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EDGEWORTH EQUILIBRIA: SEPARABLE AND

NON-SEPARABLE COMMODITY SPACES

ANUJ BHOWMIK

Abstract. Consider a pure exchange differential information economy with

an atomless measure space of agents and a Banach lattice as the commodity
space. If the commodity space is separable, then it is shown that the private
core coincides with the set of Walrasian expectations allocations. In the case
of non-separable commodity space, a similar result is also established if the
space of agents is decomposed into countably many different types.

1. Introduction

One of the classical result in economic theory is Aumann’s equivalence theorem
in a deterministic economy with a contimuun of agents and finitely many commodi-
ties, see [2]. Many extensions of this result have been obtained in the literature.
Firstly, an extension of this result to an economy with an atomless measure space
of agents and finitely many commodities can be found in [14]. In the context of
infinite dimensional commodity space, the relation between the core and the set of
Walrasian allocations are more interesting, since preferences and endowments are
more diverse, and thus blocking become more difficult, refer to [11]. Rustichini
and Yannelis [21] extended this result to an economy whose commodity space is a
separable Banach lattice. In [2], Aumann also pointed out that many real markets
are indeed far from being perfect; such a market is probably best represented by a
mixed model, in which some agents are points in a continuum and others are indi-
vidually significant. One of the key results on the equivalence between the core and
the set of Walrasian allocations in a mixed economy was established by Shitovitz in
[22]. To be precise, he showed that if there exist at least two large agents and all of
them have the same initial endowment and preference, then the core coincides with
the set of Walrasian allocations. Similar results in mixed economies also came out in
[6, 9, 10]. In all of these results, the feasibility was defined without free disposal and
in terms of Bochner integrable functions. In contrast to so far mentioned positive
results, Podczeck [17] and Tourky and Yannelis [23] constructed counterexamples
of atomless economies to show that the classical core-Walras equivalence theorem
in [2] may fail under desirable assumptions when the commodity space is a non-
separable ordered Banach space and the feasibility is defined by Bochner integrable
functions. However, when feasibility is defined in terms of Pettis integral, Podczeck
[69] obtained a positive result for a ceratin class of commodity spaces without re-
quiring that those commodity spaces are separable.

JEL classification: D41; D51; D82.
Keywords. Differential information economy; Extremely desirable bundle; Private core.
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2 A. BHOWMIK

In [20], Radner extended the notion of Walrasian allocation to the case of dif-
ferential information and it is known as Walrasian expectations allocation. Due
to different information and communication opportunities among agents, several
alternative core concepts have been introduced, refer to [25, 27]. In [27], Yannelis
introduced the notion of private core, which was based on the fact that agents
have no access to the communication system, that is, each member of the coalition
uses only his own private information whenever a coalition blocks an allocation. It
is also essential to mention that under standard assumptions, the private core is
non-empty, Bayesian incentive compatible and rewards the information superiority
of agents (see [15, 27]). Dealing with differential information, Einy et al. [7] first
extended Aumann’s equivalence theorem to the case of the private core and the set
of Walrasian allocations, where the free disposal feasibility assumption was used.
Later, this result was further generalized to a differential information economy with
an atomless measure space of agents and an ordered separable Banach space having
an interior point in its positive cone as the commodity space in [8]. In addition
to these equivalence results with free disposal, Angeloni and Martins-da-Rocha [1]
obtained an equivalence result between the private core and the set of Walrasian
allocations in an atomless economy with finitely many commodities and without
free disposal feasibility assumption.

The paper is organized as follows. In Section 2, a general description on the
model of this paper is given. In Section 3, the main result of this paper is presented,
where an extension of the main result in [21] to a differential information economy
with a separable commodity space and the free disposal feasibility assumption is
given. Section 4 deals with the equivalence theorem in an economy with a non-
separable commodity space and an atomless measure space of agents with only
countably many different types.

2. Differential information economies

An atomless model of pure exchange economy E with differential information is
presented. The exogenous uncertainty is described by a measurable space (Ω,F ),
where Ω is a set of states of nature containing m elements and the σ-algebra F of
Ω denotes the set of possible events. The economy extends over two time periods
τ = 0, 1. Consumption takes place at τ = 1. At τ = 0, there is uncertainty over the
states and agents make contracts that are contingent on the realized state at τ = 1.
Let the space of agents be a measure space (T,Σ, µ) with a complete, finite and
positive measure µ, where T is the set of agents, Σ is a σ-algebra of measurable
subsets of T whose economic weights on the market is given by µ. Throughout
the paper, the commodity space Y of E is a Banach lattice having a quasi-interior
point. The order on Y is denoted by a partial order ≤ and the positive cone
Y+ = {x ∈ Y : x ≥ 0} of Y denotes the consumption set of each agent t in each
state ω.The symbol x ≫ 0 (resp. x > 0) means that x is a quasi-interior (resp.
a non-zero) point of Y+. Let Y++ = {x ∈ Y+ : x ≫ 0}. Each agent has some
private information, which is described by a partition Πt of Ω. The interpretation
is that if ω is the true state of nature then agent t cannot discriminate the states in
the unique element Πt(ω) of Πt containing ω. Let Ft be the σ-algebra generated
by Πt. Each agent t is also associated with a state-dependent utility function
Ut : Ω× Y+ → R, a random initial endowment a(t, ·) : Ω → Y+ and a prior, which
is given by a probability measure Qt on Ω. The quadruple (Ft, Ut, a(t, ·),Qt) is
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called the characteristics of the agent t ∈ T . Thus, E can be defined by

E = {(Ω,F ); (T,Σ, µ); Y+; (Ft, Ut, a(t, ·),Qt)t∈T } .

A function x : Ω → Y+ is interpreted as a random consumption bundle in E . The
ex ante expected utility of an agent t for a given random consumption bundle x
is defined by EQt(Ut(·, x(·))) =

∑
ω∈Ω Ut(ω, x(ω))Qt(ω). An assignment in E is a

function f : T ×Ω → Y+ such that f(·, ω) is Bochner integrable for all ω ∈ Ω. It is
assumed that a is an assignment. An assignment f in E is called an allocation if
f(t, ·) ∈ Lt µ-a.e., where Lt =

{
x ∈ (Y+)

Ω : x is Ft-measurable
}
. An assignment

is S-feasible if
∫
S
f(·, ω)dµ ≤

∫
S
a(·, ω)dµ for all ω ∈ Ω. This feasibility condition

is also known as S-feasibility with free disposal. However, if the last inequality is
replaced with an equality, then it is named as S-feasibility without free disposal or
S-exact feasibility. For simplicity, if f is T -(exactly) feasible then it is termed as
(exactly) feasible. Throughout the paper, the following assumption on the initial
endowments is posed.

(A1) a(t, ·) ∈ Lt and a(t, ω) ≫ 0 for all (t, ω) ∈ T × Ω.

This is a standard assumption and has been used in many references, see [3, 4, 8, 12].
Let P denote the family of all partitions of Ω. For any Q ∈ P, let TQ = {t ∈ T :
Πt = Q}. It is assumed that TQ ∈ Σ for all Q ∈ P. For any coalition S, put
PS = {Q ∈ P : S ∩ TQ 6= ∅} and P(S) = {Q ∈ PS : µ(S ∩ TQ) > 0}. Since
Lt = Lt′ if t, t

′ ∈ TQ, the notation LQ is employed to denote the common value of
Lt for all t ∈ TQ. For any allocation f , define a function Pf : T → Y Ω

+ by

Pf (t) =
{
x ∈ Lt : E

Qt(x) > EQt(f(t, ·))
}
.

For any n ≥ 1, the (n− 1)-simplex of Rn is defined as

∆n =

{
x = (x1, ..., xn) ∈ Rn

+ :
n∑

i=1

xi = 1

}
.

Consider a function ϕ : (T,Σ, µ) → ∆m defined by ϕ(t) = Qt for all t ∈ T . For
each ω ∈ Ω, define a function ψω : T × Y+ → R by ψω(t, x) = Ut(ω, x). The
following assumptions on the priors and the state-dependent utilities of agents will
be needed, the last two of which can be found in [3, 4, 8].

(A2) For each (t, ω) ∈ T × Ω, Ut(ω, ·) : Y+ → R is monotone in the sense that
Ut(ω, x+ y) > Ut(ω, x) if x, y ∈ Y+ with y > 0.

(A3) The function ϕ is measurable, where ∆m is endowed with the Borel structure.

(A4) For each ω ∈ Ω, the function ψω is Carathéodory, that is, ψω(·, x) is measur-
able for all x ∈ Y+, and ψω(t, ·) is norm-continuous for all t ∈ T .

The graph of Pf is defined by GrPf
=
{
(t, x) ∈ T × Y Ω

+ : x ∈ Pf (t)
}
, which is the in-

tersection of
⋃
{TQ×LQ : Q ∈ PT } and

{
(t, x) ∈ T × Y Ω

+ : EQt(x) > EQt(f(t, ·))
}
.

Under (A3) and (A4), the function (t, x) 7→ EQt(x) is Carathéodory. Thus, the set{
(t, x) ∈ T × Y Ω

+ : EQt(x) > EQt(f(t, ·))
}
is Σ⊗B(Y Ω)-measurable, where B(Y Ω)

is the Bore σ-algebra of Y Ω. This further implies GrPf
∈ Σ⊗ B(Y Ω).

As usual, a coalition of E is a set S ∈ Σ with µ(S) > 0. If S and S′ are two
coalitions of E with S′ ⊆ S, then S′ is called a sub-coalition of S. Further, a
coalition S privately blocks an allocation f in E if there is an S-feasible allocation
g such that EQt(g(t, ·)) > EQt(f(t, ·)) µ-a.e. on S. Following [27], the private core
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of E , denoted by PC (E ), is the set of feasible allocations which are not privately
blocked by any coalition. A price system is a non-zero function π : Ω → Y ∗

+, where
Y ∗
+ is the positive cone of the norm-dual Y ∗ of Y . The budget set of agent t with

respect to a price system π is defined by

Bt(π) = {x ∈ Lt : E[〈x, π〉] ≤ E[〈a(t, ·), π〉]} .

where for all x ∈ Y Ω
+ ,

E[〈x, π〉] =
∑

ω∈Ω

〈x(ω), π(ω)〉.

A Walrasian expectations equilibrium of E is a pair (f, π), where f is a feasible
allocation and π is a price system such that f(t, ·) ∈ argmax

{
EQt(x) : x ∈ Bt(π)

}

µ-a.e., and

E

[〈∫

T

fdµ, π

〉]
= E

[〈∫

T

adµ, π

〉]
.

In this case, f is called a Walrasian expectations allocation and the set of such
allocations is denoted by W (E ). It is well known that W (E ) ⊆ PC (E ). The
opposite inclusion requires some assumptions on the characteristics of agents and
it will be derived in the next two sections.

3. The Edgeworth Equilibria with Separable Commodity Spaces

In this section, it is assumed that Y is separable. When intY+ 6= ∅, the equiv-
alence between W (E ) and PC (E ) was established in [8] under (A1)-(A4). The
purpose of this section is to explore this result in an economy with Y+ has an empty
interior. However, such a result is not true under (A1)-(A4), in general, as follows
from the following example in [21].

Example 3.1. Consider the deterministic economy

E =
{
(T,Σ, µ); ℓ+2 ; (Ut, a(t))t∈T

}

where (i) T = [0, 1] and Σ is the σ-algebra of Lebesgue measurable subsets of T
with the Lebesgue measure µ; (ii) ℓ+2 is the consumption set of each agent, where
ℓ+2 is the positive cone of the space ℓ2 (the space of real sequences {an : n ≥ 1}

equipped with the norm ‖{an : n ≥ 1}‖2 = (
∑

n≥1 |an|
2)

1

2 < ∞); and (iii) for all

t ∈ T , Ut(x) =
∑

n≥1 n
−2(1 − exp(−n2xn)) and a(t) =

{
1
n2 : n ≥ 1

}
. Let W e(E )

and PC
e(E ) be the set of Walrasian expectations allocations and the private core

when the S-exact feasibility condition is used. Assume (A1)-(A4). So, W e(E ) = ∅
and PC

e(E ) = {a}, refer to [21]. It is now claimed that PC (E ) = {a}. To see
this, let f ∈ PC (E ). By (A2), one can show that

∫
T
fdµ =

∫
T
adµ and thus,

f ∈ PC
e(E ). This implies that f = a and the claim is verified. If a ∈ W (E ), the

only candidate as a supporting price for the allocation a is the multiple of (1, 1, ...)
which are not in ℓ2+. So, W (E ) = ∅.

To establish the equivalence theorem, similar assumptions and techniques used
in [21] are employed in the rest of this section.

Definition 3.2. [21, 26] Let ω ∈ Ω, v > 0 and U be an open convex solid neigh-
borhood of 0 in Y . Suppose that C is the open cone spanned by v+U . The bundle
v is called an extremely desirable bundle with respect to U at state ω if x ∈ Y+ and
y ∈ (C + x) ∩ Y+ together imply Ut(ω, y) > Ut(ω, x) µ-a.e.
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(A5) For each ω ∈ Ω, there is a v(ω) > 0 such that v(ω) is an extremely desirable
bundle with respect to some open convex solid neighborhood U(ω) of 0 in Y .

(A6) Suppose that δ1, ..., δm are positive numbers with
∑m

i=1 δi = 1. If xi ∈ Y+
and xi /∈ δiU(ω) for all 1 ≤ i ≤ m, then

∑m
i=1 xi /∈ U(ω).

Let U =
(

1
m

⋂
ω∈Ω U(ω)

)m
, and C and C(ω) be the open convex cones spanned by∑

ω∈Ω v(ω)1Ω + U and v(ω) + U(ω) respectively for all ω ∈ Ω.

Theorem 3.3. Assume (A2)-(A6) and that f ∈ PC (E ). Let g : S × Ω → Y+ be

defined by g(t, ω) = yi(ω) if (t, ω) ∈ Si×Ω, where for each 1 ≤ i ≤ m there is some

Q ∈ P(S) such that Si ⊆ S ∩ TQ and µ(Si) = η. Assume further that g(t, ·) ∈ Lt

and EQt(g(t, ·)) > EQt(f(t, ·)) µ-a.e. on S. Then
∫
S
(g − b)dµ /∈ −C, where

b =

m∑

i=1

(
1

η

∫

Si

adµ

)
χSi

.

Proof. Assume the contrary. Then

m∑

i=1

(yi − ai)η ∈ −α

(
∑

ω∈Ω

v(ω)1Ω + U

)
,

where ai =
1
η

∫
Si
adµ and α > 0. So there is an element w ∈ α

η
U such that

m∑

i=1

yi + u+ w =

m∑

i=1

ai ≥ 0,

where u = α
η

∑
ω∈Ω v(ω)1Ω. Since

∑m
i=1 yi+u ≥ 0 and U is solid, one has w− ∈ α

η
U

and
∑m

i=1 yi+u ≥ w− . For any m-tuple σ = (σ1, · · · , σm) of positive real numbers
with

∑m
i=1 σi = 1,

w− ≤
m∑

i=1

(yi + σiu).

By the Riesz decomposition property, one obtains a finite set {wσ
1 , · · · , w

σ
m} such

that w− =
∑m

i=1 w
σ
i and 0 ≤ wσ

i ≤ yi + σiu for all 1 ≤ i ≤ m. Let IQ = {i :
Si ⊆ S ∩ TQ} for all Q ∈ P(S). Pick an i ∈ IQ and note that yi + σiu is Q-
measurable. Define dσi : Ω → Y+ by dσi (ω) = sup {wσ

i (ω
′) : ω′ ∈ Q(ω)}. Obviously,

dσi is Q-measurable and dσi ≤ yi + σiu. Let

zσi = yi + σiu− dσi and cσ =
σiα

η

∑

ω 6=ω′∈Ω

v(ω′)1Ω for all ω ∈ Ω.

Fix an ω ∈ Ω. Put

δσi = dist (zσi (ω), (C(ω) + cσ(ω) + yi(ω)) ∩ Y+) ,

and consider a continuous function f : ∆m → ∆m defined by

f(σ) =

(
σ1 + δσ1

1 +
∑m

j=1 δ
σ
j

, · · · ,
σm + δσm

1 +
∑m

j=1 δ
σ
j

)
.

By Brouwer’s fixed point theorem, one obtains a σ∗ = (σ∗
1 , · · · , σ

∗
m) ∈ ∆m satisfying

δσ
∗

i = σ∗
i

∑m
j=1 δ

σ∗

j for all 1 ≤ i ≤ m. It is claimed that
∑m

j=1 δ
σ∗

j = 0. Otherwise,

δσ
∗

i = 0 if and only if σ∗
i = 0. Define the set J = {i : δσ

∗

i = 0}. Pick an i ∈ J , then
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zσ
∗

i (ω) = yi(ω)− dσ
∗

i (ω). If dσ
∗

i (ω) > 0, then one has Ut(ω, yi(ω)) > Ut(ω, z
σ∗

i (ω))
for t ∈ Si and hence

zσ
∗

i (ω) /∈ cl
((
C(ω) + cσ

∗

(ω) + yi(ω)
)
∩ Y+

)
.

By definition, δσ
∗

i > 0, which is a contradiction with the fact that i ∈ J . Thus

dσ
∗

i (ω) = 0 for all i ∈ J . Pick an i /∈ J , then

zσ
∗

i (ω) /∈
(
C(ω) + cσ

∗

(ω) + yi(ω)
)
∩ Y+.

Consequently,

yi(ω) +
σ∗
i α

η
v(ω)− dσ

∗

i (ω) /∈ C(ω) + yi(ω),

which further implies that dσ
∗

i (ω) /∈ σ∗

i α

η
U(ω) for all i /∈ J and so

∑m
i=1 d

σ∗

i (ω) /∈
α
η
U(ω). Note that dσ

∗

i (ω) ≤
∑

ω∈Ω w
σ∗

i (ω) and so

m∑

i=1

dσ
∗

i (ω) ≤
∑

ω∈Ω

w−(ω).

Since
∑

ω∈Ω w
−(ω) ∈ α

η
U(ω) and α

η
U(ω) is solid,

∑m
i=1 d

σ∗

i (ω) ∈ α
η
U(ω), which

is a contradiction. Thus the claim is verified, which means that δσ
∗

i = 0 for all
1 ≤ i ≤ m. Hence,

zσ
∗

i (ω) ∈ cl ((C(ω) + c(ω) + yi(ω)) ∩ Y+)

for all 1 ≤ i ≤ m. By (A5), one has Ut(ω, z
σ∗

i (ω)) ≥ Ut(ω, c(ω) + yi(ω)), which

together with (A2) gives EQt(zσ
∗

i ) > EQt(yi) for all t ∈ Si and 1 ≤ i ≤ m. Define
h : T × Ω → Y+ by

h(·, ω) =
m∑

i=1

zσ
∗

i (ω)1Si
.

Clearly, h(t, ·) ∈ Lt and EQt(h(t, ·)) > EQt(f(t, ·)) µ-a.e. on S and
∫

S

hdµ ≤ η

(
m∑

i=1

yi + u− w−

)
≤ η

(
m∑

i=1

yi + u+ w

)
= η

m∑

i=1

ai =

∫

S

adµ.

This contradicts with f ∈ PC (E ) and the proof has been completed. �

Theorem 3.4. Assume (A1)-(A6). If the correspondence F : T ⇒ Y Ω
+ defined by

F (t) = {x− a(t, ·) : x ∈ Pf (t)} ∪ {0} for all t ∈ T , then cl
∫
T
Fdµ ∩ −C = ∅.

Proof. It is sufficient to prove that
∫
T
Fdµ∩−C = ∅. Assume the contrary and let∫

T
hdµ ∈

∫
T
Fdµ ∩ −C. Put

S = {t ∈ T : h(t, ·) 6= 0 and h(t, ·) = g(t, ·)− a(t, ·) for some g(t, ·) ∈ Pf (t)} .

Then S ∈ Σ, µ(S) > 0 and
∫
S
(g − a)dµ ∈ −C. Without loss of generality, one can

assume that P(S) = PS . Pick an Q = {A1, ..., Ak} ∈ P(S) and let ωj ∈ Aj for
all 1 ≤ j ≤ k. Since g(·, ωj) ∈ L1 (µS∩TQ

, Y+), there is a monotonically increasing

sequence
{
h
(Q,ωj)
n : n ≥ 1

}
of simple functions converging pointwise to g(·, ωj) such

that

lim
n→∞

∫

S∩TQ

∥∥∥g(·, ωj)− h(Q,ωj)
n (·)

∥∥∥ dµ = 0.
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Define gn : S × Ω → Y+ by gn(t, ω) = h
(Q,ωj)
n (t) if (t, ω) ∈ (S ∩ TQ) × Aj . So,

{gn : n ≥ 1} is a monotonically increasing sequence of simple functions converging
pointwise to g and limn→∞

∫
S
‖g(·, ω)− gn(·, ω)‖dµ = 0 for all ω ∈ Ω. Let

S̃n = {t ∈ S : gn(t, ·) ∈ Pf (t)} and Sn =
⋃

{S̃n ∩ TQ : Q ∈ P(Sn)}.

By the continuity and the monotonicity of EQt , one obtains Sn ⊆ Sn+1 for all n ≥ 1
and µ(S \

⋃
n≥1 Sn) = 0. Pick an n ≥ 1. Let gn|Sn

=
∑m

i=1 yiχRi
, where for all

1 ≤ i ≤ m there are some Q ∈ P(Sn) and ηn > 0 such that Ri ⊆ Sn ∩ TQ and
µ(Ri) = ηn. Assume that

bn =
m∑

i=1

(
1

ηn

∫

Ri

adµ

)
χRi

.

By Theorem 3.3,
∫
Sn

(gn−bn)dµ /∈ −C. Note that ‖
∫
Sn

(gn−bn)dµ−
∫
S
(g−a)dµ‖ →

0 as n→ ∞. Since C is open,
∫
S
(g − a)dµ /∈ −C, which is a contradiction. �

Next, the main result of this section is presented. In its proof, the following
result in [13] is employed: If ϕ : T × Y → R is Carathéodory, then
∫

T

inf
x∈F (·)

ϕ(·, x)dµ = inf

{∫

T

ϕ(·, f(·))dµ : f is an integrable section of F

}
.

Theorem 3.5. Assume (A1)-(A6). Then W (E ) = PC (E ).

Proof. By Theorem 3.4 and the separation theorem, there is a non-zero element
π ∈ (Y ∗

+)
Ω such that E[〈y, π〉] ≥ 0 for all y ∈

∫
T
Fdµ. Since GrF ∈ Σ⊗B(Y Ω),

∫

T

inf {E[〈z, π〉] : z ∈ F (·)} dµ = inf

{
E[〈y, π〉] : y ∈

∫

T

Fdµ

}
≥ 0.

Since inf {E[〈z, π〉] : z ∈ F (t)} ≤ 0 for all t ∈ T , one has inf {E[〈z, π〉] : z ∈ F (t)} =
0 µ-a.e. Thus, E[〈x, π〉] ≥ E[〈a(t, ·), π〉] for all x ∈ Pf (t) and µ-a.e. By (A2),
one obtains E[〈f(t, ·), π〉] ≥ E[〈a(t, ·), π〉] µ-a.e. This together with feasibility of f
further yield E[〈f(t, ·), π〉] = E[〈a(t, ·), π〉] µ-a.e. Thus,

E

[〈∫

T

fdµ, π

〉]
= E

[〈∫

T

adµ, π

〉]
.

To complete the proof, one needs to verify that f(t, ·) ∈ argmax
{
EQt(x) : x ∈ Bt(π)

}

µ-a.e. By (A1),
∑

ω∈Ω〈a(t, ω), π(ω)〉 > 0 for all t ∈ T . Select some t ∈ T satisfy-
ing E[〈x, π〉] ≥ E[〈a(t, ·), π〉] for all x ∈ Pf (t). If E[〈x, π〉] = E[〈a(t, ·), π〉] for some
x ∈ Pf (t), then λx ∈ Pf (t) and E[〈λx, π〉] < E[〈a(t, ·), π〉] for some 0 < λ < 1, which
is a contradiction. So, (f, π) is a Walrasian expectations equilibrium of E . �

4. The Edgeworth Equilibria with non-separable commodity spaces

In this section, the equivalence between the private core and the set of Wal-
rasian expectations allocations is provided in an asymmetric information economy
with countably many characteristics. Since the commodity space in this section
is not necessarily separable, the negative result obtained in [17, 23] is not valid
in this economic setting. In [19], some necessary and sufficient conditions were
given for the core-Walras equivalence theorem in a deterministic economy with an
atomless measure space of agents and a Banach lattice as the commodity space.
In fact, Podczeck [19] obtained the equivalence between the core and the set of
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Walrasian allocations under some properties of the commodity space. In contrast,
the equivalence theorem in this section does not require such properties. To see
the equivalence theorem, let {(Fi, Ui, a(t, ·),Qi) : i ≥ 1} be the set of different
characteristics available in E and Ti be the set of agents in T having the same char-
acteristics as (Fi, Ui, a(t, ·),Qi). Suppose that Ti ∈ Σ for all i ≥ 1. Note that the
measurability conditions in (A3) and (A4) are trivially satisfied. For any allocation

f in E , let f̂ = Ξ(f) be an allocation defined by

f̂(t, ω) =

{
f(t, ω), if (t, ω) ∈ Ti × Ω, µ(Ti) = 0;

1
µ(Ti)

∫
Ti
f(·, ω)dµ, if (t, ω) ∈ Ti × Ω, µ(Ti) > 0.

Fix an i with µ(Ti) > 0, and define f̂Ti
(ω) = f̂(·, ω) for all (t, ω) ∈ Ti × Ω. The

following lemma is similar to Theorem 3.5 in [6], and is essential for the equivalence
theorem.

Lemma 4.1. Suppose (A1)-(A2) and that Ut is continuous and concave for each

t ∈ T . If f ∈ PC (E ), then E
Q
t (f(t, ·)) = E

Q
t (f̂(t, ·)) µ-a.e.

Proof. By ignoring a µ-null subset of T , one can choose a separable closed linear
subspace Z of Y Ω such that f(T, ·) ⊆ Z. Assume that there exist an i0, a coalition

D ⊆ Ti0 such that EQt(f̂Ti0
) > EQt(f(t, ·)) for all t ∈ D. For any r ∈ Q ∩ (0, 1), let

Dr =
{
t ∈ D : EQt

(
rf̂Ti0

)
> EQt(f(t, ·))

}
.

Note that Dr is the projection of
(
D ×

{
x ∈ Y Ω

+ : EQt

(
rf̂Ti0

)
> EQt(x)

})
∩ {(t, f(t, ·)) : t ∈ D}

on D. By the projection theorem, one has Dr ∈ Σ, and D =
⋃
{Dr : r ∈ Q∩(0, 1)}.

Thus, one can find a r1 ∈ Q ∩ (0, 1) satisfying µ(Dr1) > 0. Let r2 =
µ(Dr1

)

µ(Ti0
) . Then

0 < r2 ≤ 1. For each ω ∈ Ω, put

υ(ω) = r1r2

(∫

T

f(·, ω)dµ−

∫

T

a(·, ω)dµ

)
− r2(1− r1)

∫

Ti0

ai0(ω)dµ.

Clearly, υ(ω) ∈ −Y++ for all ω ∈ Ω. So, there is an ε > 0 such that

υ(ω) +B(0, 2ε) ⊆ −Y++

for all ω ∈ Ω. Applying Lemma 3.3 in [3], one has a coalition E ⊆ T \Ti0 of E such
that µ(E) < µ(T \ Ti0) and ‖d(ω)‖ < ε for all ω ∈ Ω, where

d(ω) =

∫

E

(f(·, ω)− a(·, ω))dµ− r1r2

∫

T\Ti0

(f(·, ω)− a(·, ω))dµ.

Let S = Dr1 ∪ E. Pick an u ∈ B(0, ε) ∩ Y++ and define g : T × Ω → Y+ by

g(t, ω) =

{
f(t, ω) + u

µ(E) , if (t, ω) ∈ E × Ω;

r1f̂Ti0
, otherwise.

Then, g(t, ·) ∈ Pf (t) µ-a.e. on S, and
∫

S

g(·, ω)dµ =

∫

E

f(·, ω)dµ+ r1r2

∫

Ti0

f(·, ω)dµ+ u
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for all ω ∈ Ω. It can be easily verified that for all ω ∈ Ω,

−v(ω) +

∫

S

(g(·, ω)− a(·, ω))dµ = d(ω) + u ∈ B(0, 2ε).

Hence, ∫

S

a(·, ω)dµ−

∫

S

g(·, ω)dµ≫ 0

for all ω ∈ Ω, which contradicts with the fact that f ∈ PC (E ). Thus, EQt(f(t, ·)) ≥

EQt(f̂Ti
) µ-a.e. on Ti for all i ≥ 1. Suppose that there is a coalition R ⊆ Ti′ for

some i′ ≥ 1 such that EQt(f(t, ·)) > EQt(f̂Ti′
) for all t ∈ R. By Jensen’s inequality,

one has

EQt

(
1

µ(R)

∫

R

f(·, ·)dµ

)
> EQt(f̂Ti′

)

and

EQt

(
1

µ(Ti′ \R)

∫

Ti′\R

f(·, ·)dµ

)
≥ EQt(f̂Ti′

).

Let δ = µ(R)
µ(Ti′ )

. Since

f̂Ti′
=

δ

µ(R)

∫

R

f(·, ·)dµ+
1− δ

µ(Ti′ \R)

∫

Ti′\R

f(·, ·)dµ,

EQt(f̂Ti′
) > EQt(f̂Ti′

), which is a contradiction. Thus, EQt(f(t, ·)) = EQt(f̂(t, ·))
µ-a.e. �

Theorem 4.2. Suppose (A1)-(A2) and that Ut is continuous and concave for each

t ∈ T . Then W (E ) = PC (E ).

Proof. To complete the proof, one only needs to verify that PC (E ) ⊆ W (E ). Pick
an element f ∈ PC (E ) and note that

H = cl

(⋃{∫

S

Pfdµ−

∫

S

adµ : S ∈ Σ, µ(S) > 0

})

is a non-empty convex subset of Y Ω, refer to [5, Theorem 1]. Since H ∩−Y Ω
++ = ∅,

by the separation theorem, there is a non-zero element π ∈ (Y ∗
+)

Ω such that for any
coalition S,

E[〈y, π〉] ≥ E

[〈∫

S

adµ, π

〉]

for all y ∈
∫
S
Pfdµ. By Lemma 4.1, EQt(f(·, ·)) : Ti → R is constant µ-a.e. for all

i ≥ 1. Pick an i ≥ 1 and a yi ∈ Pf (t) µ-a.e. on Ti. If yi ∈ Bt(π) for t ∈ Ti, then
one can construct some zi ∈ Bt(π) such that zi ∈ Pf (t) µ-a.e. on Ti and

E

[〈∫

Ti

zidµ, π

〉]
< E

[〈∫

Ti

aidµ, π

〉]
,

which is a contradiction. Thus, one has E[〈yi, π〉] > E[〈ai, π〉], which further im-
plies E[〈f(t, ·), π〉] ≥ E[〈ai, π〉] µ-a.e. Using the feasibility of f , one can show that
E[〈f(t, ·), π〉] = E[〈a(t, ·), π〉] µ-a.e. Thus, (f, π) is a Walrasian expectations equi-
librium in E . �
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