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Regulatory Capital Determination and Its Implications for Internal Ratings-Based Credit 

Risk Model Development and Validation 

 
Honggao Cao 

 
One key element of the internal ratings-based (IRB) Basel rule is a formula (or “supervisory 
mapping function”) for determining minimum capital that a bank must hold to protect its 
solvency in an extremely adverse situation (Basel Committee on Banking Supervision, 2005; US 
Rules and Regulations 2007). Reflecting a negotiated settlement between regulators and the 
banking industry, this formula has a natural connection to several well-specified statistical 
models that can be leveraged by Basel model developers and validators to better understand the 
capital rule. For example, where does this formula come from? What risk does it try to capture? 
Why does the Basel II Accord stipulate that the formula be implemented on a basis of 
homogeneous segments for retail exposures or similar risk ratings of wholesale obligors? Is there 
any desirable property on the number of loans for a segment (or obligor group)? Why is LGD in 
the formula treated as a constant as opposed to a random variable? When covering expected loss 
– and determined independently – is the loss reserve related to the minimum regulatory capital in 
any particular manner?  
 
In this paper, we try to expound these issues. At the core of our exercise is a derivation of the 
capital formula, which can be seen as an application of the single-risk-factor portfolio loss 
distribution model developed by Oldrich A.Vasicek (1987, 1991, and 2002), which is in turn an 
extension of the single-asset credit risk model developed by Robert C. Merton (1974).1 We 
demonstrate that the regulatory capital as represented by the formula essentially tries to manage 
unexpected risks from asset correlation: In an event of no asset correlation, the regulatory capital 
would be reduced to zero. We show that homogeneity of the portfolio, along with an assumption 
of normality on asset value dynamics, is a necessary condition for the Vasicek model to be valid. 
In addition, the Vasicek formula is accurate only asymptotically. To use the formula, one has to 
presume that the target portfolio has a large number of identical loans. This not only explains 
why the Basel Accord asks for grouping retail loans or wholesale obligors of similar credit 
quality before applying the capital formula, but also puts constraints on the number of loans of 
any resulting portfolio segment or group: The formula is relevant only asymptotically; the 
portfolio size cannot be too small. 
 
 
Contingent Claims and Probability of Default: The Single Asset Model 

 
We start with the single-asset credit risk model developed by Merton, which regards an obligor’s 
behavior in a contingent claims framework. According to this model, whether an obligor defaults 
on a debt over a fixed assessment horizon depends on whether the value of the underlying asset 
becomes lower than the debt obligation at the end of horizon. Specifically, assume that the value 

of the asset at time t, tV , follows a geometric Brownian motion (GBM) as in equation (1), 

 

                                                 
1 Similar discussions on the portfolio loss distributions that are related to regulatory capital determination can also 
be found in Céspedes (2002), Kochendörfer (2011); Schönbucher (2002); and Thomas & Wang (2005). 
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 )( ttt dWdtVdV          (1) 

 

where tW is a Wiener process (or standard Brownian motion) with constant drift   and constant 

volatility .  In particular,  
 

 ),0(~ dtNWt          (2) 

 
where (.)N represents normal distribution. It follows, based on Ito’s lemma, that the value of the 

asset at the end of horizon T, TV , is 
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25.0
0        (3) 

 

where 0V is the value of the asset at the beginning of the horizon, and z is a standard normal 

random variable. 
 

The obligor defaults (or 1D ) if TV is lower than the expected debt obligation at T, denoted 

as b
eB  . That is, substituting from (3), the probability of default is   
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where (.) is cumulative density of the standard normal distribution. 

 
The importance of equation (4) – as we will see below – is that an obligor’s probability of default 
can be derived in closed form from the standard normal distribution. 
 
 
The Single-Risk Factor in the Asset Valuation Function 

 

Consider a portfolio of n obligors. The probability of default for obligor i, ip , is then  

  

 )1(Pr  ii Dp         (5) 

 

For reasons to be seen shortly, this ip  represents the obligor’s unconditional default risk, or the 

expected default probability over time horizon and across different environments. 
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The asset value as determined in equation (3) for obligor i can be characterized as a random 
variable, 
 

iiz           (6) 

 
with the following properties: 
 

 0)( izE          (6a) 

 1)( 2 izE          (6b) 

 RzzE ji ),(          (6c) 

 )(1
ii p

          (6d) 

 
The asset values of any two obligors in the portfolio are assumed to be correlated with a constant 
correlation R.  
 
The relationship in (6)-(6c) can be represented as 
 

ii RYRz  1         (7) 

 
where Y is a portfolio common factor that can be interpreted as an economic or scenario index, 

i  is a normalized obligor-specific idiosyncratic factor, and Y, 1 , 2 , …, n are mutually 

independent standard normal variables. 
 
As noted in Vasicek (2002), equation (7) is not a new assumption, but a property of the 

equicorrelated normal distribution as specified in (5)-(6c). Furthermore, YR can be seen to be 

the obligor’s exposure to the common (or systemic) risk, and iR 1  the obligor-specific risk. 

 
Equations (5)-(7) constitute the well-known single-factor risk model. It has dominated industry 
efforts to model credit risk for determining both economic and regulatory capital.2 
 
 
Conditional Probability of Default for a Single Obligor 

 
Given the asset value correlation represented in (7), the probability that obligor i defaults on her 
loan conditional on a particular scenario yY  is often called conditional probability of default, 

which can be determined as follows: 
  

                                                 
2 According to Gordy (2003), for example, this general framework has been used in the (J. P. Morgan) RiskMetrics 
Group’s CreditMetrics, Credit Suisse Financial Product’s CreditRisk+, McKinsey’s CreditPortfolio View, and 
KMV’s Portfolio Manager. In Basel Committee on Banking Supervision (2005), this is referred to as the asymptotic 
single risk factor (or ASRF) framework. 
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where the equality in (8e) is due to equation (6d). 
 

The unconditional probability of default, ip as defined in (5), can be seen as the expectation of 

the conditional probabilities over all possible scenarios. That is, 
 

 dYYfyYpp ii )(*)(         (9) 

 
where f is a density function of scenario. 
 
 
Conditional PD for a Homogeneous Portfolio  

 

The default rate of the portfolio, which consists of n obligors, is a random variable and may be 
expressed as 
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If the events of default of all obligors in the portfolio were independent, the portfolio default rate 
would converge, by the central limit theorem, to a normal distribution as the portfolio size n 
increases. Because the defaults are not independent, however, the conditions of the central limit 
theorem are not satisfied, and – thus – )(nd  is not asymptotically normal. Given the single-risk 

factor assumptions as represented in equation (7), however, the default rate given a scenario – or 
conditional PD – for a homogeneous portfolio will converge to a limiting form. That is, 
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where )(yp is the expected conditional portfolio PD, and, as in (9), p is the unconditional 

portfolio PD. 
 
It is important to note that results in (11a)-(11c) are valid only asymptotically. To use them to 
predict for an actual portfolio, portfolio size should not be too small. 
 
The asymptotic portfolio-default-rate distribution conditional on scenario yY   can be derived 

in the following manner. Let )}{Pr()( xydxQ   be the cumulative density of the distribution. 

Then 
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The probability density function is then 
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For a graphical representation of this portfolio-default-rate distribution, see the appendix for a set 
of { Rp, } combinations. 

 
 
Portfolio PD under Stress Condition 

 
One conditional portfolio PD of significant interest is the PD under a particular stress condition, 

popularly defined as )999.0(1Y :  
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Intuitively, this stress condition corresponds to a very negative economic environment, or a 
negative economic environment that has a very small probability (< 0.001) to occur. As we shall 
see shortly, equation (14) is a key construct ubiquitous in efforts to derive credit risk regulatory 
capital. Because of this, we shall call the equation “the stress portfolio PD”, and scenario 

)999.0(1Y  “the stress condition”. 
 

                                                 
3 See Vasicek (1991) or Schönbucher (2002). 
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The Stress Portfolio Loss and Regulatory Capital

4
 

 
The conditional portfolio loss rate for a homogeneous portfolio can be calculated in a way 
similar to conditional portfolio PD: 
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where )( yYLGDi   is loss severity given default and given the scenario for obligor i. In general, 

this loss rate has no closed-form result. If the loss severity given default and given the scenario is 
constant across all the obligors in this homogeneous portfolio, however, the portfolio loss rate 
can be derived asymptotically. More formally, 
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Now evaluating the conditional portfolio loss under “the stress condition” )999.0(1Y , we 

have 
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4 A discussion slightly different from – but analogous in spirit to – this section can be found in “Technical 
Appendix: Downturn LGDs and the Basel II Risk Weighted Functions” in Basel Committee on Banking Supervision 
(2004). 
 



    7 

The k in equation (16c) would be the Basel II regulatory mapping function for determining the 
minimum capital requirement for credit risk if and only if 

5 
 

- The unconditional portfolio default rate p is estimated as a long-run PD to approximate 

the portfolio default rate over all possible scenarios; and 
 

- The LGD under the stress scenario, ,
LGD is estimated as a constant derived from a very 

negative economic condition (or “economic downturn conditions”).  
 
It is worth noting that  
 

- Equations (16a)-(16c) represent the asymptotic, conditional (i.e., stress) portfolio loss for 
a homogenous portfolio. They may not hold if the portfolio is heterogeneous or portfolio 
size is too small;6 

 
- The results reflect a decomposition of the conditional (stress) portfolio loss into the 

expected loss, ,* 
LGDp  and the unexpected loss, k;  and 

 
- Assuming that the expected loss is covered by loan loss reserve, which is to be further 

discussed below, the regulatory capital k is set up so that the unexpected loss is covered 
should the stress condition emerge. 

 
Equations (16a)-(16c) have another important implication as well: Regulatory capital is 
essentially meant to capture the systemic risk as represented in asset value correlation – if the 
assets in a portfolio are completely independent (or the portfolio is completely diversified), the 
conditional portfolio credit loss would be equal to expected loss, rendering the regulatory capital 
to disappear.  
 
 

Implications for IRB Credit Risk Model Development and Validation 

 

Internal ratings-based credit risk models consist of several distinct components. These include (i) 
portfolio segmentation to group individual loans into mutually exclusive homogeneous risk 
segments; (ii) portfolio PD quantification that captures long-term default rate for loans of each 
segment; and (iii) portfolio LGD that is estimated as a constant – and independently of PD – for 
each segment under economic downturn conditions. Based on our discussion in the previous 
sections, each of these components has a well-founded basis, serving to ensure that the 
regulatory capital combines with appropriately determined loss reserve to cover adequately total 
conditional credit loss that is expected from the stress condition.  
 

                                                 
5 For simplicity, we define k here by normalizing the maturity adjustment in the regulatory mapping function. 
6 The restriction that the size of a homogenized portfolio segment should not be too small can also be derived from 
the fact that the capital formula is concave in p. Capital charge for a small segment may lead to a granularity bias 
detrimental to the bank. See Kiefer and Larson (2003) for discussions along this line. 
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In particular, portfolio segmentation is motivated to create homogeneous sub-portfolios where 
obligors are similar in credit quality so that the foregone portfolio loss analysis can survive. As 
we have pointed out on several occasions, for each segment or sub-portfolio, the results on 
conditional portfolio PD, conditional portfolio loss rate, loss reserve and regulatory capital hold 
only asymptotically. This puts a constraint on the size of any potential segment: it should not be 
too small. It also explains why regulatory capital is not assessed at individual obligor or exposure 
level.7  
 
Creating homogeneous segments also helps transitioning from conditional portfolio PD to 
conditional portfolio loss, which, as seen in equations (15a)-(15b), requires an assumption of 
constant conditional LGD. This assumption would generally be less credible if a portfolio is very 
heterogeneous. 
 
The long-run PD in the capital formula has a connotation as the unconditional default rate for a 
given homogeneous segment, or default rate expected over all possible scenarios. According to 
the Basel accord, this long-run PD should be estimated over a minimum of five-year period. 
Although the choice of the five-year period may be a practical issue, it is important that the five-
year period chosen cover as diverse scenarios as possible. 
 
The regulatory decision that the conditional LGD is treated as a constant independent of 
conditional PD but estimated under economic downturn conditions reflects a compromise to an 
otherwise very difficult statistical problem. If the LGD were treated as a random variable 
correlated with PD, as one would normally assume, the entire analysis on the stress portfolio 
loss, including equations (16a)-(16c), would fall apart. The capital formula would be very 
difficult to specify. Estimating the LGD under economic downturn conditions reflects a 

regulatory intention to approximate ))999.0(( 1YLGD . By not defining specifically what 

the economic downturn conditions are, it also leaves doors open for compensating the potential 
problem with the PD-LGD independence assumption: For instance, if the conditional LGD is 
negatively correlated with the conditional PD, one could define the economic downturn 

conditions as a scenario less severe than implied by )999.0(1 . Conversely, if the conditional 

LGD is positively correlated with the conditional PD, one could define the economic downturn 

conditions as a scenario more severe than implied by )999.0(1 . 

 
Nevertheless, it is still worth noting that treating the LGD under the stress condition as a constant 
(or non-stochastic) may not be consistent with reality. As Gordy (2003) puts it, 
 

“In practice, LGD not only may be highly uncertain, but may also be subject to systemic 
risk. For example, the recovery value pf defaulted commercial real estate loans depends 
on the value of the real estate collateral, which is likely to be lower (higher) when many 
(few) other real estate projects have failed.” 

 

                                                 
7 Another popular explanation of why portfolio segmentation is needed for Basel II credit risk modeling is related to 

mitigating idiosyncratic risk across obligors. As seen in equation (7), the idiosyncratic risk i is typically a non-zero 

variable. When assessed in a large obligor pool, this risk tends to be averaged out. We do not believe the explanation 
to be convincing, for the idiosyncratic risks can be averaged out in a large portfolio even without segmentation. 
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Regulatory Capital and Loss Reserve 

 
Regulatory capital and expected loss combine to form the total credit loss expected from the 
stress condition. As indicated in equation (16c), the two components have a clearly specified 
relationship: for any given segment, given the minimum regulatory capital – that is, given the 

long-run PD, p, and the stress LGD, 
LGD – the expected loss is given, making the expected 

loss, and the total credit loss expected from the stress condition completely determined by p and 


LGD alone.  
 
In practice, the expected loss is often approximated by loss reserve, which is often determined 
independently of the regulatory capital determination.8 Comparing the expected loss in equation 
(16c) and actual loss reserve can be an important way to assess the adequacy of the capital 
requirement and the consistency in risk measurements across businesses.9 
 
 
Concluding Remarks 

 
In this paper, we have shown that the Basel IRB credit risk capital rule for determining minimum 
regulatory capital has a clear connection to several well-specified statistical models. Recognizing 
this connection, we have come to understand why the Basel Accord asks the credit risk models to 
be built by segmenting a portfolio into homogeneous sub-portfolios; by estimating long-run PD 
for each sub-portfolio, and by estimating LGD from economic downturn conditions. 
 
We have also shown that, in order to use the underlying capital formula in an appropriate 
manner, the size of a homogenized sub-portfolio cannot be too small, and the long-run PD for 
each sub-portfolio should be estimated over a long period that covers economic scenarios as 
diverse as possible. Finally, we have demonstrated that the loss reserve, while often determined 
independently of the capital determination process, has a well-specified relationship with the 
minimum regulatory capital, a relationship that can be leveraged in credit-risk model validation. 
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Appendix. The Asymptotic Distribution of Conditional Default Rate for a Homogeneous 

Portfolio Based on the Single-Risk Factor Model: Examples 
10

 

 

Asymptotic Conditional Portfolio Default Rate

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1
PD(1-alpha)

PD(1-alpha)
cdf
pdf

p = 0.05, R = 0.15, and PD(0.999) = 0.315

 

Asymptotic Conditional Portfolio Default Rate

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1
PD(1-alpha)

PD(1-alpha)
cdf
pdf

p = 0.05, R = 0.3, and PD(0.999) = 0.525

 
 

                                                 
10 The probability density function is plotted on the secondary y-axis, whose values are suppressed on purpose. In 
general, when the loss distribution concentrates over a range of low loss rates, the probability density can not only 
be greater than one (1), but also be huge. The PD(1-alpha) line is approximated. 
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