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Ties Matter: Improving Efficiency in Course Allocation

by Introducing Ties

By Ning Chen and Mengling Li∗

We study the course allocation system at Nanyang Technological

University, where students submit strict preferences for courses

and courses have implicit preferences for students. This formulates

a many-to-many matching problem. We show the inefficiencies of

the current mechanism and propose new competing mechanisms

called Pareto-improving draft and dictatorship mechanisms, which

introduce ties into students’ preferences. Our mechanisms gen-

erate (group) stable and Pareto-efficient allocations, and the dic-

tatorship mechanism can be implemented truthfully. Simulations

on real data show that introducing ties into students’ preferences

can significantly improve efficiency, and the draft mechanism out-

performs the dictatorship mechanism despite that the former is

non-strategyproof.

JEL: C78, D82, I23

Course allocation is a classic many-to-many matching problem in which a set

of courses are allocated to a set of students who have multiunit course demands.

Allocating courses equitably and efficiently has proven a challenging market de-

sign problem and there has been little in the literature to address it due to a

variety of difficulties. First, students do not have proprietary rights over courses;

therefore, buying or selling courses through money transfer is strictly prohibited.

Second, the use of an unauthorized computer program to gain unfair advantage

over other students in securing courses is unacceptable. Third, students may have

preferences not only for individual courses but also for combinations of courses,

and these preferences may include ties (i.e., indifferences); thus, they may exhibit
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complicated strategic behavior. Finally, because most applications involve a large

number of students and courses under a strict deadline to produce a feasible al-

location, an efficient computation is critical. Consequently, the course allocation

problem and the more general many-to-many matching problems are substantially

more difficult to address than one-to-one and many-to-one allocation problems.1

In practice, there are two main types of course allocation mechanisms employed

in educational institutions.

• Preference-ranking mechanisms, e.g., the draft mechanism at Harvard Business

School (HBS), in which students submit ordinal preferences for courses. Bud-

ish and Cantillon (2012) showed that the draft mechanism is manipulable in

theory and manipulated in practice; but, interestingly, the mechanism outper-

forms the strategyproof alternative, which implies that strategyproofness has

both benefits and costs. The authors further proposed a proxy draft mecha-

nism that is shown to generate better efficiency. Later, Kominers et al. (2010)

proposed a new proxy mechanism that simplifies students’ strategic decision

by directly incorporating their manipulation strategy into the mechanism. The

mechanism is Pareto-efficient and resistant to strategic manipulations observed

in the extant data. However, other unobserved manipulations may still exist.

• Bidding mechanisms, e.g., the mechanism at the Ross School of Business at

the University of Michigan (UMBS), in which students bid for courses. In the

UMBS mechanism, bids submitted by students play a dual role—to infer the

preferences of both students and courses. These two roles can easily conflict

and result in unnecessary efficiency loss. Sönmez and Ünver (2010) proposed

an alternative Gale-Shapley Pareto-dominant mechanism that asks students

to submit their preferences for courses in addition to bids. The mechanism

is confirmed to have superior efficiency in both field and laboratory studies

by Krishna and Ünver (2008). However, the mechanism is not strategyproof,

which can prompt additional concerns about efficiency loss.

1The generalization to multiunit demand on both sides is nontrivial as the properties and structures
of many-to-many matchings behave rather differently from one-to-one and many-to-one matchings (Roth
and Sotomayor 1990, Sotomayor 1999, Echenique and Oviedo 2006). Further, the presence of a few many-
to-many demands may change the matching for all agents completely (see Example 2.2 in Echenique and
Oviedo (2006)). There have been a growing number of instances of many-to-many matching markets
in recent years, such as social lending markets (Chen and Ghosh 2011) and online labor markets. It is
therefore important to study the general many-to-many matching models to understand these market-
places.
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Note that while the common objectives of course allocation mechanisms are effi-

ciency and equity, the practice of using different mechanisms in different educa-

tional institutions indicates that the current mechanisms are neither well under-

stood nor satisfactory.

In this paper, we examine the course allocation system for around 13,000 un-

dergraduate students at Nanyang Technology University (NTU) in Singapore and

explore its potential improvement. In NTU’s current mechanism, students submit

strict preferences for individual courses in different categories and courses have

predetermined preferences (with ties) for students, which are essentially the pri-

orities of each student. A centralized mechanism then determines allocations by

considering student-course pairs in an order based on the priorities of students and

their course preferences. This is a preference-ranking mechanism and is similar to

the Boston Student Assignment Mechanism (Abdulkadiroğlu and Sönmez 2003).

The details of the mechanism are deferred to the subsequent section.

The NTU’s mechanism does exhibit some nice properties. An allocation gen-

erated through this mechanism is both pairwise stable (i.e., there is no student-

course blocking pair) and students-sided group stable (i.e., there is no group of

students such that each of them can strictly improve his/her assignment by swap-

ping courses among themselves). Note that the latter is a simple implication of

the strict preferences of students and a homogeneity property exhibited by the

students’ priorities. However, the mechanism is not strategyproof in theory and

is manipulated in practice.2 Furthermore, breaking ties arbitrarily at random

(as courses’ preferences for students have ties) may result in severe efficiency

loss. A similar issue was recently addressed for many-to-one matchings (Erdil

and Ergin 2006, Erdil and Ergin 2008, Abdulkadiroğlu et al. 2009).

A critical ingredient in NTU’s mechanism is that students are enforced to sub-

mit strict preferences. Indeed, much of the literature on many-to-many matching

markets assumes strict preferences when studying solution concepts.3 In prac-

2As shown in a field survey of over 1,200 students at NTU (see Figure 1), 19 percent indicate that
they would manipulate their preferences.

3Roth (1984) showed that the set of pairwise stable matchings is nonempty with substitutable pref-
erences, and that one-sided optimal stable matchings exist. Blair (1988) proved that the set of pair-
wise stable matchings forms a lattice structure; its properties have been investigated by Alkan (2001)
and Alkan (2002). Mart́ınez et al. (2004) presented an algorithm that finds all pairwise stable matchings.
A pairwise stable matching, however, need not be group stable and need not even be Pareto-optimal
with responsive preferences (Roth and Sotomayor 1990). Further, Sotomayor (2011) presented examples
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tice, however, there are various matching markets in which agents are not able to

strictly rank their prospective partners for a variety of reasons (e.g., incomplete

information). Our survey data (see Figure 1) show that in the course allocation

at NTU, 76 percent of students prefer to have ties in their preference lists. This

motivates us to design a course allocation mechanism for many-to-many matching

markets that includes ties in both courses’ and students’ preferences, in the hope

of satisfying more students’ demand and increasing overall efficiency.

Before designing our mechanism, we examine which solutions are desired in

course allocation. On the one hand, we still hope to keep pairwise and student-

sided stability to capture fairness by taking students’ preferences and priorities

into account. On the other hand, we require that the allocation be Pareto-

efficient, which to some extent qualifies the overall efficiency of an allocation.

Pairwise stability and Pareto efficiency (together called Pareto stability as sug-

gested by Sotomayor (2011)), provide a natural solution benchmark for matching

markets in the presence of ties. Note that Pareto stability and one-sided group

stability generally cannot coexist (Claim 1). However, in our application, with the

homogeneity property of the students’ priorities, we show that Pareto stability

implies one-sided group stability (Proposition 2).

The question then becomes whether a Pareto-stable matching always exists, and

how to find one efficiently. Introducing ties into preferences results in dramatic

changes to the properties of stable matchings. In particular, stability no longer

guarantees Pareto efficiency.4 The question of finding a Pareto-stable matching

has recently been addressed by Erdil and Ergin (2006, 2008) for many-to-one

matchings. They presented a stability-preserving Pareto-improving algorithm

by eliminating augmenting paths/cycles. However, their algorithm fails to work

for many-to-many matchings, in which Pareto improvement does not necessarily

preserve stability (see Example 5).

We construct an efficient algorithm that computes a Pareto-stable many-to-

many matching. Our result immediately implies the existence of such a match-

in which the set of group stable matchings is empty. Echenique and Oviedo (2006) later gave conditions
under which the group stable matchings set is nonempty and can be approached through an algorithm.

4For example, there are two men m1,m2 and two women w1, w2, where m1 strictly prefers w1 to w2,
but all others are indifferent amongst their possible partners. The matching (m1, w2), (m2, w1) is stable,
but not Pareto-efficient because m1 can be reassigned to w1 and m2 to w2 without negative effect.
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ing. Our algorithm works for general arbitrary preferences for individuals in the

presence of ties. The algorithm, from a high-level overview, builds on the idea

of Roth and Vande Vate (1990), who provided an alternative to the deferred ac-

ceptance algorithm that computes a stable (one-to-one) matching. The details of

the algorithm are presented in Section IV.

Our algorithm, like those of Erdil and Ergin (2006, 2008), is a Pareto-stable

matching mechanism, which is generally not strategyproof (see Example 2 of Erdil

and Ergin (2008)). In the course allocation applications, we construct two addi-

tional competing allocation mechanisms: the Pareto-improving draft mechanism

and the Pareto-improving serial dictatorship mechanism, based on the homogene-

ity of students’ priorities. Both mechanisms compute a Pareto-stable matching

and the latter can be implemented in a truthful manner, which makes it a dom-

inant strategy for students to report their true preferences. This significantly

simplifies the strategic consideration of students. The truthful mechanism is

based on the combination of the random serial dictatorship mechanism and aug-

menting paths/cycles elimination. While the dictatorship mechanism exhibits the

property of strategyproofness, it brings out some potential fairness issues by giv-

ing too much priority to the lucky students who get a high random order while

callously disregarding the preferences of those who belong to the same priority

group but receive a low random order. Therefore, with some simple welfare mea-

sures, including the average rank of assigned courses and the total number of

unassigned students, we compare the performance of the Pareto-improving draft

and dictatorship mechanisms using real course registration data.

To quantify efficiency improvement that allows ties in students’ preferences and

compare the two competing allocation mechanisms, simulations are performed us-

ing real course registration data from three academic years at NTU: 2010, 2011

and 2012 at NTU. A survey has revealed that a majority of students prefer to

have two or three levels of preference. Given the strict preferences submitted by

students, we therefore divide the students’ preferences into two or three levels

at random and assume that students are indifferent between courses at the same

level. We run simulations in different environments introducing ties and for dif-

ferent categories of courses using the draft and dictatorship mechanisms. The
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simulation results show that (1) the efficiency in terms of total number of alloca-

tions and total number of unassigned students can be significantly improved by

introducing ties into students’ preferences; (2) the draft mechanism outperforms

the dictatorship mechanism in terms of the total number of allocations, the av-

erage rank and the total number of unassigned students, even though it is not

strategyproof.

Organization. The remainder of this paper is organized as follows. Section I

describes NTU’s current course allocation system and mechanism. Section II for-

mally defines the many-to-many matching model with ties. Section III discusses

the solution concepts considered in this paper. The algorithm that computes a

Pareto-stable matching in general frameworks and two specific mechanisms for

the course allocation problem are described in Section IV. The simulation results

and discussions are presented in Section V. We conclude our work in Section VI.

I. NTU Course Allocation: Matching with Preferences

In course allocation, while it is natural to assume that students have preferences

for courses, educational institutes usually decide a priority ranking for individual

students for each course. For instance, a course may take prior considerations for

final year graduating students who need the course to fulfill graduation require-

ments, or those who failed the course in the preceding semesters and need to take

the course again in the current semester. The priority ranking can be considered

a course’s implicit preference for students.

The current course allocation system at NTU solicits preferences from both

students and courses to decide allocations. Specifically, in addition to the major

core courses required by each department, there are two types of general education

requirements that are open to students from all departments: Prescribed Electives

(PE) and Unrestricted Electives (UE).5 Students submit up to five courses under

a strict order as preferences for both PE and UE, respectively, to the system.

The implicit preferences of courses for individual students (i.e., their priorities)

are formed according to the following hierarchy (from highest to lowest):

5The detailed description of the curriculum structure of NTU is deferred to Appendix A.
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1) • Students with only PE courses remaining to fulfill, if the course is a

PE type.

• Students with only UE courses remaining to fulfill, if the course is a

UE type.

• Students with only PE or UE courses remaining to fulfill, if the course

is both a PE and UE type.

2) Final year students.

3) Students of special programs (e.g., accelerated bachelor degree).

4) Year 3 students.

5) Year 2 students.

Note that some of the students are at the same level on the priority lists; that is,

there are ties (i.e., indifferences) in the courses’ preference lists. In addition, it

can be seen that all of the courses have the same preferences for students (called

homogeneous). In particular, all of the courses (PE or UE) can list all those

students who have only PE or UE courses to fulfill in the first priority. (This is

because a student with only PE/UE courses to fulfill will not submit any UE/PE

courses, respectively. The individual rationality property of feasible assignments

allows us to unify the preferences of courses in such a way.)

PROPOSITION 1: The preferences of courses for students are homogeneous.6

Each course has a prespecified capacity constraint due to resource limitations,

e.g., the size of a classroom. In addition, every student has a capacity constraint

as well, which sets an upper bound on the number of registered courses allowed.

Specifically, except for final year graduating students, a student will be allocated,

at most, one course for PE and one course for UE. In addition, for all students

(including those in their final year), a maximum of 24 academic units (including

major core courses) can be registered within one semester, which corresponds to

about 7 courses.

Given the capacity constraints and preferences of both students and courses,

the system allocates the courses to the students using a mechanism, which runs

6Precisely, some courses may have special predetermined preferences for students (e.g., the course
Economics of Manufacturing takes prior consideration of students majoring in Material Sciences and
Engineering). In such cases, some vacancies are reserved in advance by the corresponding departments,
and the preferences of courses are still homogeneous in the system.
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for PE and UE courses separately and sequentially, first for PE, followed by UE.

(If a course is in both PE and UE, its capacity will be predivided for PE and UE,

respectively, by the administration.) The mechanism is described as follows.

NTU mechanism

Consider students priority by priority. For all students that are at the same

priority level, consider courses according to their preferences. That is, for

k = 1, . . . , 5,

• Consider all student-course pairs in which the student is at the considered

priority level and the course is as his/her k-th choice, and assign courses

to students amongst these pairs subject to the capacity constraints (with ties

broken randomly).

The mechanism is simple to implement and quite similar to the Boston Student

Assignment Mechanism as described by Abdulkadiroğlu and Sönmez (2003). The

main difference is that the Boston Student Assignment Mechanism runs simul-

taneously for all students instead of running separately for students in different

priority groups. A serious shortcoming of the Boston Student Assignment Mech-

anism is that students with high priorities at specific schools lose their priorities

unless they list these schools as their top choices. As a consequence, truth-telling

is not a dominant strategy and students can easily manipulate their preferences.

Indeed, in a recent field survey (see Figure 1) of NTU’s current course allocation

system, from a pool of over 1,200 participating students, 19 percent indicated that

they did not place course preferences truthfully. Manipulation is a key challenge

to the mechanism, and may result in severe efficiency loss.

A. Inefficiency of the Mechanism

While the NTU mechanism guarantees fairness to some extent by considering

the preferences of students and courses, there are a large number of students who

are not assigned any course due to competitiveness and the mechanism, which

results in considerable efficiency loss (see Table 1 for the data summary of course

allocation statistics for the three academic years: 2010, 2011 and 2012). Note that

the allocation statistics were collected after certain manual adjustments, which

have already corrected some of the inefficiency issues in the results directly from

the mechanism. Inefficient course allocations result in appeals and complaints
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Table 1—Course Registration Statistics for Semester 1 of Academic Year 2010-2012.

Course Vacancies Students Allocations Percentage

PE 8,118 9,660 6,844 84.31

2010 UE 14,178 10,672 8,366 59.01

PE+UE 22,296 13,471 15,210 68.22

PE 10,092 8,546 6,919 68.56

2011 UE 15,342 8,836 9,128 59.50

PE+UE 25,434 11,321 16,047 63.09

PE 9,305 8,157 6,729 72.32

2012 UE 16,260 8,731 7,170 44.10

PE+UE 25,565 11,541 13,899 54.37

Percentage is measured as the total number of allocations over the total vacancies. For

instance, for the 2010 data, the PEs and UEs have 8,118 and 14,178 vacancies while

9,660 and 10,672 students demand them, respectively. The data indicate that the current

systems resulted in an allocation of 6,844 PEs and 8,366 UEs. About 29.15 percent and

21.61 percent of the students who requested PEs and UEs failed to get any allocation,

respectively. Note that in the 2011 data, the number of UE allocations is larger than that

of students, because a considerable amount of students get more than one UE registered

in the process of manual adjustments after the implementation of the mechanism.

submitted by unsatisfied students, and can even cause the deferral of graduation

for final year students. Due to the inefficiency of the NTU mechanism, many

unsatisfied students and program coordinators spend a tremendous amount of

time and effort manually seeking better allocations. Despite this effort, some

students can still end up with an unfavorable outcome in which no course is

registered.

Our survey statistics (Figure 1) show that 65 percent of students find the current

system unsatisfactory. Another important phenomenon illustrated in the survey

is that 76 percent of the students think that they should be allowed to indicate

ties (i.e., indifferences) in their course preferences. In practice, while students

may have strict preferences for some courses, such strictness is not very sensitive

in the sense that most students are usually only concerned with whether one

of his/her desired courses is registered, but not exactly which one. In other

words, it is reasonable to assume that students’ preferences should have ties. As

a consequence, we consider introducing ties into students’ preferences for courses,
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with the objective of reducing the flaws in the current system and improving

overall efficiency for students.

1) Are you satisfied with the current course allocation system?

• Yes --- 35 percent • No --- 65 percent

2) Are you indifferent between two or more courses that you are interested in

(i.e., among these courses, you do not strictly prefer one to another)?

• Yes --- 76 percent • No --- 24 percent

3) If your answer is "Yes" to the previous question, how many levels would like

to have in your preference structure (assuming you are indifferent between the

courses in the same level)?

• One level (all indifferent) --- 10 percent

• Two levels --- 35 percent

• Three levels --- 23 percent

• Four levels --- 8 percent

4) What is the number of courses you would like to put on your preference list?

• Five --- 75 percent

• Ten --- 13 percent

• Other --- 12 percent

5) Do you submit courses to the system according to your true preferences?

• Yes --- 81 percent • No --- 19 percent

Figure 1. Survey Questions and Results for 1,200 students at NTU.

II. Model

Given the fact that both students and courses have capacities and incomplete

preferences with ties, we consider a two-sided many-to-many matching model with

a set of men M and a set of women W .7 Throughout this paper, we use m ∈ M

to denote a man, w ∈ W to denote a woman and x, y, z ∈ M ∪ W to denote

any individual agent (man or woman). For each agent x ∈ M ∪ W , let cx ∈ N

be his/her capacity, which is the maximum number of agents on the opposite

side that can be matched to x. The presence of capacities allows us to assume,

without loss of generality, that |M | = |W | = n, as dummy agents with cx = 0 can

be added to the market.

Each man m ∈ M has a preference list Pm ranking individual women, denoted

7As our model and technical results work for more general settings, we use the terms ‘men’ and
‘women’, following the seminal work of Gale and Shapley (1962), to describe the model. In our applica-
tion, men can represent students and women can represent courses, or vice versa.
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by ≻ and =, where w1 ≻ w2 means that m strictly prefers w1 to w2, and w1 = w2

means that m is indifferent between them8. We say m weakly prefers w1 to w2

if either w1 ≻ w2 or w1 = w2, denoted by w1 ≽ w2. Every two women in Pm

are comparable and the preference is assumed to be transitive. The preference

Pm gives a partial list of individual women that are acceptable to m (i.e., m does

not want to be matched with any woman that is not on the list). For example, a

possible preference list for m is Pm : (w1 = w2 ≻ w3 = w5). Here, m is indifferent

between w1 and w2, prefers either of them to w3 and w5, amongst which m is

indifferent, and finds all other women unacceptable. The preference list Pw for

each woman w ∈ W is defined similarly.9 We use E = {(m,w) | m ∈ Pw, w ∈ Pm}

to denote the set of mutually acceptable pairs.

Note that the preference lists Pm and Pw as defined above are for individu-

als. Because agents can have capacities greater than one, we also need to define

preferences for subsets. Considering our motivating application course allocation,

from the viewpoint of courses, they only care about the interests of individual

students and do not necessarily have preferences over subsets of students. (In

particular, the preferences of courses for individual students are according to

the students’ need to take the courses, rather than their identities and scores.)

Students in NTU’s current system are only allowed to submit preferences for

individual courses. Indeed, with a large number of students and courses, spec-

ifying preferences for subsets results in complicated comparisons of alternatives

and lengthy preference lists, yielding an inapplicable system. In addition, while

students may have preferences for subsets of courses, this mostly occurs among

those with prerequisite relations, which cannot be registered in the same semester.

For example, one must take the course ‘Microeconomic Principles’ before being

allowed to take the course ‘Industrial Organization’. Within one semester the

main concern of every student is thus individual courses.

Therefore, in our study we assume that preferences are responsive with a lattice

structure. That is, given a subset S ⊆ W and two women w,w′ /∈ S, m prefers

8Precisely, there is a subscription m in the notations, i.e., ≻m and =m. For simplicity we omit the
subscription when it is clear from the context.

9In the application of course allocation at NTU, students submit two preference lists, one for PE and
one for UE. Here, for simplicity, we assume that each individual has only one preference for the other
side. Our technical results can be easily generalized to the settings in which one has multiple preferences.
Details are provided in Section IV.C.



12 MONTH YEAR

S ∪ {w} to S ∪ {w′} if and only if m prefers w to w′. (Note that it is allowed

that w or w′ = ∅; in particular, m prefers ∅ to any woman w /∈ Pm, prefers any

woman w ∈ Pm to ∅, and is indifferent between any w,w′ /∈ Pm.) In other words,

for any two sets that differ in only one woman, m prefers one that contains

the more preferred woman and is indifferent between them if he is indifferent

between the two women. The preferences of women are defined similarly. In

addition, the responsive preference is transitive, i.e., if m prefers S1 to S2 and

S2 to S3, he also prefers S1 to S3. Note that this preference for subsets only

constitutes a partial order, precisely, a complete distributive lattice. That is, two

alternatives are comparable only if they are an ancestor-descendant relation in the

lattice.10 In Appendix B, we give an example to show responsive preference with

a lattice structure. This model of preferences with multiunit capacity has been

used in, e.g., Erdil and Ergin (2006). It is simple, because agents only need to

express preferences for individuals, and is arguably natural for settings in which

the benefit from a partner to an agent does not depend on the agent’s remaining

partners.

Given the preferences of all of the agents, our objective is to establish a multiu-

nit pairing between men and women, called an assignment (or a many-to-many

matching). An assignment is denoted by µ = (µmw)m∈M,w∈W , where µmw = 1

means that m and w are matched and µmw = 0 otherwise. A feasible assignment

is one that satisfies the following conditions:
∑

w µmw ≤ cm and
∑

m µmw ≤ cw,

and µmw = 1 only if m and w are mutually acceptable. All of the assignments

considered in this paper are feasible. Further, for any x ∈ M ∪W , we denote by

µ(x) the set of individuals matched to x in the assignment µ.

III. Solution Concepts

Given the many-to-many matching model defined above, the next question is

which assignment is desired. While we cannot satisfy the demands of all students,

we hope to provide a solution that is in favor of most students. In this section,

we examine a number of solution concepts from different perspectives in course

allocation.

10Note that the responsive preference defined in Roth and Sotomayor (1990) is a complete ranking for
all compatible subsets, unlike ours, which forms a lattice structure.
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A. Pairwise Stability

In many two-sided matching models, e.g., student placement and school choice

(Sönmez and Ünver 2011), one desired property of an allocation is the elimination

of justified envy. That is, whenever a student m prefers the allocation of another

student m′, m should not rank higher than m′ in the priority list of courses.

Consider the following example.

EXAMPLE 1: There are two students m1,m2 and two courses w1, w2 each with

unit capacity. Their preferences are shown on the left-hand side below.

w2

w1

m2

m1

w1 ≻ w2

w1 ≻ w2

m2 ≻ m1

m2 ≻ m1

w2

w1

m2

m1

In the first allocation, m2 is not assigned to his first choice w1, which lists him

with a higher priority than m1. In such a case, m2 can simply ask:

“I am more eligible for the course; why was I not assigned?”

Hence, a fairer solution is to allocate w1 to m2 (see the above figure on the right-

hand side). Now m1 is not assigned to his first choice w1, but he can use the

following reasoning:

“I did not get the course, but all those who got it are (more) eligible.”

Equivalently, if a course (i.e., w2) has not been assigned to a student (i.e., m2)

who has a higher priority, then the student should be assigned to another course

that he prefers (more).

The issues illustrated by the example above are captured by stability, a solution

concept first proposed by Gale and Shapley (1962) in the application of marriage

markets and college admission. The formal definition of stability in our many-to-

many matching model is as follows.

DEFINITION 1 (Pairwise stability): We say that a feasible assignment µ =

(µmw) is (pairwise) stable if there is no mutually accepted pair (m,w) ∈ E (called

a blocking pair) with µmw = 0, satisfying one of the following conditions:
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• Both m and w have leftover capacity;

• m has leftover capacity and there is m′, µm′w = 1, such that w strictly prefers

m to m′; or w has capacity remaining and there is w′, µmw′ = 1, such that m

prefers w to w′;

• There are m′ and w′, µmw′ = 1 and µm′w = 1, such that m strictly prefers w

to w′ and w strictly prefers m to m′.

In course allocation, the stability concept ensures a certain level of fairness

among students in the sense that no blocking pairs can upset the structure of

a matching. It creates a balance in the competition among students and their

priorities in each course.

Note that both members of a blocking pair are able to strictly improve their

assignments respectively by matching with each other (and possibly breaking

some of the current assignments). A stable assignment always exists, and can

be found using a variant of Gale-Shapley’s deferred acceptance algorithm (Gale

and Shapley 1962) for computing one-to-one stable matchings (e.g., by making cx

copies for each individual x ∈ M ∪W with the same preference list and breaking

ties randomly).

B. Pareto Efficiency

Another important criterion in our application is social welfare, which measures

the overall efficiency of an allocation. Consider the following two examples.

EXAMPLE 2: There are two students m1,m2 and two courses w1, w2 each with

unit capacity. Their preferences are shown on the left-hand side below.

w2

w1

m2

m1

w1 = w2

w1

m1 = m2

m1 = m2

w2

w1

m2

m1

The first allocation in which only m2 is assigned to a course w1 is stable. However,

a more efficient allocation is on the right-hand side, where both m1 and m2 are

assigned to a course. Note that the second allocation is also stable.
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EXAMPLE 3: There are two students m1,m2 and two courses w1, w2 each with

unit capacity. Their preferences are shown on the left-hand side below.

w2

w1

m2

m1

w1 = w2

w2 ≻ w1

m1 = m2

m1 = m2

w2

w1

m2

m1

While both of the allocations are stable, the second is more desirable in the sense

that student m1 is assigned to a course he likes more and the assignments of other

individuals remain at the same preference level.

In the two examples above, the second allocation dominates the first one in

the sense that someone’s allocation is strictly improved while no one is worse off.

This property is captured by the notion of Pareto efficiency. An allocation that is

not Pareto-efficient implies that certain changes in allocations may result in some

individuals being better off with no individual being worse off, therefore leading

to an efficiency improvement. The formal definition is given below.

DEFINITION 2 (Pareto efficiency): Given a feasible assignment µ = (µmw), we

say that µ′ = (µ′mw) is a Pareto improvement of µ if for all x ∈ M ∪ W , x

weakly prefers µ′(x) to µ(x), and the preference is strict for at least one agent. An

assignment µ is called Pareto-efficient if it does not have any Pareto improvement.

Note that in the original Gale-Shapley stable marriage model with strict pref-

erences, stability implies Pareto efficiency (Roth and Sotomayor 1990). However,

when indifferences (ties) are allowed, stability no longer guarantees Pareto effi-

ciency. Further, even if preferences are strict, in many-to-many matching models

with responsive preferences, a stable matching need not be Pareto-efficient (Roth

and Sotomayor 1990).

This definition is two-sided Pareto efficiency, i.e., it considers the social welfare

of both students and courses. Another related notion is one-sided Pareto effi-

ciency, i.e., it only considers the social welfare of students. In course allocation

and general many-to-many matchings, both definitions are reasonable and may

find their applications.11 In the following, we discuss the existence and computa-

11In the course allocation at NTU, the priorities of courses mainly reflect students’ need to take
the courses; thus, student-sided Pareto efficiency may better capture social efficiency. However, in the
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tion of solutions with respect to both definitions.

C. Group Stability

The notion of pairwise stability described above captures fairness in terms of a

pair of student and course. However, students may still end up with an unsatis-

fying assignment. Consider the following example.

EXAMPLE 4: There are two students m1,m2 and two courses w1, w2 each with

unit capacity. Their preferences are shown on the left-hand side below.

w2

w1

m2

m1

w1 ≻ w2

w2 ≻ w1

m2 ≻ m1

m1 ≻ m2

w2

w1

m2

m1

The first allocation is stable and Pareto-efficient. Note that since m1 prefers m2’s

assignment and m2 prefers m1’s assignment, they can swap courses with each

other, resulting in the second allocation. Although the swapping is not a Pareto

improvement, it improves both students’ welfare. Therefore, given that students’

welfare is our main consideration, the second allocation is more desirable.

To capture the issue illustrated by the above example, we define a property

called (one-sided) group stability: if an assignment is group stable, there is no

group of students such that each of them can be strictly better off through re-

assignment within the group. The formal definition is as follows (recall that M

denotes the set of students).

DEFINITION 3 (Group stability): Given a feasible assignment µ = (µmw), we

say that µ is blocked by a coalition S ⊆ M if all members in S are able to get

a strictly better assignment by swapping matchings within S. Formally, consider

the submarket formed by S and W with capacity cw − |{m ∈ M \ S | w ∈ µ(m)}|

for each w ∈ W , there is a feasible assignment µ′ such that µ′(m) ≻m µ(m) for

all m ∈ S. We say an assignment is (one-side) group stable if it is not blocked

by any coalition.

applications where the preferences of courses are set by individual departments or lecturers, two-sided
Pareto efficiency might be a better solution concept.
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In the definition above, the capacity of each w ∈ W is the remaining capacity

of w for S. If an allocation is group stable, then there is no way for any subset of

students to swap courses to improve everyone’s assignment. In other words, there

always exists a student in the coalition whose assignment cannot be improved;

that student then has no incentive to form the coalition and the original allocation

is group stable.

In many-to-one matching, it is well known that group stability is equivalent to

pairwise stability given responsive preferences (Lemma 5.5, Roth and Sotomayor

(1990)). (Note that the notion of group stability defined in Roth and Sotomayor

(1990) considers the improvement of both sides.) However, such equivalence does

not hold for one-sided group stability even in one-to-one matching, as illustrated

by Example 4. Indeed, we can show the following impossibility result.

CLAIM 1: There is an instance in which pairwise stability and one-sided group

stability cannot hold simultaneously even if all individuals have unit capacity.

Note that if a matching is student-sided Pareto-efficient, it is also students-

sided group stable. Thus, the above claim also implies that pairwise stability and

one-sided Pareto efficiency cannot coexist in general; this fact is also illustrated

by Example 2.31 of Roth and Sotomayor (1990).

However, if one side has homogeneous preferences (i.e., all preferences are the

same), as is the case in our course allocation application, the two stability notions

can coexist. (Further, given such a condition, one-sided Pareto efficiency implies

two-sided Pareto efficiency; see more discussions in Section IV.E.)

PROPOSITION 2: In a many-to-many matching market, if one side has homo-

geneous preferences (i.e., courses), then a pairwise stable and two-sided Pareto-

efficient assignment is group stable for the other side (i.e., students).

D. Incentive Compatibility

Another important issue in determining an allocation is strategic considerations,

i.e., whether it is a dominant strategy for individual agents to report their private

preference truthfully. While it is well known that there is one-sided truthfulness

for one-to-one and many-to-one matching models (Roth and Sotomayor 1990),
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the truthfulness only applies to the side with unit demand, i.e., the “one” side.

Hence, in the general many-to-many matching model, we cannot expect to have

a truthful mechanism that always generates a stable matching.

However, many stable matching mechanisms work quite well in practice even

though theoretically they are not incentive compatible. One theoretical sup-

port for such phenomena is that many markets of interests can be modeled as

large markets. Incentive compatibility in large markets has been studied in,

e.g., exchange economy (Roberts and Postlewaite 1976), double auctions (Cripps

and Swinkels 2006, Fudenberg et al. 2007), and the probabilistic serial mecha-

nism (Kojima and Manea 2010). Most of these studies show either that the gain

from manipulations converges to zero or that an equilibrium behavior converges

to truth-telling. In two-sided matching markets, several studies have analyzed

the incentive compatibility of large markets. Roth and Peranson (1999), Immor-

lica and Mahdian (2005) and Kojima and Pathak (2009) showed that the Gale-

Shapley deferred acceptance algorithm becomes increasingly hard to manipulate

as the number of participants increases.

The application of course allocation usually involves a large amount of students

and courses. Motivated by previous studies on strategic behavior in large markets,

we expect similar results to hold. It would be an interesting future direction to

explore the incentive properties of large many-to-many matching markets.

In the course allocation at NTU, as discussed earlier, the priorities of courses are

homogeneous. Such a property allows us to design an incentive compatible mech-

anism that satisfies the above solution conditions. The mechanism is presented

in Section IV.E.

In the following discussions, unless specified explicitly, ‘stability’ refers to pair-

wise stability, ‘group stability’ refers to one-sided group stability and ‘Pareto

efficiency’ refers to two-sided Pareto efficiency. Further, we use the notion Pareto

stability (Sotomayor 2011) to denote matchings that are both two-sided Pareto-

efficient and pairwise stable.
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IV. Pareto-Stable Matching Mechanisms

For many-to-one matching with ties, a Pareto-stable assignment always exists

and can be computed using the algorithm of Erdil and Ergin (2006, 2008). The

algorithm relies on two observations. First, an assignment has a Pareto improve-

ment only if the assignment graph has an augmenting path or cycle (formally

defined in Section IV.A). Second, and more critically, any Pareto improvement

to a stable assignment preserves stability. These observations immediately im-

ply an algorithm to find a Pareto-stable assignment: starting from any stable

assignment, keep making Pareto improvements by eliminating augmenting paths

and cycles until none remains, and the resulting matching is both stable and

Pareto-efficient.

In a many-to-many matching market, if only one side has ties, the same stability

preserving result still holds.

CLAIM 2: In a many-to-many matching market, if only one side has ties, Pareto

improvement preserves stability.

When both sides of a market have ties, however, we observe that the second

critical property fails. That is, a Pareto improvement to a stable assignment

need not preserve stability even when one side has homogeneous preferences, as

the following example shows.

EXAMPLE 5 (Pareto improvement does not preserve stability): Consider the

example in the following figure, where m2 and w2 have a capacity of two each and

other agents all have unit capacity.

w3

w2

w1

m3

m2

m1

w2

w1 ≻ w2 ≻ w3

w1 = w2

m1 = m2 ≻ m3

m1 = m2 ≻ m3

m1 = m2 ≻ m3

w3

w2

w1

m3

m2

m1

The assignment on the left-hand side is stable, and the assignment on the right-

hand side is a Pareto improvement where m2 strictly improves his assignment
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and no one is worse off. However, the assignment on the right is unstable as m2

and w2 would like to match with each other rather than w3 and m3, respectively,

i.e., it is a blocking pair.

The example above shows that the approach of starting with an arbitrary stable

assignment and making Pareto improvements does not work, because this need

not preserve stability. Thus, all previous approaches (e.g., Erdil and Ergin (2006,

2008)) computing Pareto-stable assignments in variant models fail. Further, for

the given stable assignment in the above example (left figure), there is only one

Pareto improvement (right figure); thus, the problem cannot be solved by a careful

selection of Pareto improvements.

It is thus unclear whether a Pareto-stable assignment exists in many-to-many

matching markets with general arbitrary preferences for individuals. In this sec-

tion we give a confirmative answer to this question by showing an algorithm

that computes a Pareto-stable assignment. We first provide a characterization of

Pareto efficiency, and then describe the algorithm. With respect to the course

allocation at NTU with homogeneous preferences, we at the end provide two

implementable Pareto-stable matching mechanisms.

A. Characterization of Pareto Efficiency

Given the connection between matching and network flow, it is not surprising

that the existence of augmenting paths and cycles in an assignment is closely

related to whether it can be improved, i.e., its Pareto efficiency. The main differ-

ence in the context of stable assignment is that nodes have preferences in addition

to capacities. Thus, augmenting paths and cycles must improve not only the size

of an assignment, but also its quality, as determined by node preferences. The

formal definitions are as follows.

DEFINITION 4 (Augmenting Path): Given an assignment µ = (µmw), we say

that [m0, w1,m1, . . . , wℓ,mℓ, wℓ+1] is an augmenting path if (i)
∑

w µm0w < cm0

and
∑

m µmwℓ+1
< cwℓ+1

, (ii) µmkwk
= 1 and µmk−1wk

= 0 for all k, and (iii) mk

weakly prefers wk+1 to wk and wk weakly prefers mk−1 to mk.
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The first condition states that the capacities of m0 and wℓ+1 are not exhausted.

The second condition states that pairs alternatively are not and are in the cur-

rent assignment µ along the path. The last condition ensures that we are able to

achieve a Pareto improvement by reassigning matches according to the augment-

ing path. That is, removing all pairs (mk, wk) and matching all pairs (mk, wk+1)

produces a feasible assignment, which is a Pareto improvement over µ (where no

one is worse off and m0 and wℓ+1 are better off).

DEFINITION 5 (Augmenting Cycle): Given an assignment µ = (µij), we say

that [m1, w2,m2, . . . , wℓ,mℓ, w1,m1] is an augmenting cycle if (i) µmkwk
= 1 and

µmkwk+1
= 0 for all k (where wℓ+1 = w1) (ii) mk weakly prefers wk+1 to wk and

wk weakly prefers mk−1 to mk, and at least one of these preferences is strict.

Again, we are able to match all pairs (mk, wk+1) and unmatch all pairs (mk, wk)

in an augmenting cycle to get a Pareto improvement. For a given assignment, an

augmenting path or cycle can be found easily using a network flow approach.

The following lemma characterizes the relation between stable assignment and

augmenting path and cycle (its proof is the same as the one for a many-to-one

matching market (Erdil and Ergin 2008)).

LEMMA 1: A feasible assignment is Pareto-efficient if and only if it has no

augmenting path or cycle.

B. Computing a Pareto-Stable Matching

Our algorithm builds on the idea of Roth and Vande Vate (1990), who provide

an alternative to the deferred acceptance algorithm to compute a stable (one-to-

one) matching. Their algorithm can be interpreted as follows. Assume that all

women are present at the beginning, and men ‘arrive’ one by one. We start with

the empty matching. When a new man m arrives, match him to a most preferred

woman w with whom he forms a blocking pair, if any; if this woman was already

matched to a man m′, set m′ free and consider him as the next arriving man; the

algorithm runs iteratively until all men have arrived. Because every woman who

changes her partner in this process gets a strict improvement and no woman ever
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becomes worse off, the algorithm terminates, and the final matching is stable,

because by construction the matching at every man’s arrival is stable.

In our algorithm, all individuals are initially available; women are with full

capacities and men are with null capacity. We consider all men one by one and

increase their capacities unit by unit. When the capacity of a man is increased by

one, we do a sequence of reassignments such that the resulting matching satisfies

the following invariants (with respect to the current considered capacities):

• Stability preserving: it is always stable.

• Women improving: the assignment of any women does not become worse off.

• No augmenting cycle: it does not contain any augmenting cycle.

An important idea in our algorithm to derive Pareto efficiency is that in the

process of reassignments, no augmenting cycles have ever been introduced in the

matching. However, we allow the existence of augmenting paths. The key com-

ponent of our algorithm is a subroutine for eliminating augmenting paths while

preserving stability (and introducing no augmenting cycles). Having constructed

a matching that is stable and contains no augmenting cycles, we apply the subrou-

tine to eliminate augmenting paths in a stability preserving fashion, which finally

yields a Pareto-stable matching as characterized by Lemma 1. The high-level

structure of the algorithm is described below.

Alg-Pareto-Stable algorithm

• Initialization:

• There are no assigned matches (i.e., µ = 0) between M and W.

• All women have their full capacities available.

• Let d = (dm)m∈M be a virtual capacity vector of men;

initially dm = 0 for m ∈M.

• While there is m ∈M such that dm < cm, run Increase-Cap(d).

• While there is an augmenting path P, run Eliminate-Path(P ).

• Return the final assignment µ.

We have the following claim. (The details of the two subroutines and their

analyses are rather technical and thus are deferred to Appendix D.)
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THEOREM 1: For any many-to-many matching market with arbitrary prefer-

ences, a Pareto-stable assignment always exists and can be efficiently computed

by the algorithm Alg-Pareto-Stable.

C. Multiple Preferences

In the class registration application at NTU, students submit two preferences for

PE and UE, respectively. Our algorithm continues to work for the settings with

such multiple preferences. In general, for each individual x, the other side of the

market is divided into (not necessarily disjoint) partitions S1(x), S2(x), . . . , Sℓ(x),

where x has a preference (again, can be incomplete and have ties) and a capacity

cxk for each partition Sk(x). Further, x has a universal capacity cx that bounds

the total number of partners that can be matched to x among all partitions.

Observe that there are now two types of capacity constraints for each individual:

a universal one and a local one for each partition. Without loss of generality,

we can assume that cx ≥ cxk for any k. Note that there could be no relation

between cx and
∑

k cxk. The preference model discussed in the previous sections

corresponds to the special case when there is only one partition (i.e., ℓ = 1), and

the NTU class registration application corresponds to the case with two partitions

(i.e., ℓ = 2).

In this extension, the preference of every agent is restricted to every partition.

While partitions are not necessarily disjoint, we assume that the preference lists

of all partitions of an individual are disjoint. This is in accordance with our course

allocation motivation in which the preferences that a student submits for PE and

UE are required to be disjoint. Hence, for a given assignment µ = (µmu), m and

w form a blocking pair if both of them strictly prefer each other to one of their

assigned partners in the same partition (or if they have remaining capacities).

Our objective is again to find a Pareto-stable assignment, which can be com-

puted by the same mechanisms described in the previous sections. Observe, how-

ever, that the preference of every agent is essentially with respect to each of its

partitions. Hence, the definition of augmenting path and cycle will be changed

accordingly, i.e., for any node in the path/cycle, its two neighbors must be from

the same partition.
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D. Pareto-Improving Draft Mechanism

In the course allocation problem at NTU, the homogeneity of the course pref-

erences helps us to design implementable Pareto-stable matching mechanisms,

in addition to the algorithm above that works for general many-to-many match-

ing frameworks. In this subsection, we present a mechanism called the Pareto-

improving draft mechanism, which incorporates the HBS draft mechanism (Budish

and Cantillon 2012) with the augmenting paths/cycles elimination process. The

mechanism is described as follows (assume that there are L priority levels of

students).

Pareto-improving draft mechanism

For ℓ = 1, . . . , L: In each round ℓ, consider students in the ℓ-th priority group.

Consider all these students one by one in a random order.

• Each considered student receives his/her most preferred course among the

remaining available courses (under the capacity constraint and breaking ties

randomly).

• After the assignment, consider all students who have been assigned courses

(including those in higher priority groups) and all courses, eliminate

student-sided augmenting paths/cycles until there is none left.

The Pareto-improving draft mechanism first considers students according to

their priorities, and among students who are in the same priority level, assigns

one course at a time over a series of rounds, according to the students’ preferences.

This is similar to the HBS draft mechanism and NTU’s current mechanism. The

main difference is that with ties in students’ preferences, we also do a sequence

of augmenting paths/cycles eliminations to derive Pareto efficiency. Specifically,

in the mechanism, we use student-sided augmenting paths/cyles elimination12 to

ensure that each considered student, among all feasible assignments, is matched

with his/her best possible assignment while not hurting all previously matched

students. By the rule of the mechanism and the one-sided Pareto efficiency

12The student-sided augmenting paths/cycles here only consider the welfare of students, i.e., an aug-
menting path/cycle only requires that no students are worse off and at least one student is strictly better
off. This is similar to the definition in Erdil and Ergin (2008), but a bit different from the ones defined
earlier in Section IV.A in which welfare takes both sides of the market into account.

12For the first step when considering the first choice of all students (in any priority group), the
augmenting paths/cycles eliminations are with respect to the unit capacity of all students; for all other
steps, the capacities of students are two, as assumed in the model.
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characterization of Erdil and Ergin (2008), the mechanism actually computes

a students-sided Pareto-efficient matching. Further, the following theorem says

that it satisfies two-sided Pareto efficiency and stability, i.e., Pareto stability.

THEOREM 2: The Pareto-improving draft mechanism computes a Pareto-stable

matching.

E. Pareto-Improving Serial Dictatorship Mechanism

The Alg-Pareto-Stable algorithm and Pareto-improving draft mechanism

presented above involve tie-breaking and may lead to different outcomes for dif-

ferent implementations. In general, a Pareto-stable matching mechanism is not

strategyproof, even for one-to-one matching markets with ties (see Example 2

in Erdil and Ergin (2008)). In our setting, the same observation holds for the

draft mechanism even when all courses have homogeneous preferences, as the

following example shows.

EXAMPLE 6: There are two students m1,m2 with a capacity of two each and

three courses w1, w2, w3 each with unit capacity. Their preferences are as follows:

w3

w2

w1

m2

m1

w3 ≻ w2

w1 ≻ w2

m1 = m2

m1 = m2

m1 = m2

w3

w2

w1

m2

m1

There are two Pareto-stable matchings µ1 = {(m1, {w1, w2}), (m2, w3)} and µ2 =

{(m1, w1), (m2, {w2, w3})}. In the implementation of the Pareto-improving draft

mechanism, if there is a positive probability to output µ2, then m1 can misre-

port his preference to be w2 ≻ w1, then the mechanism will always output µ1

(although µ2 is still a Pareto-stable assignment) and m1 is better off. Similarly,

if the mechanism has a positive probability to output µ1, then m2 can benefit by

manipulation.

Is any implementation of Pareto-stable matching mechanisms strategyproof for

students? It turns out that the answer is affirmative in our setting when courses



26 MONTH YEAR

have homogeneous preferences. The mechanism, called the Pareto-improving se-

rial dictatorship mechanism, combines the random serial dictatorship mechanism

and augmenting paths/cycles elimination. The mechanism is described as below

(assume there are L priority levels for all students).

Pareto-improving serial dictatorship mechanism

For ℓ = 1, . . . , L: In each round ℓ, consider students in the ℓ-th priority level.

Consider all these students one by one in a random order.

• Each considered student receives all of his/her most preferred courses among

the remaining available courses (under the capacity constraint and breaking

ties randomly).

• After the assignment, consider all students who have been assigned courses

(including those in higher priority groups) and all courses, eliminate

student-sided augmenting paths/cycles until there is none left.

Similar to the draft mechanism, here we also use student-sided augmenting

paths/cyles elimination to derive Pareto efficiency. The key difference is that it

assigns courses all-at-once while the draft mechanism assigns courses to students

one-at-a-time.

THEOREM 3: The Pareto-improving serial dictatorship mechanism outputs a

Pareto-stable matching and is strategyproof for students.

Draft versus dictatorship. The Pareto-improving draft and serial dictatorship

mechanisms both satisfy the aforementioned “good” properties including pairwise

and group stability, and one-sided and two-sided Pareto efficiency. In addition, the

Pareto-improving serial dictatorship mechanism is strategyproof. However, the

dictatorship mechanism may trigger the “callousness” phenomenon as described

in Budish and Cantillon (2012). The following example illustrates how the draft

mechanism can potentially solve the callousness issue by avoiding severely unfair

allocations.

EXAMPLE 7: There are two students m1,m2 each with a capacity of two and

two courses w1, w2 each with unit capacity. m1 has preference w1 ≻ w2, and m2

has preference w2 ≻ w1. Both courses have homogeneous preferences m1 = m2.

The Pareto-improving serial dictatorship mechanism assigns both courses to either
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student who has a higher ranking after the initial random tie breaking. But a fairer

allocation would be to allocate each student one course, i.e., assign w1 to m1 and

w2 to m2, which is exactly the outcome of the draft mechanism.

As Budish and Cantillon (2012) documented about the HBS elective course al-

location, the callous behavior harms efficiency in the sense that the welfare costs

of using strategyproof dictatorship are much larger than the welfare costs of ma-

nipulability. As a consequence, Budish (2012) suggested the need for second-best

alternatives to strategyproofness, e.g., incentive compatibility in large markets as

discussed in Section III.D.

Incentive compatibility has been an important condition in various market de-

sign problems. However, one should also note that constraints always come with

costs. As Budish and Cantillon (2012) showed for the course allocation data at

HBS, on some simple measures of welfare the non-strategyproof draft mecha-

nism outperforms the strategyproof dictatorship mechanism. As a special case of

general dictatorship mechanisms, the Pareto-improving serial dictatorship mech-

anism also brings up callous behavior, which can be bad for welfare. Although

the Pareto-improving draft mechanism solves the callousness issue in the Pareto-

improving serial dictatorship mechanism, it is not strategyproof for students. This

tradeoff between non-callousness and strategyproofness makes neither of them

perfect for the NTU course allocation problem. In Section V, we compare the

simulation results on both mechanisms to get a sense of which is better, if not

perfect.

V. Simulations

We use NTU’s course allocation data on PE and UE for three consecutive aca-

demic years: 2010, 2011 and 2012 to examine the effectiveness of introducing ties

to students’ preferences and to compare the Pareto-improving draft and dicta-

torship mechanisms with NTU’s current mechanism. The data consist of (a) the

number of course vacancies; (b) students’ strict preferences for up to five PE and

five UE courses, separately; and (c) course allocation results from NTU’s current

mechanism (after the manual adjustment process) (listed in Table 1). The input

information for our simulations is specified as follows:
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• Course preferences: we assume with little loss of generality that courses’ ho-

mogeneous preferences for students are based only on the students’ study year.

That is, all courses strictly prefer final year students to penultimate year stu-

dents, and so on. This assumption is for the simplicity of simulations.

• Course capacities: the above (a) provided by the data set.

• Student preferences: the above (b) provided by the data set. (Random ties are

introduced to students’ preferences to simulate the performance of the proposed

mechanisms with indifferences in preferences.)

• Student capacities: either one or two, see the specific setup in the simulations

described below.

Before introducing ties in students’ preference lists, we first take a closer look

at the distribution of the lengths of students’ preference lists, which are depicted

in Figure 2. For both PE and UE, it can be seen that the length of preferences

is almost symmetrically distributed, and the average lengths are 3.00 and 3.07,

respectively. For preference lists no longer than three, a maximum of two ties

can be introduced. Further, in the recent course registration survey (see Figure 1

Question 3), 35 percent of students preferred two levels of preferences and 23

percent preferred three levels, representing a major portion of all surveyed stu-

dents and over 76 percent of whom preferred to have ties.13 Given the average

lengths and survey information, in our simulations we consider two scenarios: two

or three levels in students’ preference lists.

• Two levels means that there is one strict ‘≻’ and the preference list of a student

is divided into two levels at random.

• Three levels means that there are two strict ‘≻’ and the preference list of a

student is divided into three levels at random.

Note that a student is indifferent between the courses in the same level. For

example, if a student has preference A ≻ B ≻ C ≻ D ≻ E, then A = B ≻ C =

D = E is a (random) realization with two levels and A ≻ B = C ≻ D = E is a

(random) realization with three levels.

13We note that the current limit of a maximum of five courses for PE/UE preference lists does not
impose a significant constraint against students indicating all of the courses that they like, as the survey
results show that 75 percent of the students are satisfied with the upper limit of five courses (see Figure 1
Question 4).
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Figure 2. Distribution of the lengths of students’ PE and UE Preference Lists.

Next we describe our simulation environments and results. Due to the ran-

domness involved in introducing ties into students’ preferences, five independent

computations are performed for each of the simulation environments, and the

percentage is the average of the five experiments. For the rest of the paper, per-

centages are measured as the total number of allocations over the total number

of vacancies, unless otherwise specified.

A. Experimental Environment I

We consider three scenarios for simulations.

• Pure PE. We only consider PE courses; thus, we assume that each student has

unit capacity and only consider his/her preference for PE courses.

• Pure UE. We only consider UE courses; thus, we assume that each student has

unit capacity and only consider his/her preference for UE courses. Note that

the first two scenarios are essentially many-to-one matchings.

• Combined PE+UE. Here all of the courses are pooled together. Note that if

a course falls into both the PE and UE categories, recall that in the NTU’s

current system, two capacities of the course are specified manually for PE and

UE, respectively. In our simulations here, we merge the two separate capacities,

making it a single capacity for each such course. Each student still has two

separate preferences, one for PE and one for UE; the capacity of the student

is in the format of 1 + 1, i.e., the student can get at most one PE course

and at most one UE course, and it is possible that the student is allocated two
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courses in total. Note that this scenario precisely captures the course allocation

requirements of NTU, and is the one by which we quantitatively evaluate the

performance of our mechanism, which introduces ties into students’ preferences.

In the three scenarios, students essentially have unit capacities (in the third

scenario, a student with two separate preferences can be treated as two students,

among whom one has preferences consisting of PE only and the other has prefer-

ences consisting of UE only). In such cases, one can easily notice that the draft

and dictatorship mechanisms are equivalent. In practice, we run simulations using

both mechanisms and the results do appear to be the same as expected, except for

some small deviations due to the random nature of the mechanisms. Therefore,

we do not distinguish these minor differences caused purely by the randomness

in the algorithms, and instead focus on the effects of allowing ties into students’

preferences. The simulation results for the total number of allocations are shown

in Table 2 and the corresponding statistics on the number of unassigned students

for combined PE+UE are summarized in Table 3.14 Next, we give a detailed

explanation for the statistics in each column of Table 2 (using the data from

2010).

• Maximummatching. We need a generally reasonable benchmark to measure the

performance of different matchings. (Note that the total number of students

or course vacancies does not qualify, as no feasible matching can match the

bound.) To this end, we consider a maximum cardinality matching (i.e., one has

the maximum number of assigned pairs) from the set of all mutually acceptable

pairs. The size of a maximum cardinality matching provides a theoretical upper

bound on all feasible matchings. For PE, UE and combined PE+UE, the size

of a maximum matching in 2010 is 7,140, 8,958 and 16,536, which takes 87.95

percent, 63.18 percent and 74.17 percent of the total vacancies, respectively.

• NTU’s current mechanism. NTU’s current mechanism is employed with respect

to the given preferences. Note that the statistics here differ slightly from those

in Table 1, as we consider slightly simplified preferences for the courses and

do not include the manual adjustment process. It can be seen that in 2010,

14The percentages in this table are calculated as the total number of unassigned students over the
total number of students.
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Table 2—Experimental Results I: Total Number of Allocations

Course
Maximum

matching

NTU’s current

mechanism

Pareto-Stable

without ties

Pareto-Stable

with 3 levels

Pareto-Stable

with 2 levels

PE
7,140 6,615 6,647 6,720 6,852

87.95% 81.49% 81.88% 82.78% 84.41%

2010 UE
8,958 8,142 8,162 8,295 8,515

63.18% 57.43% 57.57% 58.51% 60.06%

PE+UE
16,536 14,990 15,105 15,312 15,670

74.17% 67.23% 67.75% 68.68% 70.28%

PE
7,725 7,045 7,150 7,342 7,368

76.55% 69.81% 70.85% 72.75% 73.01%

2011 UE
8,041 7,495 7,537 7,626 7,784

52.41% 48.85% 49.13% 49.71% 50.74%

PE+UE
15,803 14,526 14,627 14,833 15,190

62.13% 57.11% 57.51% 58.32% 59.72%

PE
7,308 6,726 6,762 6,838 7,005

78.54% 72.28% 72.67% 73.49% 75.28%

2012 UE
8,075 7,556 7,574 7,672 7,819

49.66% 46.47% 46.58% 47.18% 48.09%

PE+UE
15,412 14,283 14,350 14,530 14,855

60.29% 55.87% 56.13% 56.84% 58.11%

about 81.49 percent of PE vacancies, 57.43 percent of UE vacancies and 67.23

percent of the combined PE+UE vacancies are allocated. We will compare the

performance of our mechanisms to these statistics.

• Pareto-Stable without ties. In this column, the draft/dictatorship mechanism

is employed with strict preferences for the students. In comparison with the

allocations using NTU’s current mechanism, for 2010 we see a 0.39 percent

improvement for PE, a 0.14 percent improvement for UE allocations and a

0.52 percent improvement for combined PE+UE. Note that NTU’s current

mechanism also generates a Pareto-stable matching if considering the strict

students’ preferences. The marginal improvement in the number of allocations

comes from the differences in the implementations of the algorithms.

• Pareto-Stable with 3 levels. In this column, the draft/dictatorship mechanism
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is employed with three random levels on students’ preferences. That is, each

student’s preference has at most three levels. Here we observe improvements of

1.29 percent, 1.08 percent and 1.45 percent for PE, UE and combined PE+UE,

respectively, compared to NTU’s current mechanism.

• Pareto-Stable with 2 levels. In this column, the draft/dictatorship mechanism

is employed with two random levels on students’ preferences. That is, each

student’s preference has at most two levels. We observe further improvements

here of 2.92 percent, 2.63 percent and 3.05 percent for PE, UE and combined

PE+UE, respectively. The last two columns show the simulation results after

introducing ties into students’ preferences, indicating that it can improve the

overall efficiency of students.15

We also observe improvements in the total number of allocations after intro-

ducing ties into students’ preferences for 2011 and 2012. In 2011, there are 2.94

percent, 0.86 percent and 1.21 percent improvements for PE, UE and combined

PE+UE, respectively, after we divide preferences into three levels. The improve-

ments for 2012 are 1.21 percent, 0.71 percent and 0.97 percent. Furthermore, we

see more significant improvements of 3.20 percent, 1.89 percent and 2.61 percent

for PE, UE and combined PE+UE, respectively, when we divide the preference

lists into two levels, with improvements of 3.00 percent, 1.62 percent and 2.24

percent, respectively, in 2012.

In summary, for the combined PE+UE scenario, after introducing ties into stu-

dents’ preferences, over the three years we see an average improvement of 1.21

percent and 2.63 percent for three and two levels of preferences, respectively.

This translates to roughly 292 or 639 more student-course assignments every year

which, compared to the allocation results from NTU’s current mechanism, sig-

nificantly improves overall students’ social efficiency. The statistics for combined

PE+UE of the simulations are also depicted in Figure 3.

15Note that for the PE and UE scenarios, students have unit capacity, the allocations are therefore
many-to-one matchings. For the column ‘Pareto-Stable without ties’, the simulations are equivalent to
Erdil and Ergin’s algorithm (Erdil and Ergin 2008), which computes a Pareto-stable matching for many-
to-one markets with one-sided indifferences. For the last two columns ‘Pareto-Stable with 3 and 2 levels’,
the simulations are equivalent to Erdil and Ergin’s algorithm (Erdil and Ergin 2006), which computes a
Pareto-stable matching for many-to-one markets with two-sided indifferences.
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In addition to improving the total number of allocations, as the following table

shows, we also observe a decrease in the total number of unassigned students

of 2.87 percent, 2.18 percent and 2.42 percent for the three years, respectively.

(Unassigned students refer to those who are not allocated to any course.)

Table 3—Experimental Results I: Number of Unassigned Students for PE+UE

NTU’s current

mechanism

Pareto-Stable

without ties

Pareto-Stable

with 3 levels

Pareto-Stable

with 2 levels

2010
1,866 1,766 1,679 1,479

13.85% 13.11% 12.46% 10.98%

2011
883 859 779 636

7.80% 7.59% 6.88% 5.62%

2012
1,007 970 885 728

8.73% 8.40% 7.67% 6.31%

B. Experimental Environment II

In the simulations described above for the combined PE+UE scenario, we ex-

plicitly set the capacities of students to be 1+1. This assumption is in accordance

with NTU’s current system and helps us to compare the simulation results to the

current mechanism. In practice, however, students may get more than one course

from a category (either PE or UE) after the manual adjustment period. This

fact is illustrated by the statistics in Table 1, where the number of allocations

for UE is larger than the number of students in 2011. The 1+1 capacity is not a

sharp constraint and is purely for equitability, resulting in significant inefficiency

in course allocation. Thus, in the following simulations we assume that each stu-

dent still has an overall capacity of two, but can be allocated any two courses

(either one PE and one UE, or two PEs, or two UEs) from his/her preference.

This change reflects practical situations in which students may have strong prefer-

ences for taking courses from one category (e.g., considering a student with 3 PE

and 25 UE academic units left, then the student certainly prefers to get two UE

courses rather than one PE and one UE). An overall capacity of two is imposed to

allow for some degree of balance and fairness among students at different levels,
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by avoiding allocating almost all of the courses to senior students while junior

students receive no courses.

When students have multi-unit capacities, implementations of the draft and

dictatorship mechanisms will lead to different results. The main source of such

differences is that in the draft mechanism students are allocated courses one-

at-a-time while in the dictatorship mechanism students are allocated courses up

to his/her capacity all-at-once. Thus, in addition to analyzing the efficiency

improvements generated by introducing ties, we also focus on the comparisons

between the Pareto-improving draft and dictatorship mechanisms.

Similar to the simulations described in the previous subsection, here we also

consider three scenarios: pure PE, pure UE, and combined PE+UE. Given that

students can now get two courses from the same category, and in practice they may

have preferences for the two categories, in the simulations of combined PE+UE

we randomly concatenate a student’s PE and UE preferences into one list:

• If a student prefers category PE to UE, the new single preference is the PE

preference followed by the UE preference.

• If a student prefers category UE to PE, the new single preference is the UE

preference followed by the PE preference.

• If a student is indifferent between PE and UE, the new single preference is by

randomly merging the PE and UE preferences (while keeping the same ranking

for those PE and UE courses).

In our simulations, students are uniformly distributed between the above three

types.

To introduce ties into students’ preferences, for the PE and UE scenarios, the

preference lists are randomly divided into two levels. For the combined PE+UE

scenario, the concatenated preference lists are divided into four levels: one strict

‘≻’ in PE’s preference, one strict ‘≻’ in UE’s preference, and one strict ‘≻’ in the

concatenation of the two preferences. If a student is indifferent between the two

categories, the three strict ‘≻’ are placed at random.

Table 4 shows the simulation results in terms of the number of allocations

from the Pareto-improving draft dictatorship mechanisms when students have

a capacity of two and ties in preferences. In addition to the total number of
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allocations, we also compare the draft and dictatorship mechanisms by two other

measures: average rank16 and the total number of unallocated students. The

statistics are given in Tables 5 and 6, respectively. Note that Table 6 only refers

to the PE+UE scenario and the percentages are calculated as the total number

of unassigned students over the total number of students.

Table 4—Experimental Results II: Total Number of Allocations

2010 2011 2012

Course Draft Dictatorship Draft Dictatorship Draft Dictatorship

PE
7,452 7,386 8,798 8,690 8,255 8,185

91.80% 90.98% 87.18% 86.11% 88.72% 87.96%

UE
10,046 9,926 10,479 10,313 10,399 10,243

70.86% 70.01% 68.30% 67.22% 63.95% 63.00%

PE+UE
17,354 16,979 17,803 17,473 17,308 17,015

77.83% 76.15% 70.00% 68.70% 67.70% 66.56%

Table 5—Experimental Results II: Average Rank

2010 2011 2012

Course Draft Dictatorship Draft Dictatorship Draft Dictatorship

PE 1.73 1.93 1.72 1.88 1.64 1.81

UE 1.96 1.96 1.83 1.95 1.78 1.95

PE+UE 1.85 1.85 1.72 1.79 1.66 1.74

From the statistics, we can see that for all of the scenarios, the draft mechanism

outperforms the dictatorship mechanism in terms of the total number of alloca-

tions, the average rank and the total number of unassigned students, despite the

fact that it is non-strategyproof. The dominant relationship is especially signifi-

cant for the number of unassigned students. With the draft mechanism, only 5.06

percent, 3.15 percent and 3.90 percent of the students are unassigned any course

16The idea of using average ranks as a simple measure of welfare is motivated by Budish and Cantillon
(2012). The average rank statistics here are calculated as the average rank of the courses in the student’s
assigned bundle based on the ranks in the strict preferences because it is impossible to get the real
preferences with ties. Consequently, these average rank statistics are not the real average ranks. However,
for the purpose of comparisons between two mechanisms, they are already sufficient.
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Table 6—Experimental Results II: Number of Unassigned Students for PE+UE

2010 2011 2012

PE+UE Draft Dictatorship Draft Dictatorship Draft Dictatorship

Number 682 3,104 357 1,241 450 1,518

Percentage 5.06% 23.04% 3.15% 10.96% 3.90% 13.15%

for the three years, respectively, as compared to 23.04 percent, 10.96 percent and

13.15 percent with the dictatorship mechanism.

These statistics also demonstrate the negative effects on welfare that result

from the “callousness” phenomenon in the dictatorship mechanism. The results

support the conclusions of Budish and Cantillon (2012) concerning the role of

strategyproofness in practical market design; that is, the callousness costs of a

strategyproof dictatorship mechanism are much larger than the costs of manipu-

lability in a draft mechanism (Budish 2012), especially in large marketplaces such

as course allocation. Overall, if compared with the total allocation numbers from

NTU’s current mechanism in Table 2, there is approximately 10.60 percent, 12.89

percent and 11.83 percent improvement for the three years, respectively, with the

dictatorship mechanism. These statistics are also illustrated in Figure 3.

VI. Concluding Remarks

We study the course allocation at NTU and formulate the problem as a many-

to-many matching market with preferences. To improve overall efficiency, we

consider introducing ties into students’ preferences as a refinement to the current

system. The fact that a stable outcome need not be Pareto-efficient with the pres-

ence of ties causes a loss in efficiency among the well-established stable solutions.

We therefore employ the solution concept of Pareto stability as a refinement to the

solution concept of stability, and establish an algorithm that computes a Pareto-

stable matching for general many-to-many matching markets. We further propose

two competing Pareto-stable matching mechanisms, i.e., Pareto-improving draft

and dictatorship mechanisms, for the course allocation application.

With the designed draft and dictatorship mechanisms, we run simulations on

the real course registration data from three academic years: 2010, 2011 and 2012.
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Our results show significant improvement in efficiency when ties are introduced

into students’ preferences. In total, we can see up to 2,597 more course-student

assignments for 2010 (3,263 for 2011 and 3,026 for 2012). This is equivalent

to approximately 11.65 percent (12.83 percent for 2011 and 11.84 percent for

2012) improvement in total efficiency. These positive results, summarized in the

following figure, call for changes to NTU’s current course allocation system.
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Figure 3. Summary of Simulation Results: Total Number of Allocations

Our simulation results comparing the draft and dictatorship mechanisms in-

dicate that the Pareto-improving draft mechanism outperforms the dictatorship

mechanism in terms of the total number of allocations, the average rank and the

total number of unassigned students, despite the fact that the former is non-

strategyproof. Our results echo the findings of Budish and Cantillon (2012), who

suggested that strategyproofness has both benefits and costs.

Ties are a realistic condition occurring in many matching markets with pref-

erences, especially when individuals have incomplete information. Our work,

following the studies of Erdil and Ergin (2006) and Erdil and Ergin (2008), is de-

voted to improving social efficiency in the presence of ties. The models studied in

these works can potentially be applied to other applications with a similar setup.
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Our work considers a number of fundamental solution concepts, including pair-

wise and group stability, and one-sided and two-sided Pareto efficiency. We exam-

ine the existence and computation of these solution concepts. These results are of

independent interest and may find applications in other many-to-many matching

markets.
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Appendix: For Online Publication

NTU Curriculum Structure and Course Registration Process

This section introduces the curriculum structure and course registration process

of NTU. At NTU, an undergraduate needs to fulfill both the Major Requirement

and the General Education Requirement (GER). The Major Requirement includes

major core courses, which are compulsory courses to satisfy the program require-

ments, and major prescribed electives, which are courses for specialization in a

particular degree program. The GER is the curriculum requirement for broad-

ening study, which covers key fields of knowledge for all students. It constitutes

about 25 percent to 40 percent of the total curriculum workload and is divided

into 3 classes of studies:

1) GER CORE: these include courses related to Human Resources Manage-

ment, Communication Skills and Singapore Studies.

2) GER Prescribed Electives (PE): the courses represent the key fields of

knowledge broadly relevant to all professions and are categorized into 3

sub-areas of studies:

a) Arts, Humanities and Social Sciences

b) Business and Management

c) Science, Technology and Society

3) GER Unrestricted Electives (UE): these are courses chosen by students to

broaden their learning experience. They may cover any area offered by the

various departments, including, e.g., modern languages, entrepreneurship,

music, and drama courses.

A course can fall into different categories simultaneously. For example, the course

Principle of Economics can be in both PE and UE. There is a minimum academic

units requirement for each category of courses for students to fulfil to meet their

graduation requirement. The curriculum structure is shown in Figure A1.

An online Student Automated Registration System (STARS) is currently used

for course registration at NTU. The information of the courses (e.g., time sched-

ules and vacancies) is first released. The registration takes place over three phases.
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Figure A1. Curriculum Structure at NTU.

In the first phase, students register for the Major Requirement (major core and

major prescribed electives) and GER CORE courses at their pre-specified date

and time slot. These courses can be registered successfully as long as there are

vacancies available (on a “first come, first serve” basis). Almost all students are

able to register for their desired major courses and GER CORE courses in the

first phase.17

The second phase decides allocations of PE and UE courses by a central-

ized mechanism described in Section I. The first two phases take place before

17A major reason is that most registrants of a major course are those from the department that
offers the course; therefore, every department can easily manage their offered major courses for its own
students.
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a semester starts. During the first two weeks at the beginning of a semester,

there is another and final phase where students can submit appeals for courses

that they are keen to take, drop courses and add courses (provided vacancy avail-

ability). The appeals in this phase are handled manually by program coordinators

from departments on a case by case basis. To ensure that certain special and ur-

gent appeals are fulfilled, some courses may reserve a few vacancies for this final

phase.

Responsive Preference with Lattice Structure

We give an example to show a responsive preference with a lattice structure.

Assume that the preference of m over individuals is Pm : (w1 ≻ w2 = w3 ≻ w4 =

w5) and its capacity is 3, then the lattice structure of m’s responsive preference

is shown in Figure B1. Each node in the figure denotes a feasible matching. For

example, the node “{1,2,3}” means that m is matched with {w1, w2, w3}.

Figure B1. Lattice Structure of Responsive Preference.
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Missing Proofs

C1. Proof of Claim 1

PROOF:

This can be seen by the following example: There are three students m1,m2,m3

and two courses w1, w2 with unit capacity each. Their preferences are shown in

Figure (a) below.

(a)

w2

w1

m3

m2

m1

w1

w2 ≻ w1

w1 ≻ w2

m1 ≻ m2

m2 ≻ m3 ≻ m1

(b)

w2

w1

m3

m2

m1

(c)

w2

w1

m3

m2

m1

(d)

w2

w1

m3

m2

m1

The first allocation (m1, w2), (m2, w1) is pairwise stable. However, it can be seen

that {m1,m2} is not group stable as both of them can get better off by swapping

the assigned courses (see Figure (b)). In this case, m3 and w1 form a blocking

pair, which enforces the allocation to Figure (c). Now m1 and w2 form a blocking

pair, which transforms the allocation to Figure (d), in which m2 and w1 are a

blocking pair and the matching returns back to the first one. Hence, for the

considered instance, it does not admit an allocation that is both pairwise stable

and group stable.

C2. Proof of Proposition 2

PROOF:

Assume without loss of generality that W has homogeneous preferences over M

and a Pareto stable assignment µ = (µmw) is not M -side group stable. Then there

is a subset S ⊆ M such that all members in S can strictly improve his allocation

among reassignments inside S; denote the resulting new matching by µ′. Let
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S = {m1,m2, . . . ,mk}, and denote the assignment of each agent x ∈ M ∪W in

µ and µ′ by µ(x) and µ′(x), respectively. Since µ is dominated by µ′, we have

µ′(m) ≻m µ(m) for all m ∈ S. Note that the assignments of all men that are not

in S remain the same in µ and µ′.

Consider any man m ∈ S. Let µ(m) = {w1, w2, . . . , wcm} with w1 ≽m w2 ≽m

· · · ≽m wcm and µ′(m) = {w′1, w
′
2, . . . , w

′
cm

} with w′1 ≽m w′2 ≽m · · · ≽m w′cm ,

where cm is the capacity of m. We can insert a copy of ∅ if m is not fully matched

in the two matchings. Then due to responsive preferences, we have w′i ≽m wi for

all i and at least one preference is strict.

As all women have the same preference, we can assume without loss of generality

that the preference of women is complete over men (otherwise, those men who

are unacceptable will never be matched in any feasible assignment). Consider the

following two cases about the structure of the homogeneous preference of W over

S.

Case 1. Women are indifferent among all the men in S = {m1,m2, . . . ,mk}. We

consider the exclusive-or structure of the two matchings µ and µ′.

We first show that no woman is worse off in µ′. Assume otherwise that

there is a woman w1 who is worse off in µ′. Since w1 is indifferent between

all men in S, we know that her number of assignments in µ′ is less than that

in µ, i.e., |µ′(w1)| < |µ(w1)|. Hence, there must exist a man m1 such that

m1 breaks up the matching with w1 in µ and is matched to a new woman

w2 in µ′ in which w2 ≽m1 w1 (due to responsive preferences). Next consider

w2. If all men matched to w2 in µ are already matched to her in µ′, i.e.,

µ(w2) ⊂ µ′(w2), then we know that w2 does not exhaust her capacity in

µ. Since µ is a stable matching, we know that m1 is fully matched in µ

and weakly prefers all his assigned parters to w2; this implies, in particular,

w2 =m1 w1. Hence, as m1 improves his assignment in µ′, there must exist

another woman w′2 with w′2 ≻m1 w1 such that w′2 ∈ µ′(m1) \ µ(m1) and w′2

is fully matched in µ. For such a case, we switch the name of w2 and w′2.

Therefore, there is a man m2 such that m2 breaks up the matching with w2

in µ and is matched to a new woman w3 in µ′ in which w3 ≽m2 w2.

We continue with the argument. As the number of men is finite, eventu-
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ally we will have a loop: wα,mα, wα+1,mα+1, . . . , wβ ,mβ, wα in which mi

breaks the matching with wi in µ and is matched to wi+1 in µ′ for all i

(where wβ+1 = wα) and wi+1 ≽mi
wi. (Note that it is possible that α = 1,

i.e., the loop goes back to the first woman w1.) If at least one of the prefer-

ences is strict, then we have a Pareto improvement among these agents, this

contradicts the fact that µ is Pareto stable. Hence, all these preferences are

tight; in such a case, we can actually still use the old matchings in µ (i.e.,

remove all (mi, wi+1) and add (mi, wi) in µ′). Then we can continue with

the same analysis on the exclusive-or structure of the two matchings µ and

µ′, and eventually derive a contradiction.

Therefore, we know that µ′ is a Pareto improvement over µ (as all men in S

are better off while no woman and any other man are worse off). This leads

to a contradiction to the assumption that µ = (µmw) is Pareto efficient.

Case 2. There is at least one strict preference over two men in S, say, without

loss of generality, m2 ≻ m1. Similar to the above argument, there is a

woman w3 ∈ µ′(m2)\µ(m2) such that w3 ≻m2 w for some w ∈ µ(m2). As µ

is a stable matching, w3 must be fully matched in µ; thus, there is a man m3

with m3 ≽w3 m2 (again, due stability of µ) who breaks the matching with

w3 in µ and is matched to a new woman w4 in µ′. As m3 also improves his

assignment in µ′, we can again use the same analysis as above to show that

there is a Pareto improvement, which contradicts to the Pareto stability of

µ (note that all women wα considered in the process weakly prefers mα to

mα−1).

Therefore, when W have homogeneous preferences over M , a Pareto stable

assignment must be M -side group stable.

C3. Proof of Claim 2

PROOF:

Without loss of generality, we assume that only women have ties in their pref-

erences. Let µ be a stable matching and µ′ be one derived from µ through Pareto

improvement. Then for all x ∈ M ∪W , µ′(x) ≽x µ(x), and at least one preference
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is strict.

Assume that µ′ is not stable and (m,w) is a blocking pair. Let

µ(m) =
{

w1, w2, . . . , wcm

}

and µ′(m) =
{

w′1, w
′
2, . . . , w

′
cm

}

,

and let

µ(w) =
{

m1,m2, . . . ,mcw

}

and µ′(w) =
{

m′1,m
′
2, . . . ,m

′
cw

}

.

(We can add ∅ to the list if one is not fully matched.) We can enumerate the

indices such that w′i ≽m wi, for all i = 1, 2, . . . , cm and m′j ≽w mj , for all

j = 1, 2, . . . , cw. Note that wi =m w′i if and only if wi and w′i are the same

woman. Since (m,w) is a blocking pair for µ′, we know that w ≻m w′cm and

m ≻w m′cw .

Case 1: m and w are not matched in µ. Then w ≻m w′cm ≽m wcm and

m ≻w m′cw ≽w mcw , implying that (m,w) is a blocking pair for µ, a contradiction.

Case 2: m and w are matched in µ. Since the assignment of w is not worse

off in µ′ and m /∈ µ′(w), there is m′ ∈ µ′(w) such that m′ /∈ µ(w) and m′ ≽w m.

Consider m′; as all men have strict preferences and m′ is not worse off in µ′, there

is w′ ∈ µ(m′) such that w ≻m′ w′. Hence, (m′, w) is a blocking pair for µ, a

contradiction.

Hence, µ′ has no blocking pairs, and the claim follows.

C4. Proof of Theorem 2

PROOF:

Denote the matching computed by the mechanism by µ. By the rule of eliminat-

ing student-sided augmenting paths/cycles in the mechanism and the characteri-

zation of Pareto efficiency (Erdil and Ergin 2006), µ is immediately student-sided

Pareto efficient. Then there is no (two-sided) augmenting path under the match-

ing µ since no m (i.e., student) can be better off. We claim that there is no

(two-sided) augmenting cycle either. Assume otherwise that there is an augment-

ing cycle [m1, w2,m2, . . . , wℓ,mℓ, w1,m1], where µmkwk
= 1 and µmkwk+1

= 0 for

all k (where wℓ+1 = w1). Then according to the definition and the fact that no
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m can get strict improvement, there must be some w getting better off; assume

without loss of generality that w1 gets better off, i.e., mℓ ≻ m1. Due to the

homogeneity property of all w’s preferences and the fact that no w gets worse off,

we can derive that m1 ≽ m2 ≽ m3 ≽ · · · ≽ mℓ ≻ m1, which is a contradiction.

Therefore, by Lemma 1, µ is (two-sided) Pareto efficient.

Next we show that µ is stable. The rule of the mechanism implies that for any

two students m1 and m2, if m1 has a higher priority than m2, then m1 does not

envy any course assigned to m2 (i.e., all courses assigned to m1 are at least as

good as any course assigned to m2). Otherwise, when considering augmenting

paths/cycles for the iteration of m1, we would match a better course to m1.

Hence, if there is a blocking pair (m,w), where w strictly prefers m to one of

her assignments m′ (note that m′ cannot be ∅ due to augmenting paths/cycles

elimination at the iteration of m), i.e., m ≻ m′. By the rule of the mechanism, m

must be in a higher priority level than m′; and by above discussion, m does not

envy any course assigned to m′, which contradicts the assumption that m and w

are a blocking pair. Hence, the mechanism always generates a stable matching.

This completes the proof of the theorem.

C5. Proof of Theorem 3

PROOF:

The proof of Pareto stability is the same as the one for Theorem 2. To the end

of the strategyproofness, it can be seen that for each considered student, among

the remaining available courses, we allocate him/her the best possible courses.

Thus, the student has no incentive to lie. In the later augmenting paths/cycles

eliminations, while the assignment of the student can be changed, a simple but

critical invariant holds: Given the assignments of all previously considered stu-

dents, we always allocate the best possible courses to the student. Therefore, it

is a dominant strategy for the student to submit his/her true preference. This

completes the proof of the theorem.
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Details of the Algorithm

Note that in the algorithm, we always maintain the invariant that the algorithm

contains no augmenting cycles. Why do we need such a condition, whereas it

is allowed to have augmenting paths? Observe that the reason that a Pareto

improvement may not preserve stability is that the path or cycle corresponding

to the Pareto improvement contains a matched pair (m,w) where both m and

w are also matched to a less preferred agent, say w′ and m′. When the match

(m,w) is removed in the reassignment process of the augmenting path/cycle, even

though m and w could receive better partners in the path or cycle, they will prefer

to be matched to each other instead of w′ and m′ respectively. For augmenting

path, however, we can always start reassignment from one side of the path (say,

the man), and stop proceeding along the path when we reach such a woman w

(then (m′, w) is unmatched and the process restarts). In this stability-preserving

process, a woman becomes strictly better off. However, for the pair (m,w) in an

augmenting cycle, we would need to release both (m′, w) and (m,w′) to preserve

stability. That is, we would no longer have the monotonically improving property

for women’s assignments, which is critical to the analysis of the algorithm.

Note that in the algorithm, µ = (µmw)m∈M,w∈W and (dm)m∈M are global vari-

ables in both subroutines. The first subroutine, Increase-Cap, increases the

virtual capacity of a man by one and does a number of reassignments to ensure

the three invariants listed above (in particular, it guarantees that the assign-

ment is stable for the increased virtual capacity vector). The second subroutine,

Eliminate-Path, eliminates all possible augmenting paths to derive a Pareto-

efficient assignment in a stability preserving fashion. After all augmenting paths

have been eliminated, by Lemma 1, the returned assignment is Pareto-stable.

While the algorithm may look a bit complicated, the fact that no women ever get

worse off in the process implies a simple, but critical, structure of the algorithm:

we iteratively do a sequence of reassignments to improve women’s assignments

while preserving stability and containing no augmenting cycle. If at any moment

in the algorithm a woman’s assignment gets strictly improved, no matter at which

stage the algorithm is, we terminate that thread immediately and go to Step (2)

of the main algorithm to repeat the process given the current virtual capacity
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vector d.

Next we describe the two subroutines in detail in the following subsections.

(All discussions are with respect to the considered virtual capacity vector.) In

the algorithm, for any (augmenting) cycle C and a pair (m,w) ∈ C, we use

C \ {(m,w)} to denote the path by removing pair (m,w) from C.

D1. Subroutine One: Capacity Increment

The first subroutine that increases virtual capacities of the men is the following.

Increase-Cap(d)

1) Pick an arbitrary man m with dm < cm

2) Let dm ← dm + 1, i.e., increase the virtual capacity of m by one

3) Let S = {w | (m,w) is a blocking pair}

4) Let T = {w ∈ S | m prefers w ≽ w′ for any w′ ∈ S}

5) If T = ∅ (i.e., there is no blocking pair), return

6) Otherwise

a) If there exists w ∈ T such that adding match (m,w) does not introduce

any augmenting cycle

• pick such a woman w′

• add match (m,w′)

b) Otherwise

• pick an arbitrary w′ ∈ T

• let C be a potential augmenting cycle by adding (m,w′)

• let P =

[

m
C\{(m,w′)}
−−−−−−−−−→ w′

]

be the path from m to w′ through C \

{(m,w′)}

• run Eliminate-Path(P )

c) If w′ (defined either in Step (6.a) or (6.b)) is over-matched (i.e.,

matched to more than cw′ neighbors)

• let m′ be a least preferred man matched to w′ where deleting

(m′, w′) does not introduce an augmenting cycle

• delete match (m′, w′)

• let dm′ ← dm′ − 1

• return

d) Otherwise, return

When the virtual capacity of m is increased by one, there might be some block-

ing pairs, among which the subroutine tries to match m to one that he prefers
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most (w′ ∈ T in the above description). However, this could introduce potential

augmenting cycles (Step 6(b)). Instead of matching m and w′ directly, the sub-

routine considers a potential augmenting cycle C incurred by (m,w′) and tries to

do reassignments according the other path from m to w′ along the cycle. Finally,

if w′ is over-matched, then we delete one of her least preferred assignments with-

out incurring any augmenting cycles and delete the virtual capacity of that man

by one. This guarantees that the assignment remains stable, and the assignment

of w′ strictly improves.

The existence of m′ in Step 6(c) is guaranteed by the following lemma.

LEMMA 2: Given a stable matching without augmenting cycles, for any woman

w, let S ⊆ M be the subset of men matched to w to whom w is least preferred.

Then there is m ∈ S such that deleting match (m,w) does not introduce any

augmenting cycle.

D2. Subroutine Two: Augmenting Path Elimination

Consider a given stable assignment, assume there is an augmenting path P =

[m0, w1,m1, . . . , wℓ,mℓ, wℓ+1], where (mi, wi) is in the assignment and (mi, wi+1)

is not. Note that it is possible that an individual x (either a man or a woman)

or a pair (x, y) appears more than once in P . In this subsection, when we refer

to an individual x ∈ P or a pair (x, y) ∈ P , we denote the corresponding one at

that position of P .

Before describing the subroutine, we will first consider a truncation process,

which deletes some pairs in a given augmenting path according to different ap-

pearances of the same agent and will be used in the subroutine.

Truncation.

For a given augmenting path P , we consider the following truncation function.
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Truncate-Path(P )

1) while one of the following "if" conditions holds

• If there is m such that P = [. . . ,m,w1, . . . , w2,m, . . .] and m weakly

prefers w1 to w2

– truncate P = [. . . ,m, (w1, . . . , w2,m, ) . . .]

• If there is w such that P = [. . . , w,m1, . . . ,m2, w, . . .] and w weakly prefers

m2 to m1

– truncate P = [. . . , w, (m1, . . . ,m2, w, ) . . .]

2) Return path P

It can be seen that if Truncate-Path(P ) is executed, by the rules of the

truncation, no pair (x, y) can appear more than once after truncation. However,

it is still possible that an individual appears more than once (e.g., when m strictly

prefers w2 to w1, we do not truncate the two occurrences of m). The truncation

process is necessary in our algorithm; in particular, it is important to the analysis

of termination of the algorithm.

In Truncate-Path(P ), if a truncation is executed at x (a man or a woman),

we denote by Γ(x) the truncated path. That is, Γ(x) = [m,w1, . . . , w2,m] if

x = m, and Γ(x) = [w,m1, . . . ,m2, w] if x = w.

We have the following observations.

PROPOSITION 3: For any given augmenting path P , if a truncation is executed

at x, then Γ(x) forms a cycle and every individual involved is indifferent between

its two neighbors in the cycle.

PROOF:

We will only prove the claim for the first case when Truncate-Path(P ) is

executed at a man; the argument for the second case is similar. Assume that the

given augmenting path P = [. . . ,m,w1, . . . , w2,m, . . .] is truncated between the

two occurrences of m. By the rule of truncation, m weakly prefers w1 to w2; by

the rule of augmenting path P , all individuals weakly prefer his/her unmatched

neighbor to matched neighbor. Hence, [m,w1, . . . , w2,m] forms a cycle and ev-

eryone is indifferent between its two neighbors (otherwise m strictly prefers w1 to
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w2, it is an augmenting cycle, which contradicts to the fact that no augmenting

cycle ever appears in the course of the algorithm).

PROPOSITION 4: For any given augmenting path P , if a truncation is executed

at x and x strictly prefers its one neighbor to the other for one occurrence of x

in the truncation, then x still strictly prefers one neighbor to the other after

truncation.

PROOF:

We will only prove the claim when x is a man m; the argument for woman

is similar. Consider the augmenting path P = [. . . , w1,m,w2, . . . , w3,m,w4, . . .]

and a truncation is executed at m. Assume that m strictly prefers w2 to w1.

Since P is an augmenting path, we know that m weakly prefers w4 to w3. By

Proposition 3, m is indifferent between w2 and w3. Therefore, after truncation m

strictly prefers one neighbor w4 to the other w1. The same argument holds if the

strict preference occurs at the second occurrence m (i.e., m strictly prefers w4 to

w3).

LEMMA 3: For any given augmenting path P , Truncate-Path(P ) returns an

augmenting path as well.

PROOF:

Again we will only prove the claim for the first case of Truncate-Path(P )

and the second case follows similarly. For the path P = [. . . ,m,w1, . . . , w2,m, . . .]

with the truncation for the middle of the two occurrences of m, if the first m is the

beginning of path P , then certainly after truncation it is still a valid augmenting

path. Otherwise, we can write P as [. . . , w0,m,w1, . . . , w2,m,w3 . . .] (note that

the end of the path must be a woman). Notice thatm weakly prefers w1 to w0, and

w3 to w2. Further, we have m is indifferent between w1 and w2 by Proposition 3.

Hence, m weakly prefers w3 to w0, which implies the desired result.

Elimination.

We next describe the subroutine to eliminate augmenting paths while preserving

the three invariants listed at the beginning of the section. Note that for any
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augmenting path, its one side must be a man and the other side must be a

woman. The subroutine starts from the man side and considers pairs one by one.

Hence, for any man-woman pair in the path, the objective is to match them; and

for any woman-man pair in the path, the objective is to unmatch them.

Eliminate-Path(P )

1) Assume P = [m∗, w1,m1, . . . , w
∗]

2) Let e = (m∗, w1) be the first pair on path P

3) while e ̸= ∅

• If e is not a match (i.e., e = (m,w))

– if adding match (m,w) does not introduce an augmenting cycle

a) add match (m,w)

b) if w is not over-matched, return

c) if w strictly prefers m to a current partners

∗ let m′ be a least preferred man matched to w where deleting

(m′, w) does not introduce an augmenting cycle (by Lemma 2,

such m′ exists)

∗ delete match (m′, w) and let dm′ ← dm′ − 1

∗ return to Step 2 of the main algorithm Alg-Pareto-Stable to

run Increase-Cap

d) else let e be the next pair after (m,w) in P

– otherwise

e) let C = [m,w′
1,m

′
1, . . . , w

′
k
,m′

k
, w,m] be such a potential cycle if

adding (m,w)

f) expand P =

[

m∗, . . . ,m,w′
1

C\{(m,w)}
−−−−−−−−→ m′

k
, w, . . . , w∗

]

g) truncate P =

[

m∗, . . . ,Truncate-Path
(

m,w′
1

C\{(m,w)}
−−−−−−−−→ m′

k
, w, . . . , w∗

)

]

h) let e be the first pair returned by the Truncate-Path

• If e is a match (i.e., e = (w,m))

– if deleting match (w,m) does not introduce an augmenting cycle

i) delete match (w,m)

j) let e be the next pair after (w,m) in P

– otherwise

k) run the above Steps (e,f,g,h)

(switching the notations of m and w (except m∗ and w∗))

The subroutine tries to add and delete matches one by one along pairs in the

path P . If the current considered pair is a man-woman pair (i.e., e = (m,w)), the

subroutines matches them if it does not introduce any augmenting cycle. If the
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assignment of w is strictly improved (i.e., the condition in Step (3.b) or (3.c) is

satisfied), the subroutine terminates. Note that at this point the subroutine may

not completely eliminate the augmenting path, however, the overall assignment

of the woman gets strictly improved and the process restarts at the capacity

increment stage. If matching m and w will introduce a potential augmenting

cycle, instead of adding the match directly, the subroutine takes a “detour” and

considers the other path from m to w along the cycle and expands it to the path P

(Step 3(f); by the following Lemma 4, it is a valid expansion). Then the subroutine

will do a truncation from m to the end of the path P and restarts the process

by considering the first pair returned by the truncation (its first individual must

be m). The subroutine performs similarly if the considered pair is a woman-man

pair.

We first establish the following observations.

LEMMA 4: The expansion of path P in Step (3.f) is a well-defined augmenting

path.

PROOF:

Let P1 = [m∗, w1,m1, . . . , w
′,m] and P2 = [w,m′, . . . , w∗], where w′ is the

woman before m and m′ is the man after w in P . Then the original augmenting

path can be written as P = [P1,m,w, P2]. By the fact that P is an augmenting

path, we know that m weakly prefers w to w′ and w weakly prefers m to m′.

Let C ′ =
[

m′1
C\{m,w}
−−−−−−→ w′k

]

, then the extended path (denoted by P ′) is P ′ =

[P1,m,C ′, w, P2]. By the fact that C is an augmenting cycle if adding (m,w), we

know that m weakly prefers w′1 to w and w weakly prefers m′k to m. Therefore,

m weakly prefers w′1 to w′ and w weakly prefers m′k to m′; this implies that the

expanded path P ′ is a well-defined augmenting path.

We have the following key claim, which implies that the subroutine always

terminates.

LEMMA 5: The subroutine Eliminate-Path(P ) terminates in finite number of

steps for any augmenting path P .
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D3. Proof of Lemma 5

In this section, we will prove the second subroutine Eliminate-Path always

terminates.

PROPOSITION 5: In the course of the subroutine Eliminate-Path(P ), for

each considered pair e in the augmenting path P , we can always reach a different

pair (i.e., redefine e by Step (3.d), (3.h), or (3.j)) with different starting individ-

ual. That is,

• if e = (m,w), there is w′ such that the subroutine matches (m,w′) (not

introducing any augmenting cycle) and next moves to e = (w′, ·);

• if e = (w,m), there is m′ such that the subroutine deletes (w,m′) (not

introducing any augmenting cycle) and next moves to e = (m′, ·).

PROOF:

We will only prove the claim for the case when e = (m,w); the same argument

extends for e = (w,m). Assume that adding (m,w1) , (m,w) introduces an

augmenting cycle C1 (otherwise, we are done); let w2 be the other woman incident

to m in C1. Note that m weakly prefers w2 to w1 and w2 weakly prefers m to her

assignment in C1. Next the subroutine expands path P with
[

m,w2
C1\{(m,w1)}
−−−−−−−−−→

w1

]

, and consider adding (m,w2). Again assume that it introduces an augmenting

cycle C2; let w3 be the other woman incident to m in C2. We may continue

with this argument; if none of these matches can be added, then we get a loop

w1, w2, . . . , wr, wr+1 = w1, where adding (m,wi) introduces an augmenting cycle

Ci containing (m,wi+1), for i = 1, . . . , r. Note that m is indifferent between all

w1, w2, . . . , wr. Then consider the following big cycle

C =

[

w1
C1\{(m,w1),(m,w2)}
−−−−−−−−−−−−−−−→ w2

C2\{(m,w2),(m,w3)}
−−−−−−−−−−−−−−−→ w3 · · ·wr

Cr\{(m,wr),(m,w1)}
−−−−−−−−−−−−−−−→ w1

]

Note that C is available before the subroutine arrives at edge (m,w) = (m,w1)

and it is possible that an edge appears more than once. For each wi, i =

2, . . . , r + 1, let m′i−1 and mi be the other man (not m) incident to wi in cy-

cle Ci−1 and Ci, respectively. Notice that each wi weakly prefers m to m′i−1 and
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weakly prefers mi to m, i.e., wi weakly prefers mi to m′i−1. Further, if one of the

two preferences is strict, then wi strictly prefers mi to m′i−1. Therefore, C is an

augmenting cycle, a contradiction to the invariant that the algorithm will never

produce any augmenting cycle in the process. (Note that the fact that there is

an individual whose assignment can be strictly improved from C follows from the

fact of augmenting cycles of each C1, . . . , Cr.)

We are now ready to prove the lemma.

PROOF OF LEMMA 5:

Note that if the condition in Step (3.b) or (3.c) is satisfied, i.e., the assignment of

a woman gets strictly improved, the subroutine returns and terminates. Hence, we

will assume without loss of generality that in the course of Eliminate-Path(P ),

all women involved are already fully-matched and are indifferent between their

adjacent neighbors in path P .

Assume to the contrary that Eliminate-Path(P ) does not terminate. By

Proposition 5, we know that the subroutine will not get stuck at any specific node.

This implies that the subroutine will keep changing the statuses of pairs (i.e.,

either matched or unmatched) through Step (3.a) and (3.i). Since the assignments

of all women are kept at the same level, and the assignments of all men will not get

worse off (by the definition of augmenting path)18, we can divide the subroutine

into stages where it moves from one stage to another if there is a man whose

assignment get strictly improved. Since the subroutine does not terminate, it

eventually gets into the last stage where no man will be able to improve his

assignment. In other words, all individuals (men and women) are indifferent

between their new assigned partner(s) and old partner(s) onwards.

Consider a moment when the subroutine is at the last stage, and let

P ∗ = [x∗, y∗, . . . , w∗]

be the current remaining augmenting path (i.e., after expansions and truncations

in previous stages), where e = (x∗, y∗) is the current considered pair (can be

18In the subroutine Eliminate-Path, we will do a sequence of reassignments, e.g., first unmatch (w,m)
then match (m,w′). Precisely speaking, the assignment of m first gets worse off then gets better off.
Here saying m does not get worse off or gets strictly better off, we mean the overall assignment of m by
combining these two consecutive reassignments.
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either (m,w) or (w,m)) and w∗ is the last woman of the augmenting path. Since

it is guaranteed that the subroutine will never introduce any augmenting cycle,

at this moment there is no augmenting cycle. In the rest of the proof we will

restrict on the subroutine starting from this moment running on P ∗.

For the initial augmenting path P ∗, we set all pairs on it to be unmarked. In the

process of the subroutine when P ∗ is updated, we mark/unmark pairs according

to the following rules:

1) If the status of (x, y) is changed (become matched or unmatched), mark

(x, y).

2) Recursively do the following: If a pair (x, y) is marked, mark all pairs in

Γ(y) (recall that Γ(y) is the truncated path at a specific occurrence of y in

the path P ∗).

3) If P ∗ is expanded, unmark all expanded pairs.

Roughly speaking, the sign of a pair, marked or unmarked, denotes whether the

subroutine has reached that pair or not in the path P ∗. In particular, if the

subroutine reaches to the last pair of P ∗, all pairs have to be marked.

Let E∗ denote a subset of pairs where (x, y) ∈ E∗ if in the process of running

Eliminate-Path, the subroutine cannot change the status of (x, y) because oth-

erwise it will bring a potential augmenting cycle. Note that (x, y) can be either

(m,w) or (w,m). Certainly E∗ ̸= ∅. Let (x1, y1), (x2, y2), . . . , (xℓ, yℓ) be the order

of pairs that are included into the subset E∗ in the subroutine (note that |E∗|

is finite as the number of pairs is finite) and C1, C2, . . . , Cℓ be corresponding po-

tential augmenting cycles. Note that (xi, yi), (xi+1, yi+1) ∈ Ci for i = 1, . . . , ℓ− 1

(indeed, (xi+1, yi+1) is the reason that why the subroutine cannot move along

with
[

xi
Ci\{(xi,yi)}
−−−−−−−−−→ yi

]

to reach yi).

We have the following observations.

Claim 1. Consider any (x, y) ∈ E∗ and the moment when the subroutine is about

to change its status but cannot do so because of a potential augmenting cycle C.

Then x is indifferent between its two neighbors in C and the other neighbor right

before it in P ∗.
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Proof. We will only prove the claim for the case (x, y) = (m,w); the argument is

similar when (x, y) = (w,m). Let w1 be the woman before m in the augmenting

path P ∗ and w2 be the other woman incident to m in C. By the definition of

augmenting path P ∗ and augmenting cycle C, we know that m weakly prefers

w to w1 and w2 to w; hence m weakly prefers w2 to w1. If m strictly prefers

w2 to w1, then by the rule of Eliminate-Path, m is able to strictly improve

his assignment, which contracts to the assumption that we are at the last stage

where no one can improve his assignment anymore.

Claim 2. Consider any (x, y) ∈ E∗ and the moment when the subroutine is

about to change its status but cannot do so because of a potential augmenting

cycle C. Let y′ be an individual who is able to strictly improve its assignment

in C = [x, . . . , x′, y′, x′′, . . . , y, x] (by the above claim, y′ ̸= x). By the rule of the

subroutine, we will expand the augmenting path to be

P ∗ =
[

. . . , x
C\{(x,y)}
−−−−−−−→ x′, y′, x′′

C\{(x,y)}
−−−−−−−→ y, . . . , w∗

]

and all pairs between x and y are unmarked. Then all pairs after (x′, y′) (inclusive)

in the current P ∗ are always unmarked from this moment through the course of

the subroutine.

Proof. We will prove the claim for the first pair (x1, y1) added into E∗; the

proof for the rest of pairs can be done in a similar way by induction. Initially

all pairs in P ∗ are unmarked. The subroutine follows pairs in P ∗ one by one

— changes their status and makes them marked — until the point when we

get to (x1, y1). At this moment all pairs after (x1, y1 in P ∗ are still unmarked.

Then the subroutine expands P ∗ according to the potential augmenting cycle

C1 = [x1, . . . , x
′, y′, x′′, . . . , y1, x1] and unmarks all expanded pairs.

We will first show that (x′, y′) is always unmarked. Since y is an individual

who is able to strictly improve its assignment, we cannot change the status of

(x′, y′) (i.e., get it marked) directly, because otherwise its assignment will be

strictly improved. Hence, the only way to mark (x′, y′) is through the second rule

above by marking all pairs in a truncated cycle Γ(z), where z is the node whose

truncation contains (x′, y′). By Proposition 3, we know that all individuals in
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Γ(z) are indifferent between their two neighbors; this implies that (y′, x′′) /∈ Γ(z).

Since (x′, y′) and (y′, x′′) are consecutive pairs in P ∗, the only way to separate

them is to truncate at y′, i.e., z = y′. By Proposition 4, however, after such

truncation, y′ still strictly prefers its one neighbor to the other, which implies

that it is still able to strictly improve its assignment, a contradiction.

Next consider any pair (x0, y0) after (x
′, y′) in P ∗, i.e.,

P ∗ = [. . . , x′, y′, x′′, . . . , x0, y0, . . . , w
∗]

since (x′, y′) is always unmarked, again the only way to mark (x0, y0) is through

a truncated cycle. But that cycle has to include (x′, y′), which is impossible.

We consider the following walk according to pairs (x1, y1), (x2, y2), . . . , (xℓ, yℓ)

in E∗: start from y1 following the direction of C1 \ {(x1, y1)} until we get to y2;

next start from yi following the direction of Ci \ {(xi, yi)} until we get to yi+1

for i = 2, . . . , ℓ − 1; finally start from yℓ following the direction of Cℓ \ {(xℓ, yℓ)}

until we get to the first yk, where (xk, yk) ∈ E∗∩Cℓ (note that such (xk, yk) must

exist, otherwise, the subroutine can reach yℓ, which contradicts to the above

claim). Therefore, it forms a big cycle

C∗ =

[

yk
Ck\{(xk,yk)}
−−−−−−−−−→ yk+1

Ck+1\{(xk+1,yk+1)}
−−−−−−−−−−−−−−−→ yk+2 → · · · → yℓ

Cℓ\{(xℓ,yℓ)}
−−−−−−−−−→ yk

]

Note that by the above claim, all pairs in the walk are unmarked. Further, it can

be seen that C∗ is an augmenting cycle, which contradicts to the fact that the

algorithm never introduces an augmenting cycle. This completes the proof of the

lemma.

D4. Analysis of the Algorithm

Again, the high level structure of the algorithm is to increase capacities of men

and eliminate augmenting paths. While the algorithm may look involved, as

the virtual capacity is not always monotonically increasing (e.g., in Step 6(c) of

Increase-Cap and Step 3(c) of Eliminate-Path, we actually need to reduce

the virtual capacities) and two subroutines may call each other, there is a simple,

but crucial, idea behind the algorithm: the assignments of women keep improving
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(this is the exact reason that we do not want to introduce any augmenting cycle

in the course of the algorithm). Therefore, at any moment of the algorithm,

if a woman’s assignment gets improved (e.g., Step 6(c) of Increase-Cap and

Step 3(b), 3(c) of Eliminate-Path), the algorithm will abandon the current

subroutine and restart the whole process (i.e., capacity increment and augmenting

path elimination) starting from the current virtual capacity vector. Since every

woman can improve her assignment at most n2 times (as her capacity is at most

n and every unit capacity can be improved at most n times), the whole algorithm

will terminate.

It is easy to see that the three invariants listed at the beginning of the section are

maintained in the course of the algorithm. Indeed, the last two (no augmenting

cycle and women not worse off) hold trivially as they are guaranteed by the

algorithm itself. For stability, in the subroutine Increase-Cap, when increasing

the virtual capacity of m by one, we try to match m with a most preferred

woman w where (m,w) forms a blocking pair. If w is not over-matched, then the

resulting assignment is still stable. Otherwise, we delete a match (m′, w) where

m′ is a least preferred man matched to w and reduce the virtual capacity of m′

by one (Step (6.c) of Increase-Cap); this implies that the resulting assignment

is still stable with respect to the new capacity vector. For the second subroutine

Eliminate-Path, stability comes from the definition of augmenting path and

the fact that when we delete a match (w,m), we know that m must be a least

preferred man matched to w and w was over-matched (otherwise, when we add

the match right before (w,m), the assignment of w gets strictly improved and the

subroutine will run Step (3.b) or (3.c) to terminate). Therefore, the final returned

assignment is stable.

When the algorithm Alg-Pareto-Stableterminates, by its rule there is no

augmenting path. By the invariant that there is no augmenting cycle, we know

that the returned assignment is Pareto-efficient. This yields the following result.

THEOREM 4: The algorithm Alg-Pareto-Stable computes a Pareto-stable

assignment in polynomial time.


