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Abstract

We investigate in details a Trejos-Wright random matching model
of money with a consumer take-it-or-leave-it o¤er and the individual
money holding set f0; 1; 2g. First we show generic existence of three
kinds of steady states: (1) pure-strategy full-support steady states,
(2) mixed-strategy full-support steady states, and (3) non-full-support
steady states, and then we show relations between them. Finally we
provide stability analyses. It is shown that (1) and (2) are locally
stable, (1) being also determinate. (3) is shown to be unstable. (JEL
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1 Introduction

Trejos and Wright (1995) shows the existence of a monetary steady state in a
randommatching model under the assumption that an agent�s money holding
is in f0; 1g. In the same model, for consumer take-it-or-leave-it o¤ers and for
money holdings in f0; 1; � � � ; Bg, Zhu (2003) provides su¢cient conditions for
existence of a full-support monetary steady state with a strictly increasing
and strictly concave value function. By way of a variant of a neutrality
argument, his result also implies the existence of non-full-support steady
states in which all agents treat bundles of money, each bundle being B=l 2 N
units, as the smallest unit held and traded.
Among the questions that Zhu�s existence result leaves open are the fol-

lowing. First, are his full-support steady states unique? Second, do both
pure-strategy and mixed-strategy steady states exist generically? Third, are
full-support steady states stable? Fourth, are the above non-full-support
steady states stable? The smallest set of money holdings for which these
questions arise is f0; 1; 2g, the smallest set for which the distribution of money
holdings over people depends on the trades that are made. For this set, we
answer all but the �rst question.
Under a condition that is weaker than Zhu�s su¢cient conditions, a full-

support steady state exists. Both pure-strategy and mixed-strategy full-
support steady states exist generically and any full-support steady state is
stable. The non-full-support steady state, which necessarily has support
f0; 2g, is unstable. Although the two-unit bound is restrictive, it, at least,
provides conjectures for the general case.

2 The Zhu (2003) model

Time is discrete, dated as t � 0. There is a unit measure of non-atomic
agents who are in�nitely-lived. Also, there are divisible and non-storable
consumption goods at each date. Each agent maximizes expected discounted
utility with discount factor � 2 (0; 1). At each date, if an agent produces
an amount q � 0 of the good, the utility cost is q. If an agent consumes an
amount q � 0 of the good, the period utility he gets is u(q), where u : R+ ! R

is strictly increasing, strictly concave and continuously di¤erentiable on R+.
Also, u(0) = 0, u0(1) = 0 and u0(0) is su¢ciently large but �nite.1 These

1The assumption u0(0) <1 is used only in the proof of proposition 2.

1



assumptions imply that there is a unique �x > 0 such that u(�x) = �x.
There exists a �xed stock of indivisible money that is perfectly durable.

There is a bound on individual money holdings, denoted B 2 N, so the
individual money-holding set is B � f0; 1; � � � ; Bg. Let m 2 (0; 1) denote
the per capita stock of money divided by the bound on individual money
holdings so that the per capita stock is Bm.
In each period, agents are randomly matched in pairs. With probability

1=n, where n � 2, an agent is a consumer (producer) and the partner is a
producer (consumer). Such meetings are called single-coincidence meetings.
With probability 1� 2=n, the match is a no-coincidence meeting.2 In meet-
ings, agents� money holdings are observable, but any other information about
an agent�s trading history is private.
Consider a date-t single-coincidence meeting between a consumer (poten-

tial buyer) with i units of money (pre-trade) and a producer (potential seller)
with j units of money (pre-trade), an (i; j)-meeting. If i > 0 and j < B, the
meeting is called a trade meeting. In trade meetings, the consumer makes
a take-it-or-leave-it o¤er. (There are no lotteries.) The producer accepts or
rejects the o¤er. If the producer rejects it, both sides leave the meeting and
go on to the next date.
For each k 2 B, let wtk be the expected discounted value of holding k units

of money prior to date-t matching. Using wtk�s, the consumer�s problem in
an (i; j)-meeting is

max
p2�(i;j);q2R+

fu(q) + �wt+1i�pg (1)

s.t. � q + �wt+1j+p � �w
t+1
j ; (2)

where �(i; j) � fp 2 Bjp � minfi; B � jgg is the set of feasible payments.
As (2) holds with equality in the solution, the consumer�s problem reduces
to

f t(i; j) � max
p2�(i;j)

fu
�
�wt+1j+p � �w

t+1
j

�
+ �wt+1i�pg

P t(i; j) � argmax
p2�(i;j)

fu
�
�wt+1j+p � �w

t+1
j

�
+ �wt+1i�pg: (3)

Because the solution P t(i; j) may be multi-valued, Zhu introduces random-
ization. Let �t(i; j) denote the set of probability distributions on P t(i; j). A

2If n � 3, one foundation is that there are n types of agents and n types of consumption
goods, that type-k agents can produce type-k goods only and consume type-(k+1) goods
only, and that the money is symmetrically distributed across the types.
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mapping �t is called (consumer�s) optimal strategy if it maps each (i; j) 2
B� B to an element of �t(i; j), so that

X

p2P t(i;j)

�t(p; i; j) = 1. (4)

For each z 2 B, let �tz denote the fraction of agents holding z units of
money at the start of period t, so that �t is a probability distribution on B
with mean Bm. Given a strategy, the law of motion for �t+1 can be expressed
as

�t+1z =
n� 2

n
�tz +

2

n

BX

i=0

BX

j=0

�ti�
t
j

�t(i� z; i; j) + �t(z � j; i; j)

2
: (5)

The second term of (5) tells who in single-coincidence meetings will end up
with z units: consumers who originally had i units and spent i� z units and
producers who originally had j units and acquired z � j units.
The value function wt satis�es the Bellman equation

wti =
n� 1

n
�wt+1i +

1

n

BX

j=0

�tjf
t(i; j): (6)

The �rst term of the r.h.s corresponds to either entering a no-coincidence
meeting or becoming a producer, who is indi¤erent between trading and not
trading. When i = 0, equation (6) reduces to wt0 = �w

t+1
0 , so the only nonex-

plosive case is wt0 = 0;8t. For this reason, we focus on equilibria in which the
value from owning no money is always zero and let wt � (wt1; � � � ; w

t
B). Fi-

nally, we allow free disposal of money and consider equilibria in which agents
are not willing to throw away money. That is, the value function must be
nondecreasing in every period:

wtB � � � � � w
t
1 � w

t
0 = 0: (7)

De�nition 1 Given �0, an equilibrium is a sequence f(�t; wt)g1t=0 that sat-
is�es the consumer�s optimality condition (4), the law of motion (5), the
Bellman equation (6), and non-disposal of money (7). A tuple (�;w) is a
monetary steady state if (�t; wt) = (�;w) for t � 0 is an equilibrium and
w 6= 0. Pure-strategy steady states are those for which (3) has a unique so-
lution for all meetings. Other steady states are called mixed-strategy steady
states.
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3 Monetary steady states when B = 2

In Trejos and Wright (1995), the case B = 1, a necessary and su¢cient
condition for existence of a monetary steady state is

u0(0) >
n(1� �)

�(1�m)
+ 1: (8)

Our proposition says that (8) is also necessary and su¢cient for existence of
a full-support steady state in economy B = 2. To state it, it is helpful to
express �0 and �2 in terms of �1 using

P
�i = 1 and

P
i�i = Bm. We have

(�0; �2) = (1�m�
�1
2
;m�

�1
2
) (9)

where �1 2 � � [0; 2minfm; 1�mg]: (10)

Throughout this paper, the dependence of � on �1 is kept implicit to simplify
the notations.
First we state two key equations regarding �1, w1 and w2:

[n(1� �) + (1� �2)�]w1 =

�0u(�w1) + �1u

�
(1� �2)�

n(1� �) + (1� �2)�
�w1

�
(11)

and

w2 =

�
(1� �2)�

n(1� �) + (1� �2)�
+ 1

�
w1: (12)

For a given �1, equation (11) has at most one positive solution for w1. If it
has a positive solution for w1, then equation (12) de�nes positive w2. Let

��1 � (
p
1 + 12m(1�m)� 1)=3. (13)

and let (w�1; w
�

2) denote the positive solution to (11)-(12) for �1 = �
�

1.

Proposition 1 Inequality (8) is necessary and su¢cient for (i) existence
and uniqueness of a monetary steady state with support f0; 2g and (ii) ex-
istence of a full-support monetary steady state. Under (8), a pure-strategy
full-support steady state exists if w�1 exists and satis�es

u (�w�2)� u(�w
�

1) < �w
�

1: (14)

It is a unique pure-strategy full-support steady state and is given by (��; w�).
Otherwise there is a mixed-strategy full-support steady state.
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When � is su¢ciently close to one, the pure-strategy full-support steady
state exists. To see this, �x all parameters except � and let � = ��. As
� ! 1, equation (11) approaches w�1 = u(w�1), (12) approaches w

�

2 = 2w�1,
and (14) approaches u(2w�1) < u(w

�

1)+w
�

1. By strict concavity of u, this last
inequality holds and hence the pure-strategy full-support steady state exists.
Although those inequality conditions for existence are stated in terms of

primitives, it is helpful to have an example to show that (14) may or may not
hold. Let n = 2, and u(y) = y1=2. For such utility function, (11) and (12)
can be explicitly solved, and the condition (14) for (m;�) can be explicitly
derived. Figure ?? shows that there are open regions of (m;�) in which (14)
holds and regions in which it does not hold. Moreover, this ought to be true
for u functions �close to� u(y) = y1=2. This implies genericity of both kinds
of full-support steady states.
Although the full-support steady states computed in �gure ?? seem to be

unique, we have been unable to establish such uniqueness in general. Nor do
we have an example of multiplicity.

4 Stability

Our stability criterion is as follows.

De�nition 2 A steady state (�;w) is locally stable if there is a neighborhood
of � such that for any initial distribution in the neighborhood, there is an
equilibrium path such that (�t; wt) ! (�;w). A locally stable steady state is
determinate, if for each initial distribution in this neighborhood, there is only
one equilibrium that converges to it.

This de�nition of stability only requires convergence of some equilibria,
not all equilibria. This is because there are always equilibria that do not
converge to a given monetary steady state. In particular, a non-monetary
equilibrium always exists from any initial condition.
Notice that the above de�nition of local stability implies that the valued-

money steady state in the Trejos-Wright f0; 1g model is stable, because there
is no �neighborhood� of the steady state. Also, for that model, the only non-
explosive path converging to that steady state is the one in which the value
of money remains constant, which implies determinacy of that steady state.3

3For the Trejos-Wright f0; 1g model, Lomeli and Temzelides (2002) show that the non-
monetary steady state is indeterminate.
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The following is our stability results for the f0; 1; 2g economy.

Proposition 2 Full-support steady states are locally stable. The non-full-
support steady state is unstable. Moreover, the pure-strategy full-support
steady state is determinate.

The standard approach to stability analysis of di¤erence equation sys-
tems (see, for example, [5]) is to compare the number of eigenvalues of the
dynamical system that are strictly smaller than one in absolute value, say a,
and the number of initial conditions, say b. If a = b (a > b), then there is a
unique (an in�nity of) convergent path(s). If a < b, then there is no conver-
gent solution. This standard approach is applied to establish local stability
of the pure-strategy full-support steady state.
The stability of mixed-strategy steady state is proved by showing that

the mixed-strategy steady state can be attained in one step. The statement
about non-full-support steady state shows that if the economy starts with a
positive measure of people holding one unit of money, then the economy does
not converge to the steady state in which a bundle of two units of money
is treated as one in f0; 1g model. The proof is by way of contradiction and
relies on two features. First, the dynamical system necessarily involves unit-
root convergence because the out�ow from holdings of 1 unit, which comes
from (1; 1)-meetings, approaches zero as the frequency of such meetings goes
to zero. Second, the non-full-support steady state is on the boundary of the
state space in two senses: the distribution does not have full support and the
value of money is not strictly increasing. Hence, a convergent sequence must
at all dates satisfy �t1 � 0 and (7).

5 Proofs

Before turning to the proofs, we set out some steady state consequences that
we use in the proofs. The steady-state law of motion reduces to

(�1)
2�(1; 1; 1) =

�
1�m�

�1
2

��
m�

�1
2

�
�(1; 2; 0); (15)
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which equates out�ows from holdings of 1 (the lefthand side) to in�ows into
holdings of 1 (the righthand side). The Bellman equations are

w1 =
n� 1 + �2

n
�w1 +

�0
n
max[u(�w1); �w1] (16)

+
�1
n
max[u(�w2 � �w1); �w1]; and

w2 =
n� 1 + �2

n
�w2 +

�1
n
max[fu(�w2 � �w1) + �w1g; �w2]

+
�0
n
max[u(�w2); fu(�w1) + �w1g; �w2]: (17)

As to full-support steady states, Lemma 1 will establish that zero-unit pay-
ment is suboptimal and one-unit payment is optimal in all trade meetings
in any full-support steady state, two-unit payment in (2; 0)-meetings being
also optimal for a mixed-strategy full-support steady state. Corresponding
inequalities are

(1; 1)-meeting u(�w2 � �w1) > �w1 (18)

(1; 0)-meeting u(�w1) > �w1 (19)

(2; 1)-meeting u(�w2 � �w1) > �w2 � �w1 (20)

(2; 0)-meeting u(�w1) + �w1 � u(�w2) (21)

& u(�w1) + �w1 > �w2. (22)

If these inqualities hold, the Bellman equation (16)-(17) becomes (11)-(12).
Claims 1 and 2 are used in lemma 1.

Claim 1 If equations (11) and (12) are satis�ed for some � such that �1 > 0,
then (18) and (22) hold.

Proof. Suppose by way of contradiction that (18) does not hold:

u(�w2 � �w1) = u

�
(1� �2)�

n(1� �) + (1� �2)�
�w1

�
� �w1.

Then, we have

�w1 <
�0�

n(1� �) + �0�
u(�w1)

< u

�
�0�

n(1� �) + �0�
�w1

�

< u

�
(1� �2)�

n(1� �) + (1� �2)�
�w1

�
= u(�w2 � �w1);
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where the �rst inequality is by substituting the supposition into (11) and the
second is by u(0) = 0 and strict concavity of u. This is contradiction and
thus (18) should hold.
Inequality (22) follows from

u(�w1) > u(�w2 � �w1)

> �w1

> �w2 � �w1;

where the �rst and the third inequalities are by (12) and the second is (18).

Claim 2 Inequalities (18) and

u(�w1) + �w1 � �w2 (23)

imply (19) and (20).

Proof. Suppose by way of contradiction that (19) does not hold: u(�w1) �
�w1. Then (18) implies �w2 � �w1 > �w1. Combining this with (23) gives
u(�w1) > �w1, which is a contradiction.
Suppose by contradiction that (20) does not hold: u(�w2��w1) � �w2�

�w1. Then (23) implies �w2 � �w1 � �w1. But (18) and supposition imply
�w2 � �w1 > �w1, which is a contradiction.

Lemma 1 For any monetary steady state with a full-support distribution, the
solution set to (3) for (2,0)-meetings is either f1g or f1; 2g. The solution
set to (3) for other trade meetings is f1g. Any monetary steady state with
a non-full-support distribution has w1 = 0 and w2 that is the unique positive
solution to

w =
n� 1 +m

n
�w +

1�m

n
u(�w). (24)

Proof. We need to show that any full-support monetary steady state satis�es
(18)-(22). We start from (18) and assume by way of contradiction that
it does not hold. Then (19) must hold, because substituting (19) with a
reversed weak inequality and the supposition into (16) gives 0 = w1 = w2, a
contradiction to being a monetary steady state. Then the supposition and
(19) gives

�w2 � �w1 < �w1: (25)
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Note that (19) implies 0 < �w1 < �x, with �x = u(�x). Thus we have 0 �
�w2 � �w1 < �x, which in turn implies (20) with weak inequality. This
weak inequality and (25) gives (22). Because u is strictly concave, that
(18) does not hold implies u(�w2) � u(�w1) < �w1. This together with
(22) implies �(1; 2; 0) = 1. For �1 to be strictly positive in (15), we must
have �(1; 1; 1) > 0 and hence our supposition implies (18) must hold with
equality. So far, trading one unit of money is optimal in all trade meetings.
Bellman equation (16)-(17) implies equations (11) and (12) for some full-
support � > 0. Claim 1 implies (18), a contradiction.
From (18), we can show the remaining inequalities. Because (18) implies

�(1; 1; 1) = 1, for �1 to be strictly positive in (15), we must have (21) and
(23). Claim 2 gives (19) and (20). Therefore, trading one unit is optimal in
all trade meetings and Bellman equation becomes equations (11)-(12) with
full-support � > 0, so claim 1 implies (22). Overall (18)-(22) are necessary
conditions for a full-support monetary steady state.
We turn to non-full-support steady states. Support f0; 2g implies (�0; �1; �2) =

(1�m; 0;m) and hence �(1; 2; 0) = 0 follows from (15). Equations (16)-(17)
imply that both w1 and w2 must satisfy w =

n�1+m
n

�w+ 1�m
n
max[u(�w); �w].

Suppose by way of contradiction that w1 > 0. It must be u(�w1) > �w1,
because otherwise (24) implies w1 = 0. Similarly, we have u(�w2) > �w2.
Then both w1 and w2 are the unique positive solution to (24), which leads
to w1 = w2. This contradicts to �(2; 2; 0) = 1, because one-unit payment
would be strictly better in (2; 0)-meetings in such a case. Thus w1 = 0. Then
setting w1 = �1 = 0 in Bellman equation (17) implies that w2 must be the
unique positive solution to (24).
The proof of proposition 1 uses the intermediate function theorem to

construct full-support steady states.

Proof of proposition 1. It is not hard to see that w1 = 0 and w2 as a
positive solution to (24) satisfy (18), (20), u(�w2) > �w2, and u(�w1) � �w1.
Therefore, by lemma 1, a non-full-support monetary steady state exists if and
only if (24) has a strictly postive solution. Di¤erentiating (24) at w = 0 gives
an equivalent condition (8) for the existence of such a solution.
Now we turn to full-support steady states. First we show necessity of

(8). By lemma 1, full-support steady states satisfy (18)-(22). If all these
optimality conditions are substituted into (16) and (17), then one can get
(11), which must have a (unique) positive solution for some �1 > 0. Di¤er-
entiating (11) at w1 = 0 gives the necessary and su¢cient condition for such
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existence:

u0(0) >
[n(1� �) + (1� �2)�]

2

f�0[n(1� �) + (1� �2)�] + �1(1� �2)�g�
. (26)

Subtracting the r.h.s. of (8) from the r.h.s. of (26) gives

n(1� �)

�
�

�1n(1� �) + ��1�0
[�0n(1� �) + �(1� �2)2](2� 2m)

> 0:

Therefore (8) is implied by (26) and is necessary.
Now we consider su¢ciency. Our argument uses the intermediate value

theorem to show the existence of full-support steady state. Under (8), when
�1 = 0, (11) and (12) have a (unique) positive solution (ŵ1; ŵ2). Di¤erenti-
ation at such a solution gives

u0(�ŵ1) <
n(1� �)

�(1�m)
+ 1: (27)

Then by the mean value theorem, we have

u(�ŵ1) + �ŵ1 � u(�ŵ2) = �ŵ1 � u
0(�)(�ŵ2 � �ŵ1); � 2 (�ŵ1; �ŵ2)

> �ŵ1 � u
0(�ŵ1)(�ŵ2 � �ŵ1)

> 0;

where the second inequality follows from (12) and (27). Therefore (ŵ1; ŵ2)
satis�es u(�ŵ1) + �ŵ1 > u(�ŵ2).
As �1 increases, the solution (ŵ1; ŵ2) as a function of �1 changes con-

tinuously. Suppose that there exists ��1 2 (0; �
�

1) such that the l.h.s. and
r.h.s. of (26) are equal and such that (ŵ1; ŵ2) exists for all �1 2 (0; ��1).

4

For such ��1, the r.h.s. of (11) as a function of w1 should be tangent to the
l.h.s., and therefore, as �1 approaches ��1, (ŵ1; ŵ2) approaches a zero vector.
Di¤erentiating (11) for � = ��1 at w1 = 0 gives

n(1� �) + �(1�m+ ��1
2
)

�(1�m+ ��1
2
)

=

�
1�m� ��1

2

1�m+ ��1
2

+
���1

n(1� �) + �(1�m+ ��1
2
)

�
u0(0), (28)

4If w�
1
does not exist, which means that (26) does not hold for �1 = �

�
1
, then such ��1

exists.
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where the coe¢cient of u0(0) is proven to be smaller than one for any n > 0.
This implies

u0(0) >
n(1� �) + �(1�m+ ��1

2
)

�(1�m+ ��1
2
)

. (29)

Concavity of u and (12) give the following inequality:

u(�ŵ1) + �ŵ1 � u(�ŵ2)

�ŵ1
<
�ŵ1 � u

0(�ŵ2)�(ŵ2 � ŵ1)

�ŵ1

! 1� u0(0)
�(1�m+ ��1

2
)

n(1� �) + �(1�m+ ��1
2
)
, as �1 ! ��1. (30)

Because by (29) the above limit is strictly smaller than zero, we have u(�ŵ1)+
�ŵ1 < u(�ŵ2), for �1 su¢ciently close to ��1. In this case, the intermediate
value theorem can be applied, and we can �nd a �1 > 0 such that the solution
satis�es

u (�ŵ2)� u(�ŵ1) = �ŵ1. (31)

Suppose now that such ��1 does not exist, so that the positive solution to
(11)-(12) (ŵ1; ŵ2) exists for all �1 2 � and in particular for �1 = �

�

1. If (14)
fails to hold so we have u(�ŵ1) + �ŵ1 � u(�ŵ2), for �1 = �

�

1, then again the
the intermediate value theorem implies (31) for some �1.
Finally we show that such pair (�; ŵ) that satis�es (31) is a mixed-

strategy full-support steady state. Claim 1 implies (18) and (22). Then
claim 2 gives the remaining conditions (19)-(20). Therefore we have (18)-
(22) with equality in (21). Corresponding �(1; 2; 0) is uniquely determined
by (15).
We show that if we have (14), then (��; w�) is a pure-strategy full-support

steady state. Claim 1 implies (18) and (22). Then claim 2 gives the remaining
conditions (19)-(20). Therefore transferring one unit is strictly preferred in
all trade meetings. By lemma 1, it is the unique pure-strategy full-support
steady state.
Overall, a mixed-strategy steady state exist when pure-strategy steady

state doesn�t.

Proof of Proposition 2. First we show stability of the mixed-strategy full-
support steady state. Suppose that the initial distribution �01 is su¢ciently
close to the steady state distribution �1. For the mixed-strategy steady
state, agents can choose the initial randomization �0(1; 2; 0) so that �01 can
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jump to �1 in one period, and (�
t; wt; �t) = (�;w; �) for all t � 1. Such

randomization is the optimal choice by the agents, because w1 = w satis�es
the indi¤erence condition. Then the initial value w0 can be determined from
the initial distribution �01 and w

1 via the Bellman equation. (Note that w0

does not a¤ect agents� decisions.) Thus the mixed-strategy steady state is
stable.
The proof of stability of the pure-strategy full-support steady state and

the proof of instability of the non-full-support steady state share some com-
mon procedures. First, we will pin down the optimal trading strategy along
a possible convergent equilibrium path. Based on that strategy, we construct
a dynamical system and use linear approximation to study its dynamic prop-
erties.
For the pure-strategy full-support steady state, trading one unit in all

trade meetings is a strictly preferred strategy at the steady state (see De�-
nition 1 and Lemma 1), so it is also optimal in its neighborhood. That is,
�t(1; 1; 0) = �t(1; 1; 1) = �t(1; 2; 1) = �t(1; 2; 0) = 1 for all t � 0.
Similarly, we can also pin down the optimal trading strategy that is con-

stantly played along a path that converges to the non-full-support steady
state, if there is any such path. To see this, suppose by way of contradiction
that there exists an equilibrium path that converges to the non-full-support
steady state (i.e., �1 = 0 and w1 = 0) from some initial distribution such
that �01 6= 0. As is shown in the proof of proposition 1, trading one unit
is strictly preferred in (1; 1)- and (2; 1)-meetings, and paying two units is
strictly preferred in (2; 0)-meetings at (�;w). Therefore, they are also opti-
mal in the neighborhood of (�;w), so �t(1; 1; 1) = �t(1; 2; 1) = �t(2; 2; 0) = 1
for all t � 0. Moreover, the following argument shows �t(1; 1; 0) = 1 should
be the case for all t � 0. When the economy is close to but not equal to
(�;w), we have �t1 > 0 for all t � 0 so (6) implies wt1 > 0 for all t > 0,
because there is always a positive probability that consumer with one unit
meets producer with one unit and the consumer can get positive amount of
utility from such a meeting. Equation (8) implies u(x) > x for all x < �w2
and therefore u(�wt1) > �w

t
1 holds all along the path. So in (1; 0)-meetings,

paying one unit is strictly preferred to paying nothing along the path.
In both cases, a unique strategy is constantly played along any potential

convergent path, so we can construct dynamic system from the law of motion

12



and Bellman equation under the given strategy:

�t+11 = �t1 �
2(�t1)

2

n
+
2

n

�
1�m�

�t1
2

��
m�

�t1
2

�
�(1; 2; 0) (32)

wt1 =
n� 1 + �t2

n
�wt+11 +

�t0
n
u(�wt+11 ) +

�t1
n
u(�wt+12 � �wt+11 ) (33)

wt2 =
n� 1 + �t2

n
�wt+12 +

�t0
n
max[u(�wt+11 ) + �wt+11 ; u(�wt+12 )]

+
�t1
n
[u(�wt+12 � �wt+11 ) + �wt+11 ]. (34)

We have u(�wt+11 ) + �wt+11 < u(�wt+12 ) and �(1; 2; 0) = 0 for the non-full-
support steady state, and u(�wt+11 ) + �wt+11 > u(�wt+12 ) and �(1; 2; 0) =
1 for the pure-strategy full-support steady state. Denote (32) by �t+11 =
��(�t1) : � ! � and (33)-(34) by wt = ��(�t1; w

t+1) : � �W ! W , where
wt � (wt1; w

t
2) and W � f(w1; w2)j0 � w1 � w2g. As is ensured below, the

implicit function theorem can be applied to (33)-(34) generically for both
steady states. In the vicinity of each of the steady states, we can solve wt+1

as a function of (�t1; w
t) to obtain wt+1 = 	�(�t1; w

t) : � �W ! W . The
joint system is �

�t+11

wt+1

�
=

�
��(�t1)

	�(�t1; w
t)

�
.

Its jacobian is

A� �

�
��� O

�(��w)
�1��� (��w)

�1

�
: (35)

Straightforward di¤erentiation leads to

���(�1) = 1�
3��1 + 1

n
�(1; 2; 0)

= 1�

p
1 + 12m(1�m)

n
�(1; 2; 0): (36)

Thus the pure-strategy steady state has an eigenvalue strictly less than one
and the non-full-support steady state has a unit eigenvalue. In what follows,
we will compute the other two eigenvalues for the pure-strategy steady state
and then turn to the non-full-support steady state.
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For the pure-strategy steady state, we have �(1; 2; 0) = 1, and straight-
forward di¤erentiation gives

��w =

0

@
n�1+��

2

n
� +

��
0

n
�u0(�w�1)�

��
1

n
�u0(��w�)

��
1

n
�u0(��w�)

1���
2

n
� +

��
0

n
�u0(�w�1)�

��
1

n
�u0(��w�)

n�1+��
2

n
� +

��
1

n
�u0(��w�)

1

A ;

(37)
where �w� � w�2 �w

�

1. This matrix is generically invertible, con�rming that
the application of the implicit function theorem and (35) are valid. Because
the top-right submatrix of A� is a zero matrix, one eigenvalue of A is given
by (36), which is smaller than one, and the other two eigenvalues are those
of (��w)

�1, which are the reciprocals of eigenvalues of ��w. In what follows,
we are going to show that eigenvalues of ��w are smaller than one in absolute
value.
That the slope of the r.h.s. of (11) at the positive �xed point �w�1 should

be smaller than the slope of the l.h.s. gives

n(1� �) + (1� ��2)�

�
> ��0u

0(�w�1) + �
�

1

(1� ��2)�

n(1� �) + (1� ��2)�
u0(��w�):

(38)

The eigenvalues of a general 2� 2 matrix

�
a b
c d

�
are given by

�+; �� =
a+ d�

p
(a� d)2 + 4bc

2
:

Because

(a� d)2 + 4bc

=

�
��0
n
�u0(�w�1)� 2

��1
n
�u0(��w�)

�2

+4

�
1� ��2
n

� +
��0
n
�u0(�w�1)�

��1
n
�u0(��w�)

�
��1
n
�u0(��w�)

=

�
��0
n
�u0(�w�1)

�2
+ 4

1� ��2
n

�
��1
n
�u0(��w�) > 0,

both eigenvalues are real. They are smaller than one in absolute value if and
only if a+ d < 2 and (1� a)(1� d)� bc > 0. Checking these conditions for
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(37) gives

1� a+ 1� d

= 2

�
1�

n� 1 + ��2
n

�

�
�
��0
n
�u0(�w�1)

> 2
n(1� �) + (1� ��2)�

n
�
��0
n
�u0(�w�1)�

��1
n

(1� ��2)�

n(1� �) + (1� ��2)�
�u0 (��w�)

>
n(1� �) + (1� ��2)�

n
> 0;

(1� a)(1� d)� bc

=

�
1�

n� 1 + ��2
n

� �
��0
n
�u0(�w�1) +

��1
n
�u0(��w�)

��
1�

n� 1 + ��2
n

� �
��1
n
�u0(��w�)

�

�
��1
n
�u0(��w�)

�
1� ��2
n

� +
��0
n
�u0(�w�1)�

��1
n
�u0(��w�)

�

=
(n(1� �) + (1� ��2)�)�

n2
�

�
n(1� �) + (1� ��2)�

�
� ��0u

0(�w�1)� �
�

1

(1� ��2)�

n(1� �) + (1� ��2)�
u0(��w�)

�

> 0;

where the last inequalities of the above two conditions follow from (38).
Therefore, the eigenvalues of (��w)

�1 are greater than one in absolute value.
This full-support steady state has a one-dimensional stable manifold. Be-
cause we have one initial condition, this full-support steady state is locally
stable and determinate.
Next we consider the non-full-support steady state. Equation (36) com-

putes the unit eigenvalue for the law of motion. Furthermore, as �gure ??
illustrates, the law of motion (32) features unit-root convergence; the slope
at the �xed point is unity. Note also that this steady state is on the boundary
of the state space � �W , which makes it necessary to explictly study the
limiting behavior by seeing the eigenspace of the linearized system (35).5

First we compute

��� =

�
1
n
u(�w2)

1
2n
[u(�w2)� �w2]

�
�

�
r
s

�
> 0

5Note that this analysis is not needed for the pure-strategy full-support steady state
because that steady state is in the interior of ��W .
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and

��w =

�
a0 0
0 d0

�
� (39)

2

4
(n�1+m)�

n
+ 1�m

n
�u

0

(0) 0

0 (n�1+m)�
n

+ 1�m
n
u
0

(�w2)�

3

5 :

Because w2 is a positive solution to (24), a
0 > 1 and d0 2 (0; 1) hold. We

have

A� =

2

4
1 0 0

�r=a0 1=a0 0
�s=d0 0 1=d0

3

5 : (40)

Since �01 6= 0 and the law of motion has unit root convergence, the conver-
gence trajectory will eventually be parallel to the eigenspace of (40) associ-
ated with the unit eigenvalue6. The associated eigenvector, which constitutes
a base of the space, has the form

2

4
1
�r
a0�1
s

1�d0

3

5 :

In the context of the discrete-time dynamical system theory, the unit root is
a �border� case in which the higher-order terms should be examined. In our
case, the higher-order term seems to imply unit-root convergence (i.e., Figure
??). However, the fact that convergent trajectory of (�t1; w

t
1; w

t
2�w2) will be

parallel to the above eigenvector implies that �t1 and w
t
1 will eventually have

di¤erent signs, contradicting to �t1; w
t
1 > 0 for all t.

6 Concluding remarks

We show that the necessary and su¢cient condition for the monetary steady
state of the Trejos-Wright f0; 1g economy, namely (8), is also necessary and
su¢cient for the existence of a full-support steady state of the f0; 1; 2g econ-
omy, showing that Zhu (2003)�s su¢cient condition is not necessary for the

6See Subsection �Dominant Eigenvector� on page 165 of [4].
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bound of two. Moreover, both the pure-strategy and mixed-strategy full-
support steady states are generic. Given our result, a reasonable conjecture
should be that even for a higher bound, the condition (8) is necessary and
su¢cient for the existence of full-support steady states. For values of para-
meters that lead to lower values of money (i.e., high n, low � and high m),
randomizations may simply occur.
Generalizing Proposition 2 to a higher bound case is not simple. When

the bound is two, we can identify candidate strategies that support steady
states and get explicit expressions for the relevant di¤erence-equation system.
For a general bound, we do not know the supporting strategies. Therefore,
if analogue proofs are to be provided, they must be constructed di¤erently.7
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