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Abstract    

The regional policy problem is often conceived as a trade-off between aggregate efficiency and interregional 
equity. A policy to allocate investment across regions frequently causes a contradiction in the aims of regional 

policy, in the sense that it might lead to high rates of aggregate growth accompanied with an unequal distribution 
of income across regions. On the other hand, a policy to reduce regional inequalities may in fact be inefficient to 
promote growth of the economy as a whole. It is argued further that under certain conditions the contradiction 
between aims can be avoided.    
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1. Introduction  

Recently, there has been an increasing interest in whether and to what extent regional policies may 

actually promote growth of the economy as a whole (e.g. Martin, 2008). Regional policy normally has 

both an ‘efficiency’ and ‘equity’ component – that is, it is concerned with stimulating growth in the 
economy as a whole and with narrowing interregional disparities. Indeed, most policy decisions 

attempt to promote both economic growth and redistribution in favour of less prosperous regions. 

These aims, however, are not entirely clarified and may contradict each other since maximising 

national income may do nothing towards reducing regional income differentials. Clarifying the 

objectives of regional policy, however, is only a first step. One then needs to look for optimal policies 

to achieve those objectives.  

The strongest argument in favour of regional policies lies in the long-run persistence and even 

widening of interregional disparities. Just as an example, the general presumption is that policies to 

allocate investment should aim to reduce regional inequalities by focusing on poorer regions. However, 

the extent to which this should happen is far from clear. An allocation policy in favour of less 

prosperous regions, although improves regional equity, nonetheless, there is the possibility to reduce 

the growth rate of the economy as a whole. On the other hand, it is expected that allocating funds in the 
more productive regions will increase efficiency at the national level. Nevertheless, such allocation, 

very frequently, causes regional income disparities to increase.  

In the light of the above example, it could be argued that there is a ‘trade-off’ (or ‘substitution’) 
between equity and efficiency. Prime facie, then, the aims of efficiency and equity seem to conflict 

each other. This conflict constitutes a kind of ‘dilemma’. In regional economics, goal conflicts are the 

rule not the exception (Richardson, 1973). There is, however, an alternative possibility; that of 

complementary between efficiency and equity. This view accepts the argument that is possible to 

achieve both aims simultaneously. Chief interest, therefore, centres upon the detection of such cases. 

And so it becomes necessary to seek out the framework within which to examine this issue. 

The inspiration for this paper comes from an early work by Intriligator (1964), which applies a well 

established in economics ‘tool-kit’, namely the theory of Optimal Control (hereafter OCT) in the 
problem of regional allocation of investment. Section 2 below lays out the basic model. To complete 

the discussion, a few words must be said about the ‘switching’ time of the allocation parameter. Section 
3 is devoted to this issue. An attempt is made to examine some of the practical conclusions which 
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emerge from this model in Section 4. The following section provides an extension of the analysis to an 

alternative model augmented with cases of ‘compatibility’ between equity and efficiency. A sixth 

section concludes the paper with policy recommendations and suggesting avenues for future research.    

2. Regional Allocation of Investment     
Rahman (1963) put forward the idea that it is possible to obtain maximum income for the economy 

as a whole by allocating investment across regions. The problem is to allocate total savings of the 

economy among two regions1 at each point in time in such a way that the national economy acquires a 

predetermined level of total income. An obvious investment decision, therefore, is to allocate the funds 

in the more productive region. Nevertheless, interregional productivity differential is not the only 

‘investment-criterion’ from optimality point of view. Investing in a low productivity region is also 

optimal, provided that this region exhibits a relatively high propensity to save. The analysis by Rahman 

(1963) runs in terms of a sequential discrete decision process, frequently referred to as ‘Bellman’s 
Principle of Optimality’. According to this principle, if certain initial decisions are taken, the remaining 

decisions must be optimal with respect to the ‘status’ resulting from the initial decisions in order for the 
entire set of decisions to be optimal (Bellman, 1959).  

Similar conclusions, however, can be derived following the principles of OCT. Indeed, advances in 

the literature of OCT offer the opportunity for a more sophisticated analysis by Intriligator (1964). 

Imagine an economy subdivided into two regions, labelled by 1 and 2. Each region produces a 

homogenous output (
i

Y ), which is proportional2 to the regional capital stock (
i

K ). Thus,   

iii
KvY , with 0

i
v                                                             (1) 

Equation (1) is a constant returns production function3, where 
i

v  is the (fixed) output-capital ratio 

(capital coefficient). Essentially, this approach draws upon the neoclassical model of growth. Some 

brief comments on the assumptions pertain this model will set the scene for what follows. To begin 

with, total (national) savings (
N

S ) are automatically invested (
N

I ): 
NN

SI  while a constant 

proportion of output is saved: 
iii

YsS , where 
i

s  is the propensity to save. Assuming a constant and 

regionally invariant rate of depreciation, the rate of fixed capital formation ( dtdKK
ii
/ ) equals 

investment: 
ii

KI  . Based on the assumption of identical regional production functions, then 

222111
KvsKvsS

N
. Provided that 

21
KKIS

NN
 , then       

221121
KKKK  , where 

iii
vs                      (2) 

The term 
i
 can be interpreted as the (constant) growth rate of each region. The investment fund for 

the two regions comes from the savings available to the economy as a whole. A final assumption is in 

order. Total savings are polled in a central agency and then allocated to only one region. This 

assumption can be encapsulated in ‘allocation parameter’ , defined as the proportion of savings 

allocated to region 1, leaving )1(  as the proportion allocated to region 2. Therefore,     

)(
22111

KKK                                     (3) 

))(1(
22112

KKK                       (4) 

                                                        
1 Considering an economy with two regions is not uncommon in the relevant literature (e.g. Michel et al, 1983). Similar 

models, however, were developed in a multiregional context (e.g. Ohtsuki, 1971).    
2 The assumption of proportionality of output-capital implies absence of any technological progress; a not so unrealistic 

assumption if one adopts a short-run planning horizon.  
3 Equation (1) can be derived from a ‘conventional’ Cobb-Douglas production function: 1v

i

v

ii
LKY , which can be expressed 

as 
v

ii
ky , where 

iii
LYy /  is labour productivity and 

iii
LKk / denotes the capital-labour ratio. In logarithmic terms this 

production function can be written as 
ii

kvy loglog ; an expression equivalent to equation (1). Constant returns are ensured by 

the assumption that the sum of the factor coefficients is equal to 1. 
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Equations (3) and (4), the ‘equations of motion’, describe the evolution of the ‘state variables’ (
i

K ) 

as a function of the ‘decisions’ taken at any point in time, reflected by the ‘control variable’, . 

Following the hypothesis that capital once placed in either region cannot shifted from the other region, 

then a continuous  is implied for which 10 . Planners aim to obtain maximum national income 

at some terminal time, )()()(
21

TYTYTY
N

. More formally, the problem is to maximise the 

‘objective function’ )(TYMax
N

 given equations (3) and (4) and the restriction 10 . This problem 

can be solved by determining an optimal time path of , or alternatively, to choose a )(t  sequence 

which maximizes the associated Hamiltonian function:  

     
2211

KpKpH                          (5) 

In equation (5) 
i

p  denote the auxiliary (co-state) variables, which in the present context can be 

interpreted as the ‘shadow’ price of capital in each region or the price of one additional unit of capital 
in a region. Using equations (3) and (4), the Hamiltonian function is written as follows, 

))(1()(
2211222111

KKpKKpH                                                (6) 

Equation (6) can be expressed in alternative terms as,     

     )]()([
2211221

KKpppH                                 (7) 

Due to the assumption of constant returns, then, at any point in time the optimal path allocates the 

fund to only one region. Given t  the optimal solution is either 0)(
*

t  or 1)(*
t 4. If 1)(*

t , 

then 0
2

K  and region 1 receives the funds. Conversely, 0)(
*

t implies that 0
1

K and the funds 

are allocated in region 2. In order to arrive at transparent conclusions, an investment-criterion is 

necessary. Specifically, 1)(*
t  if 0)()(

21
tptp ; 0)(

*
t  if 0)()(

21
tptp , i.e. funds are 

allocated to the region in which the ‘shadow’ price of capital is higher.  

Following the ‘Maximum Principle’ the optimality conditions require that the ad-joint (co-state) 

equations, 
11

/ KHp  and 
22

/ KHp  must hold, and satisfy the transversality conditions: 

)(/)()(
11

TKTYTp
N

 and )(/)()(
22

TKTYTp
N

.  

Lemma 1. If )(tp
i

 is a decreasing function of time, then 
2121

// pp  .  

Proof: The ad-joint equations 
12211

])([ pppp  and 
22212

])([ pppp  imply that 

2121
// pp  .                                                                                                                               Q.E.D.                                        

Lemma 2. At t , ]/))[(()()(
221221

tptptp .  

    Proof: Given the state equation ))](()([/
221121

KKtptpH , it follows that  

))](()([))((/)/(
221121221121

KKtptpKKpptH  . In steady-state 0
i

K , 

implying ))((/)/(
221121

KKpptH  . Setting 0/)/( tH  yields 

0))((
221121

KKpp   while 0/H  implies 0))](()([
221121

KKtptp . Since 

0/H  and 0/)/( tH , it follows that 

))(())](()([
221121221121

KKppKKtptp  . Consequently, )()(
2121

tptppp  . By 

Lemma 1, ]/)[()(
221221

ppp  . Provided that )()(
2121

tptppp  , then 

]/))[(()()(
221221

tptptp .                                                                                                Q.E.D. 

Lemma 3. At Tt , )(]/)[()()(
222121

TpvvvTpTp .  

    Proof: The transversality conditions imply 
11

)( vTp  and 
22

)( vTp . Since 
2121

/)(/)( vvTpTp , 

then )(]/)[()()(
222121

TpvvvTpTp .                                                                                     Q.E.D. 

Propositions 1 and 2 set out the maximising conditions over a given planning period, let ]0[ T .   

Proposition 1. At Tt0 , 1)(*
t  if 

21
 while 0)(

*
t  if 

21
.  

                                                        
4 This solution is referred to as a typical ‘bang-bang’ control. See also Smith (1970). 
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Proof: By Lemma 2, if 
21
then 0)()(

21
tptp  implying 1)(*

t  while 
21
 implies 

0)()(
21

tptp , and 0)(
*

t .                                                                                                      Q.E.D. 

Proposition 2. At Tt , 1)(*
t  if 

21
vv  while 0)(

*
t  if 

21
vv .  

Proof: According to Lemma 3, if 
21

vv then 0)()(
21

TpTp  implying 1)(*
t  while 

21
vv  

implies 0)()(
21

TpTp , and 0)(
*

t .                               Q.E.D. 

Suffice at this stage to recognise the policy that it ties in very closely with the problem of optimal 
regional allocation of investment. Concretely, the optimal allocation policy is to invest initially in the 

region with the higher growth rate and at the end of the planning period to allocate the funds only in the 

region with the higher output-capital ratio.  

Assume that 0
21

 and 0
21

vv . In this case, 1)(*
t , ]0[ Tt  ; an allocation policy 

consistent with the aim of efficiency. Suppose that 0
21

, 0
21

vv  and 0
21

ss , then 

]0[,0)(*
Ttt  .   

Proposition 3. If 1/
21

 and 1/
21

vv , then ]0[,1)(*
Ttt  . 

Proof: Proposition 1 implies that 1)(*
t  at Tt0  if 1/

21
, while according to Proposition 

2, 1)(*
t  at Tt  if 1/

21
vv .                                          Q.E.D. 

Proposition 4. If 1/
21

 and 1/
21

vv , then ]0[,0)(*
Ttt  . 

Proof: According to Proposition 1, if 1/
21

, 0)(
*

t  at Tt0 . Following Proposition 2 

0)(
*

t  at Tt , if 1/
21

vv .                                             Q.E.D. 

Assume that 0
21

vv  and 0
21

ss , implying that 0
21

. According to Proposition 1, 

1)(*
t  at Tt0  and region 1 receives the funds. At Tt , given the difference in capital 

coefficients 0)(
*

t and investment takes place in region 2. Irrespective of the productivity advantage 

of region 1, 0
21

 and 0
21

ss  ensures that 0)(
*

t  at Tt0 . At Tt , 1)(*
t , given 

that  0
21

vv  and funds are transferred to region 1. Overall, the ‘switching’ sequence of can be 

described by Propositions 5 and 6.  

Proposition 5. If 1/
21

 and 1/
21

vv , then 1)(*
t  at Tt0 and 0)(

*
t  at Tt . 

Proof: By Proposition 1, at Tt0  if 1/
21

, then 1)(*
t  while Proposition 2  implies 

0)(
*

t  at Tt , if 1/
21

vv .                                                Q.E.D. 

Proposition 6. If 1/
21

 and 1/
21

vv , then 0)(
*

t  at Tt0  and 1)(*
t  at Tt . 

Proof: By Proposition 1, if 1/
21

, then 0)(
*

t  at Tt0  while if 1/
21

vv  , then 

1)(*
t  at Tt , according to Proposition 2.                                                                                Q.E.D. 

A negative relation between )(
212,1

 and )(
212,1

vvv  results to a switch in . 

According to Propositions 5 and 6, which have been elaborated above this is entirely logical. This 

inverse relation carries important implications for the conflict (or compatibility) in aims. For the 
present purpose, though, there is another point that deserves special note. It is of particular interest to 

estimate the switching time of the allocation parameter. This is examined in Section 3.  

3. The Switching Time    
From what has been said in section 2, it is clear that OCT is applicable to the problem of regional 

allocation of investment5. A ‘switch’ in the allocation parameter is suggested. Nevertheless, an 
estimation of the time that this ‘switch’ takes place is not provided.  

                                                        
5 Rahman (1966), however, casts a sceptical view and claims that this is feasible only if 1 . 
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This constitutes the departure point for a more elaborated analysis by Takayama (1967). Defining 

)]()(/[)]()([)(/)(
221121

TptpTptptptp   and using the transversality conditions yields  

)()()()(
12221

sstptptp , where 
221

/)( , 
221

/vv         (8) 

Given that 0
i

v , then 0 . Several cases can be identified. If 
21
 and 

12
ss , then 

21
pp , implying 1* . If 

21
ss , investment takes place in the more productive region while 

21
vv  implies that the funds are transferred to the region with the highest propensity to save. If 

21
 and 0

12
ss , then 0  and 0)(

12
ss , implying 

21
pp ; hence, 1* . Assuming 

that 
21
 and 

12
ss , then 0 , 0)(

12
ss  and 

21
pp ; in this case  remains unchanged. If 

21
 and 

21
ss , then 0*

2
p . Suppose that 

21
vv ; hence, 

2

*

2
vp , while if 

12
vv , then 

2

*

2
vp .  

A switch in the allocation parameter takes place if 
21

vv . If 
12

vv , then 
2

*

2
vp . But 

21
vv  and 

21
ss  imply 

21
; beyond 

*

21
pp , therefore, 

21
pp  and 1 . During a given time period, 

][
0

Tt  , there is a point, let ][
0

*
Ttt  , where 

*

22
)( ptp . If 

*

0
tt , then 1)(*

t  at 
*

0
ttt and 

0)(
*

t at Ttt
* .   

Lemma 4. If 
21

 and 
21

ss , then 
212121

*

2
)]/()[( vvssp .  

Proof: The conditions 
21
 and 0

12
ss , imply 0  and 0)(

12
ss . Equation (8) 

implies )()/(
122211

sspp . Setting 
21

pp , yields 
212121

*

2
)]/()[( vvssp .           Q.E.D.         

Proposition 7. A switch in occurs at )]/()log[(/1
211212

*
vssTt .  

Proof: By Lemma 1 
22212

])([ pppp . Setting 0  yields 
222

pp . This is a 

differential equation with the solution 
)(

2

2)(
tT

Aetp . At Tt , ATp )(
2

 and 
)(

22

2)()(
tT

eTptp . 

By Lemma 3, 
22

)( vTp . Thus, 
)-(

22

2)(
tT

evtp . Setting 
*

22
)( ptp  and using Lemma 4, it follows 

that 
212121

)(

2
)]/()[(2 vvssev

tT
. Solving for t  yields the expression 

)]/()log[(/1
211212

*
vssTt .                                                                                            Q.E.D. 

4. Increasing ‘Efficiency’ or Improving ‘Equity’?  
Assume that planners decide to implement an allocation policy in order to promote efficiency, 

namely to increase national income. As previously, the economy consists of two regions. In addition 

assume a certain level of interregional inequalities, established in a period prior to the implementation 

of an allocation policy, )0[
0

t . In order to have a concrete vocabulary define the interregional 

inequalities, or the ‘gap’ in regional incomes, as 0)(
02,1

tG , where 

)()()()(
020102,102,1

tYtYtYtG 6.  Let 0
21

 and 0
21

vv . As has been implied in section 

2, the optimal policy, to be implemented at an initial time 
0

t , is ][,1
0

*
Ttt   and investment 

takes place exclusively in region 17. Arguably, while national income increases as Tt , the ‘gap’ in 

regional incomes also follows a similar trend. The essence of this argument is illustrated in Figure 1.  

                                                        
6  Assuming that 0)(

02,1
tG will not alter the main conclusions of the model.  

7 Similarly, the funds are allocated to region 2, if 0)(
02,1

tG , 
21

< vv  and 
21

< γγ ; in this case 0=*δ , ][∈∀
0

Ttt  . 
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Figure 1: Trade-off between efficiency and equity  

 

This allocation policy maximises national income, )()( TYtY
NN

 with )()(
0

tYTY
NN

. An 

increase, however, in regional income disparities is also illustrated in Figure 1, )()(
2,12,

TGtG
i

 and 

)()(
02,2,1

tGTG
i

. A by-product of this policy is that region 1 retains its advantage and grows at the 

expanse of the poor region. The reason for this resides into the fact that allocating funds in region 1 

enhances the regional growth differentials once they established. This is a clear case of ‘cumulative-

causation’; a process perpetuating initial regional inequalities. Here lies the ‘dilemma’ of regional 

policy: growth of the economy as whole or reducing regional inequalities? This contradiction seems 

almost ineluctable; the objective function aims to maximise national income and a concern for regional 

inequalities is not included.  

At first glance an allocation policy based on a single value of  ][
0

Ttt   seems to sustain 

‘inherited’ regional inequalities. It might be argued, however that persistent regional inequalities are 

nationally inefficient, since the underutilisation of productive capacity in the ‘lagging’ region indicates 
that prosperity of the economy as a whole is lower than it could otherwise be. In this light, 

implementing allocation policies in favour of the relatively poor regions may also promote national 

growth. Whether a switch in  alters this situation or not is questionable and any conclusions are only 

tentative and circumscribed. There are two main questions here. First, might not the aims of efficiency 

and equity be complementary instead of competitive? And, second, is there a way to avoid a process of 

cumulative causation? Section 5 attempts to answer such questions by incorporating the two 

competitive aims into the ambit of single objective function and shed some further light on whether or 

not there is a trade-off in regional policy.  

5. Compatibility between Equity and Efficiency   

Maximising national income may not be entirely preferable by society. Based on the contention that 

a concern for interregional inequalities might reflect society’s preferences, there is a need for an 

explicit incorporation of the ‘equity’ aim in the objective function. In this context the problem is how 

to define regional ‘equity’. One obvious candidate is to consider absolute interregional equity at a 

terminal time, i.e. 0)(
2,1

TY . This aim, however, might be unrealistic. A more pragmatic and feasible 

aim would be to implement such policies in order to minimise interregional income disparities over a 

planning period, ][
0

Tt  ; that is 0)(
2,1

tG , as Tt . This aim can be specified further in terms of 

a ‘tolerable’ level of interregional disparities at the terminal time, )(
2,1

TG ; )(→)(
2,12,

TGtG
i

 and 

)()(
02,12,1

tGTG  accompanied by a certain level of national income; )()( TYtY
NN

 and 

)()(
0

tYTY
NN

.  
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Allocating funds in such a way as to maximise national income without exceeding a predetermined 

‘gap’ in regional incomes is a rational way to tackle with the dilemma of regional policy, avoiding the 

process of ‘cumulative causation’.  
Once this knowledge is introduced, the next important step forward is to define an objective 

function encompassing ‘efficiency’ and ‘equity’. In this context, it is reasonable to assume that 

planners pay at least some attention to interregional equity as well as national efficiency. It is possible 

to portray that consideration by attaching a ‘weight’ ( ) to the aim of interregnal equity. Thus, 

)]()([
2,1

TGTYMax
N

. In this objective function the ‘efficiency’ concern is expressed in terms of 

national income at a terminal time while the ‘equity’ criterion is reflected by a negative value of the 

interregional income differential8. Using equation (1) the objective function appears as follows:  

)]}()([)]()({[
22112211

TKvTKvTKvTKvMax , where 10                 (9) 

Given equations (3), (4) along with the restriction 10 , the conditions implied by the 

associated Hamiltonian function and the ad-joint equations are identical to those developed in Section 

29. The transversality conditions )1()(
11

vTP  and )1()(
22

vTP imply     

)()]}1(/[])(){[()()(
22212121

TPvvvvvTPTP                              (10) 

    Proposition 8. If 0)(
02,1

tG  and 
21

, then  changes at Tt .   

Proof: Bearing in mind Proposition 1, 
21
 implies 0)()(

21
tptp . Hence 1)(*

t  at 

Ttt
0

. If 
21

vv , then 0)()(
21

TPTP . This inequality holds even if 
21

vv , provided that 

1 . Therefore, 0)(
*

t  at Tt .                           Q.E.D. 

    Proposition 9. If 0)(
02,1

tG  and 
21

, then  remains unchanged ][∀
0

Ttt  .   

Proof: According to Proposition 1, 
21

 implies 0)()(
21

tptp , hence 0)(*
t  at Ttt

0
. 

If 
21

vv , and given that 1 , then 0)()(
21

TPTP . The relation 0)()(
21

TPTP  holds even if 

21
vv . Therefore, 0)(

*
t  ][∀

0
Ttt  .                 Q.E.D. 

Propositions 8 and 9 indicate that a negative sign is always attached to the difference )()(
21

TPTP . 

Provided that 0/)]()([
21

TPTP , then the sign of the difference )]()([
21

TPTP  is determined, 

essentially, by . This is of critical importance since the difference )()(
21

TPTP specifies which 

region will receive the funds at Tt . It is possible to detect two optimal policies based on the regional 

growth differentials, each in two variations (scenarios) according to the differentials in capital 

coefficients.  

Tables 2 and 3 set out the optimality conditions implied by Propositions 8 and 9, respectively.  

.  
Table 1. Optimal Allocation of Investment: 0)(

02,1
tG and 

21
 

 
21

vv ,
21

ss  
21

vv ,
21

ss  

)(*
t at Ttt

0
 1 1 

)(*
t at Tt  0 0 

 

Table 2. Optimal Allocation of Investment: 0)(
02,1

tG and 
21
 

 
21

vv , 
21

ss  
21

vv , 
21

ss  

)(*

t at Ttt
0

 0 0 

)(*

t at Tt  0 0 

                                                        
8 Achieving the ‘equity’ criterion is equivalent to minimise the objective function. This can be tackled by attaching a 

negative sign in the relevant component. See Sydsæter et al (2005). 

9 Obviously, as 0  a greater interest is placed upon economic efficiency.  
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Consider the case 
21
 and 

21
vv . Initially, the funds are transferred to the relative rich region, 

in accordance with the aim of efficiency. The weight attached to the aim of equity, however, leads to 

0)()(
21

TPTP 10; hence 0)(
*

t  at Tt . In this way, it is possible to achieve both aims at 

][ *
Tt   and avoid perpetuating initial regional inequalities. It may be instructive to examine this 

argument schematically.   

 
Figure 2: Optimal allocation when 

21
and 0)(

02,1
tG  

 

It is evident from Figure 2 that national income increases through the entire planning period 

( 0/ tY
N

, ][
0

Ttt  ). The gap in regional income also increases, 0/
2,1

tG , as *
tt . 

Following a ‘switch’ in the control variable at *
t , however, the gap begins to decline and at Tt  

attains the predetermined limit or the ‘acceptable’ boundary set by policy makers. A conclusion is 

inescapable. Clearly, achieving both aims is feasible at ]( *
Tt  while the period ][ *

0
tt   corresponds 

to a conflict between efficiency and equity. The shaded area in Figure 2 corresponds to 0/ tY
N

 

and 0/
2,1

tG , as Tt . At ]( *
Tt   both aims are compatible since 0)()(

0
TYtY

NN
 and 

0)()(
2,102,

TGtG
i

. Whereas an objective function concentrated exclusively on efficiency, in 

conjunction with the conditions 
21
 and 

21
vv  perpetuate the ‘inherited’ regional inequalities, 

setting a limit of interregional disparities and a weight in the aim of equity, reverse this situation and 

both aims are compatible. A similar situation can be detected if 
21
 and 

21
vv . Based on the 

optimality conditions in Table 1, the period before *
t can be considered as a temporary (or transitory) 

trade-off.  The argument runs as follows. Introducing the weight  alters the switching time. Thus,  

)]/()1()log[(/1
211212

*
vssTt                               (11) 

Comparing the expression for *
t  in Proposition 7 and given that 

11
)1( vv , it can be easily 

shown that 
**

tTtT .  

If 
21
 and 

21
vv , improving capital productivity and the saving behaviour in region 2 will 

reduce the transition period. If 
21
 and 

21
vv , then implementing policies or incentives to 

improve the propensity of save in region 2 has a similar impact upon the switching time.  

A clear case to overcome the trade-off is when 
21
 (Figure 3).  

                                                        
10 Recall that 0)(

21
vv  implies 0)()(

2121
vvvv . 
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Figure 3: Optimal allocation when 

21
 and 0)(

02,1
tG  

 

Figure 3 indicates that 0/ tY
N

 and 0/
2,1

tG , ][
0

Ttt   while at Tt , 

0)()(
0

TYtY
NN

 and 0)()(
2,102,

TGtG
i

. Obviously both aims are obtainable. If 
21
, then 

0)(
*

t  ][
0

Ttt  , irrespective of the sign attached to )(
21

vv . The conclusion to drawn in that 

placing greater emphasis on the aim of equity prevents the possibility of widening interregional 

inequalities, implied by the policy 1)(*
t  at Ttt

0
 and 0)(

*
t  at Tt . It is worthy to 

highlight here that such conclusions are valid as long as the value of  retains the inequality 

)()(
2121

vvvv .  

Assume that 0)(
01,2

tG . Given the objective function )]()([
1,2

TGTYMax
N

, with 

)()(0
01,21,2

tGTG , the equations of motion and the restriction 10 , at Ttt
0

 1)(*
t  if 

21
, while 0)(

*
t  if 

21
. The transversality conditions are modified as follows: 

)1()(
11

vTP  and )1()(
22

vTP .  Hence,  

)()]}1(/[])(){[()()(
22212121

TPvvvvvTPTP             (11) 

Since, )()(
2121

vvvv , then 0)()(
2121

vvvv , irrespective of the sign attached to 

)(
21

vv . Therefore, 0)()(
21

TPTP . Tables 3 and 4 set out the optimality conditions for 
21
 

and 
21
, respectively. 

 

Table 3. Optimal Allocation of Investment: 0)(
01,2

tG and 
21
 

 
21

vv ,
21

ss  
21

vv ,
21

ss  

)(*

t at Ttt
0

 1 1 

)(*

t at Tt  1 1 

 

Table 4. Optimal Allocation of Investment: 0)(
01,2

tG and 
21

 

 
21

vv , 
21

ss  
21

vv , 
21

ss  

)(*

t at Ttt
0

 0 0 

)(*

t at Tt  1 1 

 

Assume that 0
21

. According to Table 3 the control variable remains unchanged, signifying 

exclusive investment in region 1. In this case the policy ][,1)(
0

*
Tttt   ensures the 

compatibility of the two aims, with both 
N

Y  and 1,2
G  following a path similar to that in Figure 2. Of 
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particular interest is the case when 0
21

. The optimal policy, then is 0)(*
t at Ttt

0
 and 

1)(*
t at Tt . Here, there is a possibility of trade-off at ][ *

Tt  (Figure 4).  

 
Figure 4: Optimal allocation when 

21
and 0)(

01.2
tG   

 

Comparing the optimal policies in Tables 1 and 4 it is evident that the distinctive feature is the 

period that the trade-off takes place. According to Table 1 and Figure 2, a trade-off between equity and 

efficiency emerges at ][ *

0
tt   while the optimality conditions in Table 4 imply a trade-off, after a 

‘switch’ in . According to Figure 4 at ][ *
Tt  0)()(

0
TYtY

NN
, while interregional inequalities 

follow an increasing tendency. It should be noted, however, that 0)()(
1.201.2

TGtG . In the light of 

the objective function, it could be argued, that this is the result of imposing a boundary in the terminal 

gap. The variations of policy in Table 4 imply that the trade-off period will be smaller if region 1 

improves its propensity to save and capital coefficients. 

Generally, introducing an ‘equity’ weight, the compatibility in aims is a possibility since the 

allocation policy always favours of the relatively poor region at Tt . Setting different values on , 

between zero and one, then a set of objective functions, essentially, a ‘mix’ of criteria, and, by 
extension, a set of optimal allocation policies. 

6. Concluding Remarks 
The primary contribution of this paper has been to provide an alternative aspect of policies 

allocating investment across regions using some of the key concepts relating to Optimal Control 

Theory. This approach, however, is by nature of restrictive character. As in any modelling situation, 

such exercise is, by its very nature, limited; it simplifies a complex reality. For example, it is almost an 

article of faith of regional economics that production is characterised by substantial localization and 

urbanization economies. These externalities justify policy intervention, especially, from an economic 

efficiency point of view. Spatial externalities are present in almost every activity, especially those 

related to knowledge and technology. Thus, the notion of ‘efficiency’ is an ambiguous concept. Income 
maximisation subject to given resource constraints is inadequate if spatial and technological 

externalities are taken into account. Incorporating such externalities in a planning model of regional 

allocation of investment opens up a promising avenue for future research and a point that should be 

taken into account by policy makers when they design regional policies and development projects.  

If one considers only a reduction in interregional inequality, other aspects, above all the issue of 

equal distribution of achieved prosperity within a region, are ignored. Indeed, intraregional equity is 

one indicator which shows how equally the returns of investing in a specific region are distributed. 

Examination of the interaction between interregional and intraregional equity remains an important are 

for future research. In addition, there is the question of how policy-makers a ‘tolerable’ level of 
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regional disparities. However, the analysis in this study provides a set of choices for the regional 

distribution of available resources, which provide a basis for the design of regional policy. The final 

selection and application of the models presented here is a challenge for policy making in different 

geographical and administrative levels.  

The important point to grasp is that the analysis in this paper proposes a set of choices that can be 

described as ‘compatibility between equity and efficiency’. Such knowledge assists policy-makers to 

design optimal regional policies in which the trade-off in aims can be avoided. Indeed, overcoming the 

trade-off is a difficult and ambitious task; nevertheless not unattainable. Application of the models 

discussed in this paper, constitute a challenge for policy-makers and practitioners, in different policy 

sectors and at different administrative levels. Hence, there is a need to rethink future regional policies 

along the lines of the implementation of more innovative and region-specific development strategies, 

based on the concept of optimality in decision-making. Thinking towards the future is an essential 

precondition for investigating where policies are necessary and how they should be shaped. 
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