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Abstract

In this paper we provide a unifying framework for a set of seem-
ingly disparate models for bubbles, shocks and elementary technical
trading strategies in financial markets. Markets operate by balancing
intrinsic levels of risk and return. This seemingly simple observation
is commonly over-looked by academics and practitioners alike. Our
model shares its origins in statistical physics with others. However,
under our approach, changes in market regime can be explicitly shown
to represent a phase transition from random to deterministic behaviour
in prices. This structure leads to an improved physical and econometric
model. We develop models for bubbles, shocks and elementary techni-
cal analysis strategies. We apply our model to real-estate bubbles and
to the on-going Eurozone crisis. We close by comparing the results of
our mathematical model with the results of qualitative analyses from
the finance literature.

1 Introduction

The analogy between financial crashes and phase transitions in critical phe-
nomena in statistical physics is now well established (Johansen et al., 2000;
Sornette 2003). A vast literature discusses the hitherto somewhat contro-
versial subject of log-periodic precursors to financial crashes (see e.g. Zhou
and Sornette (2008, 2009); Feigenbaum (2001a-b); Chang and Feigenabum
(2006, 2008); Bree and Joseph, 2013).
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Financial markets operate by balancing risk and return (Markowitz,
1971). As discussed in Fry (2012) there is a sense in which the prevailing
class of log-periodic models omits a crucial second-order condition pertain-
ing to the inherent riskiness of financial markets. There is thus an interesting
sense in which the academic literature mirrors the popular failings of mar-
ket players prior to the 2008 crisis (Peston and Knight, 2012) in terms of an
inability to identify both market over-confidence and the intrinsic riskiness
involved. Despite its genesis in statistical physics - log-periodic and related
models have begun to permeate into the mainstream financial literature and
have thus clearly achieved an element of wider significance (see e.g. Lin and
Sornette, 2011; Geraskin and Fantazzini, 2011; Bree et al., 2013; Kurz-Kim,
2012; Yan et al., 2012; Jiang et al., 2010). However, despite obvious merit
these works have the inescapable drawback of representing increasingly so-
phisticated attempts to fit a fundamentally flawed model. Here, in contrast,
we can show that a better understanding of the underlying market mecha-
nisms, and a better physical model, leads to significant improvements.

One of the key themes explored by log-periodic models is the prediction
of market bubbles and crashes. However, this predictive aspect has been
significantly expanded upon in recent years (see e.g. Yan et al., 2012; Sor-
nette and Zhou, 2006). Themes discussed include antibubbles (Zhou and
Sornette; 2004, 2005) and the effects of external shocks like the 9/11 terror
attacks upon financial markets (Sornette et al., 2003; Lillo and Mantegna,
2003; Johansen and Sornette, 2010; Fry, 2012). Work in Fry (2012) united
a set of previously disparate models for endogenous and exogenous market
crashes. Here, we show that this approach can be extended and that this
has dramatic consequences. In particular, we find ourselves in the exciting
position of being able to use tools and techniques from statistical physics to
forge links between academic and practitioner finance (Pan et al., 2006).

The academic literature on technical analysis is voluminous (see e.g.
Park and Irwin, 2007). Amidst a broad range of findings a majority of pa-
pers report that some technical trading rules appear to be profitable. Even
if the profitability of technical analysis is open to debate, such methods may
provide genuinely useful information (Lo et al., 2000; Osler, 2000). As in
Pan et al. (2006) there are clear links with our model and technical trad-
ing strategies (see e.g. Murphy, 1986). There are obvious parallels between
endogenous and exogenous market shocks and the information shocks iden-
tified in Plummer (2006). Moreover, we develop methods to identify cycles
and support and resistance lines commonly studied by practitioners (see e.g.
Plummer, 2006; Griffis and Epstein, 2009).

Beyond narrow academic interests our contribution is both timely and
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relevant. Firstly, we are able to use our model to detect bubbles and antibub-
bles in UK house prices. Real estate bubbles in the USA and throughout
Europe have played a key role in recent crises. Secondly, we are able to show
that antibubbles and endogenous shocks lie at the heart of the Greek crisis
in the Eurozone (Pryce, 2012). Thirdly, we are able to derive quantitative
results to cross-validate purely qualitative findings in the financial literature.

The layout of this paper is as follows. Section 2 presents our basic mod-
elling approach. Markets are assumed to work by balancing intrinsic levels
of risk and return. Once this feature is understood bubbles and crashes,
and other phenomena, can be modelled as temporary departures from long-
term equilibria. In Section 3 we model bubbles and antibubbles. In Section
4 we discuss information shocks and in relation to the on-going European
sovereign debt crisis. Sections 5-6 cover further extensions of market pre-
dictions relative to the practitioner literature. In Section 5 we model cycles.
In Section 6 we model support and resistance lines. Finally, Section 7 con-
cludes.

2 The model

Markets are assumed to work by balancing the level of risk and the rate
of return. The level of risk and return remain fixed even in the face of
technological innovation or an influx of new investors (Zeira, 1999). These
assumptions do not rely on complicated mathematics and so avoid dubi-
ous assumptions such as the “riskless hedge” of the Black-Scholes model
(Bouchaud and Potters, 2003). Our model makes several observable pre-
dictions for market crashes. Endogenous and exogenous crashes, cycles and
price-level shocks all exhibit identifiable short-run deviations from long-term
equilibria. Let Pt denote the price of an asset at time t and let Xt = log Pt.
The set up of the model is as follows

Assumption 1 (Intrinsic Rate of Return) The intrinsic rate of return

is assumed constant and equal to µ:

E[Xt+∆ − Xt|Xt] = µ∆ + o(∆). (1)

Assumption 2 (Intrinsic Level of Risk) The intrinsic level of risk is

assumed constant and equal to σ2:

Var[Xt+∆ − Xt|Xt] = σ2∆ + o(∆). (2)
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3 Bubbles and antibubbles

In this section we show how the framework laid out by the equations (1-2)
can be used to generate a model for financial bubbles discussed in Fry(2010a-
b), (2011), (2012) extending a deterministic version of the same model in
Johansen et al. (2000) and a series of later papers, see Section 1, which
all omit a critical second-order condition given by equation (11). Let P (t)
denote the price of an asset at time t. Our starting point is the equation

P (t) = P1(t)(1 − κ)j1(t), (3)

where P1(t) satisfies

dP1(t) = (µ(t) + σ2(t)/2)P1(t)dt + σ(t)P1(t)dWt, (4)

where Wt is a Wiener process and j1(t) is a Poisson process. Taking logs
gives

dXt = µ(t)dt + σ(t)dWt − vdj1(t), (5)

where v = − ln[1 − κ] > 0.
Fundamental price/equilibrium/benchmark IID model. Suppose that

the intensity of the Poisson process j1(t) is constant:

λ(t) = λ. (6)

Equation (6) shows that incoporating background price risks – associated
with the probability of a crash – gives a financial model with skewness and
heavy tails (see below). Further equation (6) also leads to the intuitively
appealing representation of prices as compound interest plus random noise
– further punctuated by a random sequence of larger demand shocks. As-
sumptions 1 and 2 give

µ(t) = µ + vλ; σ2(t) = σ2 − v2λ. (7)

The model in (6) thus leads to a special case of Merton’s classical model
(Merton, 1976). The returns distribution corresponding to (5-6) is a Gaussian-
Poisson convolution with probability density

fX(x) =
∞

∑

n=0

e−λλn

n!

1√
2π

√
σ2 − v2λ

e
−

(x+vn−µ−vλ)2

2(σ2
−v2λ) . (8)

The model in (8) has wider significance as a financial model (see below).
Further, the random variable X in (8) matches the negative skew and excess
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kurtosis of empirical asset returns distributions (Cont and Tankov, 2004).
We note that

Skew(X) =
E[(X − µ)3]

σ3
= −λv3 < 0,

Kurtosis(X) =
E[(X − µ)4]

σ4
= 3 + λv4 > 3. (9)

As an illustration we fit the model in (8) to a time series of log-returns from
the S& P 500 series from 3/1/1950-29/1/2013. The results are shown below
in Table 1. The Gaussian-Poisson model offers a significant improvement
over the Gaussian model – especially when the returns series is calculated
over a shorter time horizon.

Interval Daily Weekly Monthly

Gaussian 50896 8054.352 1320.699

Gaussian-Poisson convolution 51789.44 8176.599 1343.364

Table 1: Results: maximised log-likelihood for empirical financial data.

Speculative bubble. We can extend the Gaussian model in Fry (2012)
using

λ(t) = λ +
βtβ−1

αβ + tβ
. (10)

In equation (6) the probability of a crash is assumed to remain constant.
Here, in contrast, in equation (10) it is time variation in the probability of
a crash that characterises the speculative bubble (Johansen et al., 2000).
Thus, we are led to statistical tests for bubbles (Section 3.2) and a more
elegantly formulated non-Gaussian model than that in Fry (2011). This
is significant for empirical applications as accounting for non-Gaussian be-
haviour leads to more refined tests for speculative bubbles (Fry, 2008).

In the sequel combining equations (7) and (10) gives

µ(t) = µ + vλ(t); σ2(t) = σ2 − v2λ(t). (11)

Equation (11) shows that as in Fry (2012) prior to the (first) crash prices
undergo a rapid price rise described by µ(t) coupled with a temporary and
illusory decrease in volatility described by σ2(t) – the hallmark of market
over-confidence. As σ2(t) in (11) goes to zero we can see that in this model
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crashes occur as a result of a phase transition from random to deterministic
behaviour in prices.

Anti-bubble. As in Yan et al. (2012) we can model anti-bubbles as the
mirror image of conventional asset bubbles by taking v = −v in equations
(5-11). Thus, during an anti-bubble regime

µ(t) = µ − vλ(t); σ2(t) = σ2 − v2λ(t). (12)

Similarly, equation (12) shows that antibubbles also occur as a result of a
phase transition from random to deterministic behaviour in prices.

3.1 Empirical Analysis

In this section we apply the model for bubbles and antibubbles to empirical
data on real UK house prices from 1983 to 2011. From equations (7) and
(10) we see that testing the null hypothesis of no speculative bubble (resp.
no antibubble) is a test of the hypothesis that β = 0. This can be tested
using a maximum likelihood ratio test.

A plot of real UK house prices is shown in Figure 1 and suggests that
UK house prices are intrinsically volatile and have been subject to various
bubble and antibubble episodes over the years. Using Figure 1 we divide the
data into sub-samples shown in Table 1 and test for bubbles and antibubbles.
Evidence of bubbles in UK house prices is found over the years 1983-1989
and 1999-2006. Evidence for antibubbles is found over the years 1990-96
and 2008-11. Results thus appear to be in reasonable agreement both with
Figure 1 and with comparable findings using a Gaussian model in White
and Fry (2013).

3.2 Further extensions: motivation

Yan et al. (2012) uses the concepts of bubbles and anti-bubbles to predict
market rebounds. Here, we show that our model can do this and more
besides. Inter alia our extra level of generality allows us to predict cycles and
resistance/support lines – leading to a potential union of the academic and
practitioner literature on finance. In the next section we discuss information
shocks in the context of the on-going European sovereign debt crisis.

4 Information shocks and the sovereign debt crisis

The effect of information shocks upon markets is discussed both by the prac-
titioner (Plummer, 2006; Murphy, 1986) and the academic literature (Sor-
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Figure 1: UK average real house prices 1983-2011.

nette et al., 2003; Johansen and Sornette, 2010; Fry, 2012). These latter
papers consider the impact of dramatic world-news events like the 9/11 ter-
ror attacks, the attempted coup against Soviet President Mikhail Gorbachev
in 1991 and the Lehman Brother’s bankruptcy upon markets. Volatility is
shown to decay following the exogenous shock at a rate quicker that is
both faster than after a corresponding endogenous shock (bubble-induced
crash) and in such a way that can be distinguished from the background
noise. However, information shocks are not limited to such (extreme) exter-
nal events and Plummer (2006), Chapter 22 describes information shocks as
price movements that occur in the context of bigger trends. This includes,
but is not limited to, the bubbles and antibubbles discussed above.

In the sequel we develop additional models for endogenous and exogenous
information shocks. The discussion is then explicitly tied to the on-going
Eurozone crisis with an application to Greek government bond yields.
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Period Baseline Bubble/ χ2 p-value Conclusion
Model Anti-bubble model

1983-89 69.28098 74.80442 11.047 0.001 Bubble
1990-96 60.58248 63.29616 5.427 0.020 Anti-bubble
1997-02 59.18538 62.38472 6.399 0.011 Bubble
1998-03 63.12964 63.56443 0.870 0.351 No bubble
1999-04 59.70104 63.43649 7.471 0.006 Bubble
2000-05 57.80827 62.49827 9.38 0.02 Bubble
2001-06 58.09862 62.06083 7.924 0.005 Bubble
2002-07 57.66191 59.27685 3.230 0.072 No Bubble
2008-11 34.96031 37.19223 4.464 0.035 Anti-bubble

Table 2: Results of the test for bubbles and anti-bubbles in UK house prices.

4.1 A model for exogenous market shocks

Suppose that the market is exposed to an exogenous shock. The shock is
assumed to be completely unpredictable but its affect is merely transitory
(Crane and Sornette, 2008; Saichev and Sornette, 2010; Sornette and Helm-
setter, 2003). The shock occurs at time 0 and results in an initial decrease
in drift by the amount µ0 and an initial increase in volatility by the amount
σ2

0. As an arbitrage opportunity has to be eliminated, the market recovers
at the random time t0 – the drift increases by µ0 and volatility decreases by
σ2

0. The time t0 of the market recovery is a random variable with hazard
function h(t). Since the effect of the exogenous shock is transitory it follows
that h′(t) > 0, since as time progresses a market rebound becomes increas-
ingly likely. Also, since the shock is assumed to happen at t = 0 it follows
that we must also have h(0) = 0:

h′(t) > 0; h(0) = 0. (13)

The price dynamics prior to the market recovery are described by

dXt = µ(t)dt + σ(t)dWt − vdj1(t) + dj2(t), (14)

where, as before, j1(t) is a Poisson process representing ever-present back-
ground risks and j2(t) satisfies

dj2(t) = µ0δ(t − t0)dt + iσ0δ(t − t0)dWt, (15)
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where i =
√
−1 and δ(·) denotes Dirac’s delta function. When a recovery

happens, the effect is an increase in drift and a decrease in the variance,
hence the introduction of i =

√
−1. Prior to the recovery we have that

E[Xt+∆ − Xt|Xt] = (µ(t) − vλ + µ0h(t))∆ + o(∆). (16)

Thus, from equation (1) it follows that

µ(t) = µ + vλ − µ0h(t). (17)

Equation (17) shows that an exogenous shock reduces the level of return.
The risk (variance) associated with equation (14) is

Var (Xt+∆|Xt) = Var [σ(t) (Wt+∆ − Wt)] + v2Var[j1(t + ∆) − j1(t)]

+ Var [j2(t + ∆)|j2(t) = 0] (18)

This gives

Var (Xt+∆|Xt) = (σ2(t) + v2λ)∆ + Var[E(j2(t + ∆)|j(t) = 0)]

+ E[Var(j2(t + ∆)|j2(t) = 0)] + o(∆);

Var (Xt+∆|Xt) =
(

σ2(t) + v2λ +
(

µ2
0 − σ2

0

)

h(t)
)

∆ + o(∆). (19)

Similarly, it follows from (2) that

σ2(t) + v2λ +
(

µ2
o − σ2

0

)

h(t) = σ2; σ2(t) = σ2 − v2λ +
(

σ2
0 − µ2

0

)

h(t).(20)

If σ2
0≥µ2

0 the shock thus results in an increase in market volatility alongside
a decrease in drift. If σ2

0≤µ2
0 the exogenous shock actually results in a reduc-

tion in volatility. However, irrespective of the effect upon market volatility
the shock decreases the rate of return so is still likely to remain bad news
for investors. If σ2

0 = µ2
0 market volatility remains unaffected.

As in Fry (2012) we choose

h(t) = ω[1 − (1 + t)−α]. (21)

Not only does h(t) in (21) satisfy (13) but the special case α = 0.5 in
(21) recreates empirical power-laws (Sornette et al., 2003; Fry, 2012) and
related phenomenology (Crane and Sornette, 2008; Saichev and Sornette,
2010; Sornette and Helmstetter, 2003). Equation (21) also ensures that
h(t) is bounded – an important facet of empirical work on related models
(Fry, 2010a-b; 2011-12) – and provides a natural test for the presence of an
exogenous/endogenous shock (see below). From (21) it follows that

σ2(t) = σ2 − v2λ + β[1 − (1 + t)−α], (22)
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where β = ω(σ2
0 − µ2

0). Equations (21-22) provide a natural way of testing
for an exogenous shock in empirical data. The case α = 0 corresponds to
the case where price changes are completely unpredictable and we are left
with the benchmark IID model in (5-6).

Exogenous shock. We have that

∂σ2(t)

∂t
= αβ(1 + t)−α−1. (23)

The interpretation depends on the sign of αβ and hence upon the sign of
β in (23) since it is assumed that α > 0 in (22). If β > 0 then then σ2(t)
increases without bound. This does not appear to be physically or financially
reallistic. In contrast, if β < 0 the market recovery becomes the inevitable
phase transition between random and deterministic behaviour with

lim
t→∞

σ2(t) = 0. (24)

This suggests that

σ2 − v2λ + β = 0; σ2 − v2λ = −β. (25)

Endogenous shock. Suppose α<0. Now h(t) in (21) must remain non-
negative in order to be an admissible hazard function. Thus, in this case we
can write

h(t) = ω[(1 + t)ν − 1], (26)

with ν = −α > 0. Hence, we can rewrite (22) as

σ2(t) = σ2 − v2λ − β((1 + t)ν − 1). (27)

If β > 0 σ2(t) will become negative for large t – an obvious contradiction.
In contrast, if β < 0 we have that

lim
t→∞

σ2(t) = ∞. (28)

Re-writing (28) in terms of the precision, reciprocal of the variance, we see
that

lim
t→∞

1

σ2(t)
= 0, (29)

and an endogenous shock is again linked to phase-transition phenomena –
a fundamental imprecision in the quality of the available information with
regard to future price movements.
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4.2 Antibubble-induced speculation in bond yields

The concept of an antibubble leads to an interesting application to the on-
going euro-crisis. In particular we can show that an antibubble in the price
of the underlying asset leads to a bubble in the corresponding Bond yields.
Following the standard approach (see e.g. Hillier et al., 2010) write

P (t) = Me−y(t)T , (30)

where y(t) is the yield, T is the maturity date, M is the constant value of
the bond at maturity and P (t) is the price of the underlying asset. It follows
that X(t) = lnP (t) satisfies

X(t) = lnM − y(t)T. (31)

Under the equation for an antibubble we have that

dXt = µ(t)dt + σ(t)dWt + vdj(t), (32)

where

µ(t) = µ − vλ(t),

σ2(t) = σ2 − v2λ(t). (33)

Combining equations (31-33) it follows that the bond yields y(t) satisfy

dy(t) = −µ(t)

T
dt +

σ(t)

T
dW ′

t −
v

T
dj(t), (34)

where W ′
t = −Wt. Thus it follows that (34) gives the formula for a specu-

lative bubble since W ′
t

d
= Wt.

4.3 Exogenous shocks to bond yields

Suppose that an exogenous shock occurs at time 0. Linking the nominal
price of the asset to the bond yield, as above, gives

dXt = −Tdyt,

dyt = − 1

T
dXt

= − 1

T
[µ(t)dt + σ(t)dWt + vdj1(t) − dj2(t)] . (35)
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Start Date 5/11/2009 8/12/2009

α̂ -0.418 -1.401
e.s.e. α̂ 0.220 0.110
t-value 1.901 12.783
p-value 0.057 0.000

Conclusion No evidence of Significant evidence of
an endogenous shock an exogenous shock

Table 3: Results for the test of endogenous vs. exogenous shocks

Prior to the recovery we have that dJ2(t) = 0 and we have that

dyt = − 1

T

(

[µ + vλ − µ0h(t)] dt + β(1 + t)−αdWt + vdj1(t)
)

=

[

µ0h(t)

T
− (µ + vλ)

]

dt +
β

T
(1 + t)−αdW ′

t −
v

T
dj1(t), (36)

where W ′
t = Wt. Thus equation (36) predicts that the effect of the shock

upon the bond yield is an increase in drift coupled with an increase in volatil-
ity. Upon estimating (36) econometrically if α > 0 the shock is classified
as exogenous and its long-term effects will eventually dissipate. However,
if α < 0 the shock is classified as endogenous and our model predicts that,
unabated, volatility will continue to increase without bound.

4.4 Empirical application to the Greek/eurozone crisis

We illustrate our model with an application to the on-going Eurozone cri-
sis. A time series plot of Greek government bond yields is shown below
in Figure 2. For a number of years Greek government bond yields appear
remarkably stable before spiking upwards in late 2009 following the onset
of the European sovereign debt crisis. The precise chronology of the cri-
sis is discussed in Choi et al. (2011). Following established methodology
(Sornette et al., 2003; Johansen and Sornette, 2010; Fry, 2012) we test for
the presence of an exogenous shock in the first 100 trading days following
a putative shock – and cross-check these results with Choi et al. (2011).
Results are summarized in Table 3.

Greece’s announced plan to cut its budget deficit on 5/11/2009 is her-
alded by Choi et al. (2011) as the start of the crisis. However, results in
Table 3 suggest that this event did not have a statistically significant ef-
fect upon Greek bond yields. In contrast, results in Table 3 suggest that
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Figure 2: Evolution of Greek government bond yields following adoption of
the Euro.

the true start of the crisis occurs on 8/12/2009 when Greece’s credit rating
was cut by the Fitch credit-rating agency. Moreover, our results classify
the Greek crisis as an endogenous shock inextricably linked to fundamental
weaknesses in the economies of the Eurozone countries (Blundell-Wagnall,
2011). To verify this interpretation we test for the presence of antibubble-
induced speculation in bond yields according to the model in Section 4.2
from Jan 1st 2010 to December 18th 2012. The maximised log-likelihood
for the IID model is -675.2544, the maximised log-likelihood for the specu-
lative bubble is -623.6579, giving us a χ2 value of 103.193. Thus, we have
significant evidence (p = 0.000) that the Euro-crisis is indeed endogenous in
nature.
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5 Extensions of market predictions – cycles

In this section we consider price fluctuations viewed from the perspective
of time-varying fluctuations in susceptibility. Thus we continue to borrow
important themes and terminology from statistical mechanics (Yeomans,
1992). The motivation for studying this area is as follows. Firstly, cycles
appear as a core element of common technical trading strategies (see e.g.
Murphy, 1986; Plummer, 2006). However, this is not purely an issue for
would-be traders.There is a rich academic literature on business cycles driven
by time-varying expectations – see e.g. De Paoli and Zabczyk (2012) and
the references therein. Moreover the risk premia that generate the cycles
vary over time and are counter-cyclical (Campbell and Cochrane, 1999).
Cycles thus emerge as a central issue to both academics and practitioners.
Hence, as in Pan et al. (2006), we are interested in links between these two
competing theories.

We extend the benchmark IID model (5-6) by writing

dXt = µ(t)dt + σ(t)dWt − v(t)djt, (37)

where v(t) is a periodic function and where j(t) is a Poisson process with
parameter λ. Thus cycles occur as the result of periodic fluctuations in the
market’s sensitivity to randomly arriving information – i.e. time-varying
susceptibility. As above these risk premia vary over time and counter-cyclical
(Campbell and Cochrane, 1999). Expanding v(t) as a Fourier series we
obtain

v(t) =
∞

∑

n=1

vn sin

(

nπt

L

)

. (38)

If v(t)=constant equation (37) reduces to the fundamental price/equilibrium
model discussed in equation (6). Using the first few terms in the Fourier
series in equation (38) we can obtain a low-order approximation for v(t). In
applications the appropriate order may be determined using standard tech-
niques from applied statistics. The simplest possible first-order condition
gives a sinusoid:

v(t) = v1 sin (ωt + φ) , (39)

where φ is a phase constant (Chang and Feigenbaum, 2006). In this case
Assumption 1 gives

µ(t) − λv1 sin(ωt + φ) = µ, µ(t) = µ + λv1 sin(ωt + φ). (40)
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Similarly, Assumption 2 gives

σ2(t) + v2
1λ sin2(ωt + φ) = σ2; σ2(t) = σ2 − v2

1λ sin2(ωt + φ). (41)

Finally, the constraint mint σ2(t) = 0 gives

λv1
2 = σ2; v1 = σ/

√
λ.

The end result is a model that appears closely linked to that in (Sørensen,
2003) modelling seasonality in agricultural commodities.

5.1 Empirical application

As a practical illustration of our model we apply our model to UK Treasury
Gilts. Seasonality in UK Treasury Gilt returns at both monthly and six-
monthly intervals is suggested by Plummer (2006) and appears reasonable
(see Figure 3). Using data on returns calculated over first monthly and
then six-monthly intervals Plummer (2006) suggests cycles occur at triadic
periodicities of 1.78, 5.34 and 16 years. It is therefore of interest to see how
our estimates compare to this largely qualitative analysis.

Results for our model are shown below in Table 4. Chi-squared tests
show a statistically significant improvement over the benchmark IID model
over both time horizons (p = 0.000). However, the estimated period of the
cycle, L̂, holds some additional importance. Firstly, using monthly data the
estimate of L obtained is extremely close to 1. This suggests that rather than
genuine periodicity what we have is auto-correlation between UK Treasury
Gilt returns in successive periods. Using the 6-monthly data we estimate the
length of the cycle to be around 2.5 years. This appears to be roughly in line
with a Kitchin inventory cycle of around 3 years but is significantly different
from the original interpretation of Plummer (2006). Thus we conclude that
the measurement of cycles in technical seems imprecise and should be viewed
cautiously. These results also tally with a common theme that emerges in
the academic literature on time series econometrics – namely that it is often
better to use lower frequency data to identify cyclical variations and regime
switching (see e.g. Walid et al., 2011).

6 Extensions of market predictions – support and
resistance lines

Support and resistance lines, and technical analysis more generally, is the
subject of an extremely large literature by academics and practitioners alike.
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Figure 3: Returns for Treasury Stock 2.5% irredeemable. Left panel:
Monthly returns. Right panel: Six-monthly returns

Further, the use of technical analysis is simply too widespread, and there-
fore too important, to ignore. For instance evidence suggests that technical
analysis has been used by over 90% of participants in the Foreign Exchange
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Monthly Returns Six-Monthly Returns

Benchmark (iid) model 73.360 817.556
Cyclical model 81.371 1556.223

L̂ 1.0100 months 2.45 years
95 % C.I. (1.0097, 1.0103) months (2.43, 2.47) years

Table 4: Results for the cyclical model: monthly and six-monthly returns

market (Osler, 2000; Allen and Taylor, 1992; Lui and Mole, 1998). A wide
ranging review of academic research on technical analysis - including differ-
ent tools and techniques across a diverse range of markets - can be found in
Park and Irwin (2007). Osler (2000) is also interesting for its discussion of
the practical role played by support and resistance lines in real-world Foreign
Exchange markets. There is clearly much work that can be conducted on
related themes. Here, we restrict to a discussion of support and resistance
lines.

An example of support and resistance lines is shown in Figure 4. Sup-
port levels occur when prices are about to cross a de facto localised lower
threshold. Once the threshold is reached the decline is, at least temporar-
ily, halted and the price turns back again. Resistance levels represent the
opposite process and occur when prices are about to pass a de facto upper
bound. Similarly, once this threshold is reached prices fall back down below
the resistance line. Support and resistance lines can be modelled as follows.

6.1 Support lines

Support lines emerge as a key theme of the practitioner literature on tech-
nical analysis as an effective lower bound on the price of an asset (see e.g.
Plummer, 2006). Suppose we have a support line around the point a. Our
equation for the price of an asset becomes

dXt = µ(t)dt + σ(t)dWt − [v1 + v21{(Xt<a)}]dj1(t). (42)

Equation (42) shows that once the support line is exceeded the market be-
comes increasingly nervous. The negative effect of any incoming information
is magnified. In order to maintain an equilibrium the drift function µ(t) and
the volatility σ2(t) have to adapt in order to compensate a representative
investor for bearing the additional risk involved. Assumption 1 gives

µ(t) = µ + λv1 + λv21{(Xt<a)}. (43)
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Similarly, Assumption 2 gives

σ2(t) = σ2 − λ[v1 + v21{(Xt<a)}]
2. (44)

6.2 Resistance lines

Support lines emerge as a key theme of the practitioner literature on techni-
cal analysis as an effective upper bound on the price of an asset (Plummer,
2006). Suppose we have a support line around the point b. Our equation
for the price of an asset becomes

dXt = µ(t)dt + σ(t)dWt − [v1 − v21{Xt>b}]dj1(t). (45)

Equation (42) shows that once the support line is exceeded the market an-
ticipates future price rises. The positive (i.e. inflationary) effect of any
incoming information is magnified. In order to maintain an equilibrium the
drift function µ(t) and the volatility σ2(t) have to adapt as above. Assump-
tion 1 gives

µ(t) = µ + λv1 − λv21{Xt>b}. (46)

Similarly, Assumption 2 gives

σ2(t) = σ2 − λ[v1 − v21{Xt>b}]
2. (47)

6.3 Practical application

One of the examples of support and resistance lines cited in Griffis and
Epstein (2009) is that of Baxter International Incorporated (BAX) quoted
on the New York stock exchange. Using qualitative methods Griffis and
Epstein (2009) fit a support line at 34.5 dollars and a resistance line at 38.0
dollars respectively. A plot of the share price from January to August 2006
is shown in Figure 4 and appears suggestive. However, rigorous statistical
results shown in Table 5 refute this interpretation. Using a χ2 test evidence is
found for a support line (p=0.000) but no evidence is found for an additional
resistance line (p=0.136). A resistance line it estimated to occur at 37.74
dollars – 95% confidence interval (37.739, 37.741) dollars.

In conclusion, a wide range of evidence exists to suggest that technical
trading strategies can indeed yield profits (Park and Irwin, 2007). Further,
technical analysis doubtless contains some useful concepts (Osler, 2000).
Here, we find evidence for a resistance line – although our estimate is sig-
nificantly lower than practitioner estimates. In contrast to the practitioner
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interpretation we find no evidence of a support line – suggesting that prac-
titioners may under-estimate the extent of the true risks involved with stock
trading. Since we find no evidence of a support line there appears to be no
obvious reason why the price may not drop below 34.5 dollars.

0 50 100 150

34
36

38
40

42
44

Trading Day

B
A

X

Figure 4: Putative support and resistance lines identified by practitioners
using a qualitative approach at 34.5 and 38.0 dollars respectively compared
to daily closing prices. The solid horizontal line shows the resistance line
identified here using a mathematical approach.

7 Conclusions

In this paper we have continued to extend the analogy between financial
crashes and phase transition phenomena in statistical mechanics (see e.g.
Johansen et al., 2000). However, whilst this literature contains important
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Model Maximised Log-likelihood

Equilibrium (background risk) model 505.0302
Resistance line model 623.1823
Support and resistance line model 625.1806

Table 5: Results of the test for support and resistance lines in the Microsoft
share price.

insights and techniques and numerous worthy contributions there have been
simple and obvious failings in the popularly applied methods. In short, mar-
kets operate by balancing risk and return (Markowitz, 1971). This idea is
not new but appears to have been fundamentally over-looked by academics
and practitioners alike. Crucially, rates of return are only part of the story.
Risk is also critically important. Once this crucial missing piece of the puz-
zle is added it can be explicitly shown that, from a physical perspective,
changes in market regime represent a phase transition between random and
deterministic behaviour in prices. This idea is known to apply to endoge-
nous and exogenous crashes (Fry, 2012) but can also be extended to include
elementary technical trading strategies - here support and resistance lines
and business cycles. We are thus lead to the intriguing possibility that tools
and techniques from statistical physics may assist practitioners.

A better physical model also leads directly to a better econometric model.
Not only is the scope of our model significantly expanded, as discussed above,
but in formulating our model we are left with fewer unknown parameters
to estimate than the competing class of log-periodic models. Estimation
is possible using a maximum likelihood approach and we can also naturally
incorporate empirically observable features of real asset prices into our model
- namely skewness and heavy tails. Incorporating these features into our
model should lead to more refined tests for bubbles and other short-term
deviations from long-run equilibria (Fry, 2008).

Our approach has attracted attention from market regulators and under-
scores the practical utility of the physical sciences - even to non-traditional
areas. The potential relevance to on-going events and policy debates is
clearly apparent. Firstly, we analyse real-estate bubbles an obvious under-
lying feature of the on-going crisis. In particular, we are able to show that
UK house prices are intrinsically volatile and have been subject to a various
bubble and antibubble episodes over the last three decades. Most recently,
we find evidence of a bubble from 1999-2006 and of an antibubble from
2008-11. Secondly, we apply our endogenous shock and antibubble models
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to the on-going Greek crisis in the Eurozone. To elucidate the chronology
in Choi et al. (2011) we can show that the current crisis represents an en-
dogenous shock triggered around the time of the Fitch ratings’ downgrade
on December 8th 2009.

Our approach may have further relevance to market participants even
outside periods of crisis. Using our model we scrutinise popular technical
trading strategies - namely cycles (see e.g. Plummer, 2006) and support and
resistance lines (Griffis and Epstein, 2009). Whilst some technical strategies
may be profitable (Park and Irwin, 2007) and may provide genuinely useful
price information (Osler, 2000) the predictions of these predominantly qual-
itative approaches appear somewhat vague. Our estimated cycle lengths do
not match estimates in Plummer (2006). Further, our analysis of support
and resistance lines identified in Griffis and Epstein (2009) suggests that
some common technical analysis strategies may give traders a misplaced
sense of confidence and overlook some of the inherent risks involved.

In conclusion, our paper contributes to a rich interplay between physics
and finance and to wider narratives in contemporary accounting and busi-
ness research. Having identified a mathematical approach hitherto largely
overlooked by the literature future work will consider additional risk man-
agement and policy applications. Future work will address further modelling
of business cycles and will explore additional links between academic and
practitioner finance - perhaps one day contributing towards a unified theory
(Pan et al., 2006).
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