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Abstract

We study stability of monetary steady states in a random matching
model of money where money is indivisible, the bound on individual
money holding is �nite, and the trading protocol is buyer take-it-
or-leave-it o¤ers. The class of steady states we study have a non-
full-support money-holding distribution. It is shown that there is no
equilibrium path that converges to such steady states if the initial dis-
tribution has a di¤erent support.
(JEL classi�cation: C62, C78, E40)
Keywords: random matching model; monetary steady state; instabil-
ity; Zhu (2003).

1 Introduction

Trejos and Wright (1995) shows the existence of a monetary steady state
in a model where an agent�s money holding is in f0; 1g. For buyer take-
it-or-leave-it o¤ers in that model and money holding in f0; 1; � � � ; Bg, Zhu
(2003) provides su¢cient conditions�one of which is that B is su¢ciently
large�for the existence of a steady state with a full-support money-holding
distribution and a strictly increasing and strictly concave value function.

�Korea University: pidonghuang@korea.kr.ac
yThe authors especially thank Neil Wallace for his guidance and ecouragement. We

are also grateful to Daniella Puzzello, Ed Green, Ricardo Cavalcanti, Rulin Zhou, and
participants of Cornell-Penn State macro workshop for helpful comments and discussions.
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However, as Zhu shows, the existence of such a full-support steady state also
implies the existence of non-full-support steady states by way of the following
neutrality argument. Take the full-support steady state of an economy. Then
consider a di¤erent economy by multiplying by some integer l both the bound
on individual money holdings and the total stock of money. Besides its own
full-support steady state, the new economy has a non-full-support steady
state that is identical to the original full-support steady state except that all
owned/traded quantities of money are multiplied by l. Call this equilibrium
an l-neutral replica. This paper provides a stability analysis of the steady
states of the Zhu economy for the smallest bound with such multiplicity;
namely, B = 2. This is also the smallest bound for which the distribution
of money is endogenous in the sense that it depends on the trades that are
made.1

Although the two-unit bound is restrictive, it is enough to demonstrate
a sharp contrast between the full-support and the non-full-support steady
states. The full-support steady state is locally stable and also determinate in
the sense that the equilibrium path converging to it is uniquely determined.
In contrast, the non-full-support steady state (which has support f0; 2g) is
unstable; if we start with a nearby distribution, which is necessarily one
with a positive measure of people with one unit of money, then there is no
equilibrium path that converges to the non-full-support steady state.2

2 The Zhu (2003) Model

The model is that in Zhu (2003), where a small carry cost is introduced.
Time is discrete, dated as t � 0. There is a non-atomic unit measure of
in�nitely-lived agents. There is consumption good that is perfectly divisible
and perishable. Each agent maximizes the discounted sum of expected utility
with discount factor � 2 (0; 1). Utility in a period is u(c)�q, where c 2 R+ is
the amount of good consumed and q 2 R+ is the amount of good produced.
u : R+ ! R is continuously di¤erentiable, strictly increasing and strictly
concave. Also, u(0) = 0, u0(1) = 0 and u0(0) is su¢ciently large but �nite.3

1The multiplicity of steady states bears some resemblance to that in Green-Zhou (2002).
However, the models are very di¤erent, as are the stability results.

2The only existing stability analysis is for f0; 1g money holdings (see Lomeli and
Temzelides (2002)).

3The assumption u0(0) <1 is used only in the proof of proposition 1.
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These assumptions imply that there is a unique �x > 0 such that u(�x) = �x.
There exists a �xed stock of indivisible money that is perfectly durable

and that can potentially serve as a medium of exchange. Storing each unit
of money in each period incurs disutility 
 > 0, that we assume to be su¢-
ciently small in the model. There is a bound on individual money holdings,
denoted B 2 N, so the individual money-holding set is B � f0; 1; � � � ; Bg.
Let m 2 (0; 1) denote the per capita stock of money divided by the bound
on individual money holdings so that the per capita stock is Bm.
In each period, agents are randomly matched in pairs. With probability

1=N , where N � 2, an agent is a consumer (producer) and the partner is
a producer (consumer). Such meetings are called single-coincidence meet-
ing. With probability 1 � 2=N , the match is a no-coincidence meeting.4 In
meetings, agents� money holdings are observable, but any other information
about an agent�s trading history is private.
Consider a date-t single-coincidence meeting between a consumer (poten-

tial buyer) with i units of money (pre-trade) and a producer (potential seller)
with j units of money (pre-trade), an (i; j)-meeting. If i > 0 and j < B, the
meeting is called a trade meeting. In trade meetings, the consumer makes
a take-it-or-leave-it o¤er. (There are no lotteries.) The producer accepts or
rejects the o¤er. If the producer rejects it, both sides leave the meeting and
go on to the next date.
For each k 2 B, let wtk be the expected discounted value of holding k units

of money prior to date-t matching. Using wtk�s, the consumer�s problem in
an (i; j)-meeting is

max
p2�(i;j);q2R+

fu(q) + �wt+1i�pg (1)

s.t. � q + �wt+1j+p � �w
t+1
j ; (2)

where �(i; j) � fp 2 Bjp � minfi; B � jgg is the set of feasible payments.
As (2) holds with equality in the solution, the consumer�s problem reduces
to

f t(i; j) � max
p2�(i;j)

fu
�
�wt+1j+p � �w

t+1
j

�
+ �wt+1i�pg

pt(i; j) = argmax
p2�(i;j)

fu
�
�wt+1j+p � �w

t+1
j

�
+ �wt+1i�pg. (3)

4One foundation is that there are N types of agents and N types of consumption goods,
that type-n agents can produce type-n goods only and consume type-(n+ 1) goods only,
and that the money is symmetrically distributed across the types.
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Because the solution P t(i; j) may be multi-valued, Zhu introduces random-
ization. Let �t(i; j) denote the set of probability distributions on P t(i; j). A
mapping �t is called (consumer�s) optimal strategy if it maps each (i; j) 2
B� B to an element of �t(i; j), so that

X

p2pt(i;j)

�t(p; i; j) = 1. (4)

For each z 2 B, let �tz denote the fraction of agents holding z units of
money at the start of period t, so that �t is a probability distribution on B
with mean Bm. Given a strategy, the law of motion for �t+1 can be expressed
as

�t+1z =
N � 2

N
�tz +

2

N

BX

i=0

BX

j=0

�ti�
t
j

�t(i� z; i; j) + �t(z � j; i; j)

2
: (5)

The second term of (5) tells who in single-coincidence meetings will end up
with z units: consumers who originally had i units and spent i� z units and
producers who originally had j units and acquired z � j units.
The value function wt satis�es the Bellman equation

wti =
N � 1

N
�wt+1i +

1

N

BX

j=0

�tjf
t(i; j)� 
i; (6)

The �rst term of the r.h.s corresponds to either entering a no-coincidence
meeting or becoming a producer, who is indi¤erent between trading and not
trading. When i = 0, equation (6) reduces to wt0 = �w

t+1
0 , so the only nonex-

plosive case is wt0 = 0;8t. For this reason, we focus on equilibria in which the
value from owning no money is always zero and let wt � (wt1; � � � ; w

t
B). Fi-

nally, we allow free disposal of money and consider equilibria in which agents
are not willing to throw away money. That is, the value function must be
nondecreasing in every period:

wti � w
t
i�1; for i = 1; � � �B; and w

t
0 = 0: (7)

De�nition 1 Given �0, an equilibrium is a sequence f(�t; wt)g1t=0 that sat-
is�es (3)-(7). A tuple (�;w) is a monetary steady state if (�t; wt) = (�;w)
for t � 0 is an equilibrium and w 6= 0. Pure-strategy steady states are those
for which (3) has a unique solution. Other steady states are called mixed-
strategy steady states.
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3 Steady States for B = f0; 1; 2g

In Trejos and Wright (1995), the case B = 1, a necessary and su¢cient
condition for existence of a monetary steady state is

u0(0) >
n(1� �)

�(1�m)
+ 1: (8)

Proposition 1 says that (8) is also a necessary and su¢cient condition, under
which a full-support steady state exists in economy B = 2 for a su¢ciently
small 
 > 0, a model of commodity money. To state it, it is helpful to express
�0 and �2 in terms of �1 using

P
�i = 1 and

P
i�i = Bm. We have

(�0; �2) = (1�m�
�1
2
;m�

�1
2
)

where �1 2 � � [0; 2minfm; 1�mg]: (9)

Throughout this paper, the dependence of � on �1 is kept implicit to simplify
the notations.
Proposition 1 in [3] shows the existence of three steady states if 
 =

0: pure-strategy, mixed-strategy, and non-full-support steady states. The
following implies that these results are robust to the introduction of a small
cost of carrying money.

Proposition 1 Generically, both pure and mixed strategy steady states exist.

In particular, under (8), a pure-strategy full-support steady state exists
for some 
 > 0 if w�1 exists and satis�es

u (�w�2)� u(�w
�

1) < �w
�

1: (10)

It is a unique pure-strategy full-support steady state and is given by (��; w�).
Otherwise there is a mixed-strategy full-support steady state.

Small carrying cost is exogenous variable or endogenous variable?
Discussion about change in the nonfull-support steady state.
Some existence result in OLG model should be very helpful.
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4 Stability

Our stability criterion is standard.

De�nition 2 A steady state (�;w) is locally stable if there is a neighborhood
of � such that for any initial distribution in the neighborhood, there is an
equilibrium path such that (�t; wt) ! (�;w). A locally stable steady state is
determinate, if for each initial distribution in this neighborhood, there is only
one equilibrium that converges to it.

This de�nition of stability only requires convergence of some equilibria,
not all equilibria. This is because there are always equilibria that do not
converge to a given monetary steady state. In particular, a non-monetary
equilibrium always exists from any initial condition.

The entire sequence is within such neighborhood.
Notice that the above de�nition of local stability implies that the valued-

money steady state in the Trejos-Wright f0; 1g model is stable, because there
is no �neighborhood� of the steady state. Also, for that model, the only non-
explosive path converging to that steady state is the one in which the value
of money remains constant, which implies determinacy of that steady state.5

The following is our stability results for the f0; 1; 2g economy.

Proposition 2 Generically, both full-support steady states locally stable and
determinate, while the non-full-support steady state is locally stable and in-
determinate.

Both proofs start from a �rst-order di¤erence equation in (�t1; w
t
1; w

t
2) that

is derived from the B = 2 versions of (5) and (6) and (7). In this system,
only �t1 has an exogenous initial value and is a �predetermined� variable. The
proof of the �rst part is standard (See [6]). We show that the stable manifold
is one-dimensional.

The meaning of generic.
Some stability result in OLG model should be very helpful.
Relationship with �at money model.

5For the Trejos-Wright f0; 1g model, Lomeli and Temzelides (2002) show that the non-
monetary steady state is indeterminate.
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(Move the following into proof section.)
The proof of the second part is not standard. The idea is borrowed

from [2]. There are two necessary features of any convergent path. First,
the convergence of �t1 is slow, because no in�ow into holdings of 1 unit and
because the out�ow, which comes from (1,1)-meetings, approaches zero as
the frequency of such meetings goes to zero. This implies that the dominant
root that determines the speed of convergence is equal to one. Second, the
steady state is on the boundary of the state space. Hence, even if the system
appears to be convergent, we have to check that the convergence is such that
�t1, w

t
1 � 0. using the eigenvector that corresponds to the dominant unit

root, that this condition fails.

Technique for show determinacy.

5 Proofs

Before turning to the proofs, we set out some steady state consequences that
we use in the proofs. The steady-state law of motion reduces to

(�1)
2�(1; 1; 1) =

�
1�m�

�1
2

��
m�

�1
2

�
�(1; 2; 0); (11)

which equates out�ows from holdings of 1 (the lefthand side) to in�ows into
holdings of 1 (the righthand side). The Bellman equations are

w1 =
n� 1 + �2

n
�w1 +

�0
n
max[u(�w1); �w1] (12)

+
�1
n
max[u(�w2 � �w1); �w1]� 
; and

w2 =
n� 1 + �2

n
�w2 +

�1
n
max[fu(�w2 � �w1) + �w1g; �w2]

+
�0
n
max[u(�w2); fu(�w1) + �w1g; �w2]� 2
: (13)

As to full-support steady states, Proposition 1 of [3] establishes that in the
model of �at money with 
 = 0, In what follows, we will show that the
existence of such monetary steady states is robust to the introduction of
carrying cost.
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The proof is by continuity.

Proof of Proposition 1. We are going to construct a pure-strategy steady
state with one-unit payment being the optimal in all trade meetings, and a
mixed-strategy steady state with two-unit payment in (2; 0)-meetings being
also optimal . Corresponding inequalities are

(1; 1)-meeting u(�w2 � �w1) > �w1 (14)

(1; 0)-meeting u(�w1) > �w1 (15)

(2; 1)-meeting u(�w2 � �w1) > �w2 � �w1 (16)

(2; 0)-meeting u(�w1) + �w1 � u(�w2) (17)

& u(�w1) + �w1 > �w2. (18)

Under these inequalities, the Bellman equation (12)-(13) becomes

[N(1� �) + (1� �2)�]w1 = (19)

�0u(�w1) + �1u

�
�((1� �2)�w1 �N
)

N(1� �) + (1� �2)�

�
�N


and
[N(1� �) + (1� �2)�](w2 � w1) = (1� �2)�w1 �N
: (20)

For a given �1, there exist at most two positive w1 satisfying equation (19).
If such w1 exists, then equation (20) de�nes positive w2. Let

��1 � (
p
1 + 12m(1�m)� 1)=3. (21)

and let (w�1; w
�

2) denote the bigger of the two solutions, if they exist, to (19)-
(20) for �1 = �

�

1. The following two claims imply that (14)-(18) are robust
to a small 
 > 0, if we can �nd �1 and w1 solving (19). Then we will show
that the existence of such �1 and w1.

Claim 1 Suppose 
 > 0 is su¢ciently small. If equations (19) and (20) are
satis�ed for some � such that �1 > 0, then (14) and (18) hold.
Proof. Let 
 = 0 and suppose by way of contradiction that (14) does not
hold:

u(�w2 � �w1) = u

�
(1� �2)�

n(1� �) + (1� �2)�
�w1

�
� �w1.
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Then, we have

�w1 <
�0�

n(1� �) + �0�
u(�w1)

< u

�
�0�

n(1� �) + �0�
�w1

�

< u

�
(1� �2)�

n(1� �) + (1� �2)�
�w1

�
= u(�w2 � �w1);

where the �rst inequality is by substituting the supposition into (19) and the
second is by u(0) = 0 and strict concavity of u. This is contradiction and
thus (14) should hold.
Inequality (18) follows from

u(�w1) > u(�w2 � �w1)

> �w1

> �w2 � �w1;

where the �rst and the third inequalities are by (20) and the second is (14).
Because these are strict inequalities, when 
 > 0 is su¢ciently small, they
still hold.

Claim 2 Inequalities (14) and

u(�w1) + �w1 � �w2 (22)

imply (15) and (16).

Proof. Suppose by way of contradiction that (15) does not hold: u(�w1) �
�w1. Then (14) implies �w2 � �w1 > �w1. Combining this with (22) gives
u(�w1) > �w1, which is a contradiction.
Suppose by contradiction that (16) does not hold: u(�w2��w1) � �w2�

�w1. Then (22) implies �w2 � �w1 � �w1. But (14) and supposition imply
�w2 � �w1 > �w1, which is a contradiction.
When � = 1 and 
 = 0 in (19)-(20), it is not hard to see that solution

(w�1; w
�

2) exists and satis�es u(w
�

1) = w
�

1 = w
�

2=2. Then (17) holds with strict
inequality.
Now consider a � su¢ciently close to one and a su¢ciently small 
 > 0.

Because such change shift the r.h.s. of (19) shifted downward and the l.h.s.
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upward, the (w�1; w
�

2) still exists and becomes slightly smaller, and hence
(17) still holds with strict inequality. Claim 1 implies (14) and (18). Then
claim 2 gives the remaining conditions (15)-(16). Therefore, we have a pure-
strategy full-support steady state when � is su¢ciently close one and 
 > 0
is su¢ciently small.
Then we turn to mixed-strategy steady state and start with setting 
 = 0.

Again we will show some conditions involving strict inequalities, so that when
we introduce a su¢ciently small 
 , these conditions still hold.
Fixing �1 at any value in �, we can �nd ŵ1 > 0 that solves (19). Given

the concavity of u, the existence of ŵ1 > 0 is equivalent to

u0(0) >
[n(1� �) + (1� �2)�]

2

f�0[n(1� �) + (1� �2)�] + �1(1� �2)�g�
. (23)

The r.h.s. of (23) starts from positive in�nity and approaches one as �
increases in (0; 1). Therefore, we can �nd a �� of intermediate value so that
(23) does not hold particularly when �1 = �

�

1.
Subtracting the r.h.s. of (23) for �1 = 0 from the r.h.s. for �1 = �

�

1 gives

n(1� �)

�
�

��1n(1� �) + ��
�

1�
�

0

[��0n(1� �) + �(1� �
�

2)
2](2� 2m)

> 0:

The r.h.s. of (23) reaches its strict minimum at �1 = 0 when other parameters
are �xed. Therefore, we can adjust �� so that (23) holds when �1 = 0.
For such ��, when �1 = 0, the above implies the existence of (ŵ1; ŵ2). A

necessary condition for the existence of a positive solution is

u0(�ŵ1) <
n(1� �)

�(1�m)
+ 1: (24)

Then by the mean value theorem, we have

u(�ŵ1) + �ŵ1 � u(�ŵ2) = �ŵ1 � u
0(�)(�ŵ2 � �ŵ1); � 2 (�ŵ1; �ŵ2)

> �ŵ1 � u
0(�ŵ1)(�ŵ2 � �ŵ1)

> 0;

where the second inequality follows from (20) and (24). Therefore (17) holds
with strict inequality when �1 = 0.
As �1 increases, the solution (ŵ1; ŵ2) as a function of �1 changes contin-

uously. Note that the existence condition will be violated at ��1. Therefore
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before �1 reaches �
�

1, ŵ1 and ŵ2 will merge into zero. In other words, there
exists ��1 2 (0; �

�

1) such that the l.h.s. and r.h.s. of (23) are equal and such
that (ŵ1; ŵ2) exists for all �1 2 (0; ��1). The condition at such ��1 is

n(1� �) + �(1�m+ ��1
2
)

�(1�m+ ��1
2
)

=

�
1�m� ��1

2

1�m+ ��1
2

+
���1

n(1� �) + �(1�m+ ��1
2
)

�
u0(0), (25)

where the coe¢cient of u0(0) is proven to be smaller than one for any n > 0.
This implies

u0(0) >
n(1� �) + �(1�m+ ��1

2
)

�(1�m+ ��1
2
)

. (26)

Concavity of u and (20) give the following inequality:

u(�ŵ1) + �ŵ1 � u(�ŵ2)

�ŵ1
<
�ŵ1 � u

0(�ŵ2)�(ŵ2 � ŵ1)

�ŵ1

! 1� u0(0)
�(1�m+ ��1

2
)

n(1� �) + �(1�m+ ��1
2
)
, as �1 ! ��1. (27)

Because by (26) the above limit is strictly smaller than zero, we have u(�ŵ1)+
�ŵ1 < u(�ŵ2), for �1 su¢ciently close to ��1. Note that the two inequalities
corresponding to �1 = 0 and �1 su¢ciently close to ��1 are strict, and hence
they are robust to the introduction of a small 
 > 0. In this case, the
intermediate value theorem can be applied, and we can �nd a �1 > 0 such
that the solution to (19)-(20) for a small 
 > 0 satis�es

u(�ŵ1) + �ŵ1 = u(�ŵ2). (28)

Finally we show that such pair (�; ŵ) that satis�es (28) is a mixed-
strategy full-support steady state. Claim 1 implies (14) and (18). Then
claim 2 gives the remaining conditions (15)-(16). Therefore we have (14)-
(18) with equality in (17).

increasing value function gives stability result.

Proof of Proposition 2. For the pure-strategy full-support steady state,
trading one unit in all trade meetings is a strictly preferred strategy at the
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steady state (see De�nition 1 and Lemma 1), so it is also optimal in its
neighborhood. That is, �t(1; 1; 0) = �t(1; 1; 1) = �t(1; 2; 1) = �t(1; 2; 0) = 1
for all t � 0.
Similarly, we can also pin down the optimal trading strategy that is con-

stantly played along a path that converges to the non-full-support steady
state, if there is any such path. When 
 > 0, trading two units in (2; 0)-
meeting and trading one unit in all other meetings is a strictly preferred
strategy at the steady state and hence it is also the unique optimal in its
neighborhood. When 
 = 0, the same strategy becomes weakly preferred at
the steady state but it will be the unique optimal in the neighborhood. To
see this, suppose by way of contradiction that there exists an equilibrium
path that converges to the non-full-support steady state (i.e., �1 = 0 and
w1 = 0) from some initial distribution such that �01 6= 0. As is shown in
the proof of proposition 1, trading one unit is strictly preferred in (1; 1)- and
(2; 1)-meetings, and paying two units is strictly preferred in (2; 0)-meetings
at (�;w). Therefore, they are also optimal in the neighborhood of (�;w), so
�t(1; 1; 1) = �t(1; 2; 1) = �t(2; 2; 0) = 1 for all t � 0. Moreover, the following
argument shows �t(1; 1; 0) = 1 should be the case for all t � 0. When the
economy is close to but not equal to (�;w), we have �t1 > 0 for all t � 0 so
(6) implies wt1 > 0 for all t > 0, because there is always a positive probability
that consumer with one unit meets producer with one unit and the consumer
can get positive amount of utility from such a meeting. Equation (8) implies
u(x) > x for all x < �w2 and therefore u(�w

t
1) > �wt1 holds all along the

path. So in (1; 0)-meetings, paying one unit is strictly preferred to paying
nothing along the path.
For both steady states, a unique strategy is constantly played along any

potential convergent path, so we can construct dynamic system from the law
of motion and Bellman equation under the given strategy:

�t+11 = �t1 �
2(�t1)

2

n
+
2

n

�
1�m�

�t1
2

��
m�

�t1
2

�
�(1; 2; 0) (29)

wt1 =
n� 1 + �t2

n
�wt+11 +

�t0
n
u(�wt+11 ) +

�t1
n
u(�wt+12 � �wt+11 )� 
(30)

wt2 =
n� 1 + �t2

n
�wt+12 +

�t0
n
max[u(�wt+11 ) + �wt+11 ; u(�wt+12 )]

+
�t1
n
[u(�wt+12 � �wt+11 ) + �wt+11 ]� 2
. (31)

We have u(�wt+11 ) + �wt+11 < u(�wt+12 ) and �(1; 2; 0) = 0 for the non-full-
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support steady state, and u(�wt+11 ) + �wt+11 > u(�wt+12 ) and �(1; 2; 0) =
1 for the pure-strategy full-support steady state. Denote (29) by �t+11 =
��(�t1) : � ! � and (30)-(31) by wt = ��(�t1; w

t+1) : � �W ! W , where
wt � (wt1; w

t
2) and W � f(w1; w2)j0 � w1 � w2g. As is ensured below, the

implicit function theorem can be applied to (30)-(31) generically for both
steady states. In the vicinity of each of the steady states, we can solve wt+1

as a function of (�t1; w
t) to obtain wt+1 = 	�(�t1; w

t) : � �W ! W . The
joint system is �

�t+11

wt+1

�
=

�
��(�t1)

	�(�t1; w
t)

�
. (32)

Its jacobian is

A� �

�
��� O

�(��w)
�1��� (��w)

�1

�
: (33)

Straightforward di¤erentiation leads to

���(�1) = 1�
3��1 + 1

n
�(1; 2; 0)

= 1�

p
1 + 12m(1�m)

n
�(1; 2; 0): (34)

Thus the pure-strategy steady state has an eigenvalue strictly less than one
and the non-full-support steady state has a unit eigenvalue.For the pure-
strategy steady state, we have �(1; 2; 0) = 1, and straightforward di¤erenti-
ation gives

��w =

0

@
n�1+��

2

n
� +

��
0

n
�u0(�w�1)�

��
1

n
�u0(��w�)

��
1

n
�u0(��w�)

1���
2

n
� +

��
0

n
�u0(�w�1)�

��
1

n
�u0(��w�)

n�1+��
2

n
� +

��
1

n
�u0(��w�)

1

A ;

(35)
where �w� � w�2 �w

�

1. This matrix is generically invertible, con�rming that
the application of the implicit function theorem and (33) are valid. Because
the top-right submatrix of A� is a zero matrix, one eigenvalue of A is given
by (34), which is smaller than one, and the other two eigenvalues are those
of (��w)

�1, which are the reciprocals of eigenvalues of ��w. In what follows,
we are going to show that eigenvalues of ��w are smaller than one in absolute
value.
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That the slope of the r.h.s. of (19) at the positive �xed point �w�1 should
be smaller than the slope of the l.h.s. gives

n(1� �) + (1� ��2)�

�
> ��0u

0(�w�1) + �
�

1

(1� ��2)�

n(1� �) + (1� ��2)�
u0(��w�):

(36)

The eigenvalues of a general 2� 2 matrix

�
a b
c d

�
are given by

�+; �� =
a+ d�

p
(a� d)2 + 4bc

2
:

Because

(a� d)2 + 4bc

=

�
��0
n
�u0(�w�1)� 2

��1
n
�u0(��w�)

�2

+4

�
1� ��2
n

� +
��0
n
�u0(�w�1)�

��1
n
�u0(��w�)

�
��1
n
�u0(��w�)

=

�
��0
n
�u0(�w�1)

�2
+ 4

1� ��2
n

�
��1
n
�u0(��w�) > 0,

both eigenvalues are real. They are smaller than one in absolute value if and
only if a+ d < 2 and (1� a)(1� d)� bc > 0. Checking these conditions for
(35) gives

1� a+ 1� d

= 2

�
1�

n� 1 + ��2
n

�

�
�
��0
n
�u0(�w�1)

> 2
n(1� �) + (1� ��2)�

n
�
��0
n
�u0(�w�1)�

��1
n

(1� ��2)�

n(1� �) + (1� ��2)�
�u0 (��w�)

>
n(1� �) + (1� ��2)�

n
> 0;
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(1� a)(1� d)� bc

=

�
1�

n� 1 + ��2
n

� �
��0
n
�u0(�w�1) +

��1
n
�u0(��w�)

��
1�

n� 1 + ��2
n

� �
��1
n
�u0(��w�)

�

�
��1
n
�u0(��w�)

�
1� ��2
n

� +
��0
n
�u0(�w�1)�

��1
n
�u0(��w�)

�

=
(n(1� �) + (1� ��2)�)�

n2
�

�
n(1� �) + (1� ��2)�

�
� ��0u

0(�w�1)� �
�

1

(1� ��2)�

n(1� �) + (1� ��2)�
u0(��w�)

�

> 0;

where the last inequalities of the above two conditions follow from (36).
Therefore, the eigenvalues of (��w)

�1 are greater than one in absolute value.
This full-support steady state has a one-dimensional stable manifold. Be-
cause we have one initial condition, this full-support steady state is locally
stable and determinate.
Next we consider the non-full-support steady state. Equation (34) com-

putes the unit eigenvalue for the law of motion. Furthermore, as �gure 5
illustrates, the law of motion (29) features unit-root convergence; the slope
at the �xed point is unity. Note also that when 
 = 0, this steady state is on
the boundary of the state space ��W , which makes it necessary to explictly
study the limiting behavior by seeing the eigenspace of the linearized system
(33).6

First we compute

��� =

�
r
s

�
�

�
1
n
u(�w2 � �w1)�

1
2n
[u(�w1) + �w1]

1
n
[u(�w2 � �w1) + �w1]�

1
2n
[u(�w2) + �w2]

�
> 0

and

��w =

�
a0 0
0 d0

�
� (37)

2

4
(n�1+m)�

n
+ 1�m

n
�u

0

(�w1) 0

0 (n�1+m)�
n

+ 1�m
n
u
0

(�w2)�

3

5 :

6Note that this analysis is not needed for the pure-strategy full-support steady state
because that steady state is in the interior of ��W .
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Because w2 is a positive solution to (13), a
0 > 1 and d0 2 (0; 1) hold. We

have

A� =

2

4
1 0 0

�r=a0 1=a0 0
�s=d0 0 1=d0

3

5 : (38)

In the context of the discrete-time dynamic system theory, the unit root is
a �border� case in which the higher-order terms should be examined. In
our case, the higher-order term seems to imply unit-root convergence (i.e.,
Figure 5) and the stable manifold of (32) is two dimensional. When 
 > 0

is su¢ciently small, the initial condition on �01 imposes one restriction on
the convergent paths, and reduces the degree of freedom by one. The steady
state is locally stable and indeterminate.
When 
 = 0, the steady state is at the boundary of the state space

��W . Keeping the entire convergent path in the space becomes problematic.
In particular, unit root convergence implies that the convergence trajectory
will eventually be parallel to the eigenspace of (38) associated with the unit
eigenvalue7. The associated eigenvector, which constitutes a base of the
space, has the form 2

4
1
�r
a0�1
s

1�d0

3

5 :

The fact that convergent trajectory of (�t1; w
t
1; w

t
2 � w2) will be parallel to

the above eigenvector implies that �t1 and w
t
1 will eventually have di¤erent

signs, contradicting to �t1; w
t
1 > 0 for all t. Therefore, the steady state is not

stable.

7See Subsection �Dominant Eigenvector� on page 165 of [5].
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Finally, we consider the mixed-strategy steady state. Our existence proof
shows that generically it involves complete randomization: ��(1; 2; 0) 2 (0; 1).
Along any convergent paths starting from su¢ciently nearby neighborhood,
complete randomization, which could vary along the path, in (2; 0)-meeting
and one-unit payment in all other meetings must be the optimal, because �t

will jump out of the neighborhood otherwise. Therefore (30)-(31) are still
valid along the path. It turns out that this is not consistent the indi¤erence
condition (28) for t > 1 generically.
In what follows, we are going to exclude three types of convergent paths in

a su¢ciently small neighborhood of the steady state: ones where �t reaches
the steady state but wt+1 does not at some t > 1 date, i.e �t = �� and
wt+1 6= w�, ones where wt+1 reaches the steady state but �t does not for
some t > 1, i.e �t 6= �� and wt+1 = w�, and those where both �t and wt+1

never arrive at the steady state. And �nally we will show that the unique
convergent path will be that where (�t; wt) jumps into the steady state at
date 1.
The �rst two types can be ruled out by examing the linearized Bellman

equation at the steady state,
�
dwt1
dwt2

�
= ���d�

t
1 + �

�
w

�
dwt+11

dwt+12

�
, (39)

and the linearied indi¤erence conditions (28) for date t and date t+ 1,

[u0(�w�1) + 1]

�
dwt1
dwt+12

�
= u0(�w�2)

�
dwt2
dwt+12

�
. (40)

The �rst two types have dwt 6= 0 and suppose dwt1 6= 0 without loss of

generality. (39) and (40) must be satis�ed by four di¤erence quotients:
d�t

1

dwt
1

,

dwt
2

dwt
1

,
dwt+1

1

dwt
1

and
dwt+1

2

dwt
1

. At date t > 1 on a �rst-type path, we have �t = ��

which pins down
d�t

1

dwt
1

= 0, while on a second-type path, dwt+11 = dwt+12 = 0

�xes
dwt+1

1

dwt
1

and
dwt+1

2

dwt
1

at zero. Along any third-type path that never arrive at

the steady state, none of the di¤erence quotients are pinned down. In all three
cases, at most four variables need to solve four equations simultaneously. This
is not true generically, because the coe¢cients in (39) and (40) are the values
and derivatives of function u at speci�c points, and we can always perturb
u by altering these derivatives arbitrarily without the values. Therefore, the
three types of path do not exist generically.

17



Finally, we will show that (�t; wt) reaches the steady state at date 1. Note
that the steady state involves complete randomization generically. Therefore
starting with the initial distribution �01 su¢ciently close to the steady state
distribution, agents can choose the initial randomization �0(1; 2; 0) 2 (0; 1)
so that �01 can jump to �

�

1 in one period, and then (�
t; wt) = (��; w�) for

all t � 1. Such randomization is the optimal choice by the agents, because
w1 = w� satis�es the indi¤erence condition. Then the initial value w0 can be
determined from the initial distribution �01 and w

1 via the Bellman equation.
(Note that w0 does not a¤ect agents� decisions.) Thus generically, the mixed-
strategy steady state is stable and determinate��.

6 Concluding remarks

This paper shows instability of the nonfull-support steady states that are
l-replicas of some strict monetary steady state in Zhu (2003). A counterpart
of our analysis would be a stability analysis of full-support steady states.8 In
a companion paper, we do that for the f0; 1; 2g case. We provide a necessary
and su¢cient condition for the existence of full-support steady states and
showing that they are locally stable. So far, there is no stability analysis for
full-support steady states, whether strict or not, in the general case.
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