
�
�w

i0

�w
i0

�

i;v
('�w

i0
)v which cannot

be strictly positive because
�
�
�w

i0

�w
i0

�

i;v
is non-negative for v 6= i (Lemma 3

(iii)).
(iii) Suppose by contradiction '�w

i0
� 0. (ii) implies '�w

i0
> 0. By

letting i = 0 and ��(i0; i0; 0) = 1 in (38), it can be shown that the �rst

element of (I � �
�w

i0

�w
i0
)'�w

i0
is

�
1� �

�
��Bl +N � 1 + �

�
0u
0(0)

N

��
('�w

i0
)1�

B�1X

v=1

�
�
�w

i0

�w
i0

�

i+1;v+1
('�w

i0
)v+1 < 0;

(40)
since u0(0) is assumed to be any large number.(u0(0) > [N=� � N + (1 �
��Bl)]=�

�
0 is su¢cient here. This condition resembles (13) in the example

section.) However, the strict inequality (40) contradicts the fact that the
r.h.s. of (39) is strictly positive.
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