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Abstract 

This paper is the first study to examine the effectiveness of the Shanghai Fuel Oil Futures 
Contract (SHF) in risk reduction on the Chinese energy oil market. We find that the SHF 
contract can help investors reduce risk by approximately 45%, lower than empirical evidence in 
developed markets, when weekly data are applied.  In contrast, when using daily data SHF 
contract can only help reduce risk by approximately 9%. The Tokyo Oil Futures Contract (TKF), 
however, performs two times better, reducing risk by around 17%. The empirical results are 
robust when variance complicated bivariate GARCH (BGARCH) and bivariate distributions are 
used. Our results imply the energy oil futures market in China is not well-established and further 
policy is needed to improve market efficiency. 
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1. Introduction 

As the cash oil prices continue soaring and fluctuating, hedging price risks in the energy 

commodity market are popular among both practitioners and academics. Oil futures contract is 

the most widely used instrument, through which investors can hedge risks by taking an opposite 

position in the futures market. 

This paper provides evidence on how to hedge risks on the Chinese energy oil market. The 

principal purpose is to investigate the optimal hedging strategies for investors. China is the 

world’s second largest energy oil importer, which makes it vulnerable to international energy 

market shocks. Thus, diversification risk exposures are essentially important to market 

practitioners.   

There are many studies on optimal hedging strategies in empirical finance literature which try to 

provide the most accurate optimal hedging ratio (OHR, hereafter). Conventional studies estimate 

this by performing an ordinary least square (OLS) regression of the spot returns on the futures 

returns to obtain a constant OHR. However, the OLS regression misspecified the model because 

(i) the changes in the spot and futures price are not independent and correlated, (ii) the 

unconditional distributions of spot and futures prices and returns are found to be asymmetric or 

skewed and fat-tailed, and (iii) it is now well recognized, however, that the spot and futures 

prices are cointegrated. 

Recent work attempts to address the problems by utilizing various types of bivariate generalized 

autoregressive conditional heteroskedasticity models (BGARCH) to compute time-varying OHR. 

Under the convenient assumptions that the conditional density of the price changes is bivariate 

normal and the conditional variances follow a GARCH (1, 1) process, the so-called constant 



conditional correlation bivariate generalized autoregressive conditional heteroskedasticity (CCC-

BGARCH) model is very simple to compute. A considerable amount of research uses this model 

to estimate time-varying hedge ratios and achieves high variance reductions as opposed to the 

use of the OLS hedge ratios (see, e.g., Baillie and Myers (1991), Kroner and Sultan (1993), 

Chakraborty and Barkoulas (1999), Tse and Tsui (2002)). However, the correlations and 

volatilities are changeable over time, this means the OHR needs adjustment to account for the 

most recent information; however, this violates the constant conditional correlation assumption 

of the CCC-BGARCH model. Several other types of BGARCH models are recommended to 

capture the time-varying feature in conditional correlations of spot and futures prices (see e.g., 

Engle and Kroner (1995), Engle (2002)). However, recent studies report that incorporating time-

varying conditional cannot necessarily ensure better hedging performance. 

In this paper, the OHR is based on both the CCC-BGARCH and dynamic conditional correlation 

bivariate generalized autoregressive conditional heteroskedasticity (DCC-BGARCH) models. 

Although the framework is standard, to the best of our knowledge, its application is unique to 

China’s energy futures market. The results are singular in several aspects. 

The rest of the paper follows the following format: the econometrics model is defined and data 

are described in section2, section 3 contains the main results and section 4 concludes the paper.  

 

2. Econometric Methodology and Data 

Assume the investor has a fixed long position of one unit in the spot market and a short position 

of  1th    units in the futures market. The random return to a hedged portfolio at time  t  ,  p

tR  , is 
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where  1
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t t tR P P    and  1
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t t tR P P    are the changes in the spot and futures prices, 

respectively.  s

tR   and  f

tR     are the returns of spot and futures prices, where s

tP   and  f

tP   are 

the logarithms of spot and futures prices. The standard mean-variance hedging model assumes 

the investor has a quadratic expected utility function 
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where  0    is the risk aversion coefficient.  ( )p

tE R   is the expected value of the portfolio 

return and  ( )p

tVar R   is the variance of the portfolio return. The investor solves the expected 

utility maximization problem (or the variance minimization problem) with respect to the hedge 

position  1th   . By assuming the futures price  f

tP   follows a martingale process 
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where ρ is the correlation coefficient between tS  and tF , and σs and σf are standard deviations 

of 
tS  and tF , respectively. 

 

 

2.1. Model Specification 

In the model below, let  ( ,s

t tR R    )f

tR


  denote the  2 1   time-series vector of the returns of 

spot and futures prices with time varying conditional covariance matrix  Ht  , the Bollerslev 



(1990) constant conditional correlation (CCC)-BGARCH model is 
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where  ( ) ( s    ,  )f


  is the vector of conditional mean functions,  ( ,s     )f


  is a finite 

vector of parameters,  ( ,t st     )ft


  is the vector of unexpected returns,  1t   denotes the     

field generated by all the available information up through time  1t   ,  F   represents a certain 

form of bivariate distributions, and  tH   is a  2 2   positive definite matrix, i.e., 
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where  sf   the constant conditional correlation coefficient, because the conditional correlations 

are assumed to be constant through time. Also,  ,ss th   and  ,ff th   denote the individual variances 

and are assumed to have a GARCH( ,p    q  ) structure, as, 
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where  p   and  q   are lag orders,  1,2,...,j p   (or  q  ). 

In order to deal with potential skewness in the spot and futures returns in the process of 

estimation, we introduce a more flexible bivariate skewed-t distribution proposed by Bauwens 

and Laurent (2005). It is defined as 
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where the scalar  (i im   ,  )v   and  (i is   ,  )v   represent the unconditional mean and the standard 

deviations of  z  . The bivariate skewed- t   is denoted by  (0,SKST    2 ,I    ,    )v  .  v   is degrees 

of freedom.     is a  2 1   vector of asymmetry parameters  i  . If  1i   , the  (0,SKST    2 ,I    

,    )v   becomes the symmetry student  t   density. If  1i   , the third-order moment is positive 

and the density is skewed to the right; if  1i   , the third-order moment is negative and the 

density is skewed to the left. 

2.2. Data Description 

Daily and weekly Chinese Yuan-based data on the SHF, TKF are used. The futures rates are 

closing prices based on the futures contracts underlying these currencies traded on the Shanghai 

Futures Exchange and the Tokyo Commodity Exchange. There are four outstanding futures 

contracts following the March-June-September-December cycle at any given time. The 

successive futures prices are collected based on the following procedures. First, the futures rates 

of the nearest contract are collected until the contract reaches the first week of the expiration 

month. Second, we roll over to the next nearest contract. Third, we repeat the two procedures. To 

keep the tractability with literature, the weekly spot and futures prices are defined as the natural 



logarithms of Thursday's spot and futures prices.1 

All the data for the spot and futures prices are obtained from the Bloomberg Termina. 

Transformed data are to be used in the empirical specifications below: the percent spot returns  

( 1100( )s s s

t t tR P P   , where  s

tP   are the logarithms of the spot prices) and the percent futures 

returns ( 1100( )f f f

t t tR P P   , where  f

tP   are the logarithms of the futures prices). The starting 

point for each of the series is determined by the availability of its corresponding futures prices. 

 [Insert Table 1 Here] 

Table 1 reports summary statistics for the in-sample spot and futures returns of the spot and 

futures return series. The heteroskedastic and autocorrelation consistent standard errors for the 

mean, the standard deviation, the skewness, the excess kurtosis are also reported. They are 

computed in the same way as West and Cho (1995). The results in Table 1 show that the means 

of all spot and futures returns are very close to zero. For the Shanghai Futures Market, the 

standard deviation of the futures returns is larger than that of the spot returns. This is consistent 

with the conclusions in the well-established literature that the futures market is more volatile 

than the spot market (Chan, Chan, and Karolyi (1991), Sharown and Gregary (1995), Faff and 

Mckenzie (2002), Ellueca and Lafuente (2003)). In addition, the results indicate that all returns 

exhibit a certain degree of skewness. In addition, the values in the column of excess kurtosis 

suggest that all returns have positive excess kurtosis (or leptokurtic). All the Jarque-Bera test 

statistics strongly reject the null hypothesis that the return series are normally distributed. The 

                                                           
1Previous studies usually collect the data for the nearby futures contract until the contract reaches 
either the first day of the delivery month or its expiry date. 
 

 



Ljung-Box test statistics at lags 20,  (20)Q   show significant evidence of autocorrelation for the 

series. Furthermore, the non-normal distributional properties of the return series provide support 

for basing estimation and inference on more suitable distributions, like conditional symmetric  t   

and skewed  t   distribution, than multivariate normal distribution to avoid misspecification. 

[Insert Table 2 Here] 

Table 2 presents the results for the Augmented Dickey-Fuller (ADF) and the Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) tests of each oil return series. For all the price series, The ADF 

test rejects the null hypothesis of unit root and the KPSS test fails to reject the null hypothesis of 

non-stationary. This indicates that all return series are stationary which is consistent with the 

literature. In general, the results of the unit root tests indicate that each return series is stationary. 

3. Empirical Results 

[Insert Table 3 Here] 

In this section, the in-sample estimation and out-of-sample forecasting results of the CCC-

GARCH models are reported. In addition, a check is done for the robustness of the results by 

changing model specification, data frequency, as well as futures contracts. The in-sample 

estimation results for the SHF and TKF are reported in Table 3. The estimates of the distribution 

parameters  s  , and  
f   are significant for the skewed- t   model at 5 percent significance level. 

The coefficient  v  , representing the degree of freedom coefficients are 5.183 which shows the 

dominant feature of the fourth-order moment in the Shanghai spot and futures series. The 

coefficients  1s    and  1f    which indicates that the standardized residuals of the Shanghai 

spot and futures equations are relatively negative-skewed, respectively. 

In addition, the log-likelihood value of the bivariate normal model and the bivariate student- t   



model MC2 are -2373.767 and -2267.385, respectively. That is, the bivariate Student density 

increases the log-likelihood value by around 100 for incorporating an excess kurtosis parameter. 

The lower values of both  AIC   and  SIC   also supports this argument. We can do a similar 

comparison between the CCC-BGARCH with bivariate student- t   model and the bivariate 

skewed- t   model. The increment in the log-likelihood value of the bivariate skewed- t   density 

from that of the bivariate student- t   density model is about 90. The increment in log-likelihood 

value can be attributed to adding in the two asymmetric distribution parameters, i.e., the 

skewness parameters  s  , and  
f  . To further evaluate the significance of the asymmetry in the 

bivariate distribution, we conduct the Likelihood Ratio ( LR  ) test of the null hypothesis of 

symmetry, i.e. H0 :  0s f    . The computed test statistic is 48.6 which asymptotically 

follows the 2(2)X  distribution, rejects the symmetry assumption and favors the bivariate 

skewed- t   distribution related CCC-BGARCH model. Both information based model selection 

criterias,  AIC   and  SIC   choose the bivariate skewed –t model which also provide support for 

the asymmetry distribution assumption. Further comparison among the three models shows that 

the CCC-BGARCH with bivariate skewed- t   model have the lowest  AIC   and  SIC   are more 

attractive than the CCC-BGARCH with bivariate normal and student- t   models. For the SHF, 

however, the CCC-BGARCH with bivariate student t models are the best. 

 

 

3.1. Hedging Performance of the Daily Shanghai Fuel Oil Contracts 

In order to evaluate the hedging performance of various hedging strategies, we construct a 

hedged portfolio based on the two types of OHRs estimated under various distributions. The 



hedged portfolio at time t   is defined in equation (1). We compute and compare the reduction in 

variance of each portfolio return (VR) relative to the no hedging position.  
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[Insert Table 4 Here] 

Table 4 reports the in-sample and out-of-sample performances of the optimal hedge ratios from 

the CCC-BGARCH models and OLS and naïve hedging strategies. For hedging with the SHF 

contract in Panel A, all the CCC-BGARCH models produce higher variance reductions than the 

OLS and naïve hedging strategies. The CCC-BGARCH models with multivariate student t 

distributions outperform those with normal and skewed-t distributions in terms of variance 

reductions. 

Panel B presents the results for the out-of-sample hedging performance in terms of variance 

reduction for the SHF contracts.  Among the three distribution specifications, the CCC-

BGARCH models with multivariate skewed-t distribution produce the largest variance reduction, 

while the model with normal has the lowest. All the three CCC-BGARCH models outperform 

the OLS and naïve strategies. 

In general, the OHR under the CCC-BGARCH models outperforms the OLS and naïve strategy 

in any cases. However, the magnitude of risk reductions of the models is very small, ranging 

from 5.6% to 8.7%; i.e., the models perform poorly. This can be attributed to numerous factors, 

for instance, data frequency, model misspecifications and so on. In the following subsections, we 

will try to analyze possible factors.  

3.2. Time-varying Conditional Correlations 



The correlations and volatilities are changeable over time, which means the OHR should be 

adjusted to account for the most recent information. The CCC-BGARCH model, however, 

assumes the constant conditional correlation between spot and futures return. This is a possible 

factor resulting in the poor performance of the CCC-BGARCH models. To capture the time-

varying feature in conditional correlations of spot and futures prices, we improves on the simple 

version of Engle's (2002) dynamic conditional correlation (DCC)-BGARCH model, which 

proves to outperform other peer models in estimating the dynamic OHR.  

The DCC-BGARCH model differs from Bollerslev's CCC-GARCH model in the structure of 

conditional variance matrix  tH   and is formulated as the following specification: 
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where  t   is the unexpected returns and has the same definition as in equation (11).  ,ss th   and  

,ff th   follow the same process as in equations (14) and (15).  tu   represents the vector of 

standardized  t  .  tQ   is the  2 2   positive definite covariance matrix with the parameters  

1 0,     2 0    and  1 2 1    .  Q   is the unconditional covariance matrix of  tu  . 

[Insert Table 5 Here] 

Table 5 shows the results for the DCC-BGARCH models. For the in-sample estimation, the 

DCC-BGARCH with skewed-t distribution produces the largest variance reduction. The DCC-

BGARCH with student t distribution performs the best in terms of variance reduction for the out-



of-sample forecasting. All the DCC-BGARCH models perform better than the OLS and naïve 

strategies. 

 When compare the hedging performance between the CCC-BGARCH and DCC-BGARCH 

models, we can see that, the CCC-BGARH models perform better for in-sample estimation, 

while the DCC-BGARCH is better for out-of-sample forecasting. 

3.3. Cross-hedging with the TKF Contract 

The out-of-sample hedging performance of the DCC-BGARCH models is not sufficient, 

although the in-sample performance is better than the CCC-BGARCH models, around 10% 

to12.4%. Thus, both the results in subsection 3.1 and 3.2 imply that the SHF contract, at least in 

daily data, cannot provide satisfactory protection to risk exposure. In this subsection, we propose 

another futures contract, the TKF contract, which can provide better hedge against variance risk. 

The results are presented in Table 6. Panel A and B display the results for CCC-BGARCH and 

DCC-BGARCH models, respectively. 

[Insert Table 6 Here] 

For the in-sample estimation, all the BGARCH specifications using the TKF contract produce 

higher variance reductions than those using the SHF contract. To be specific, the CCC-

BGARCH models using the TKF data can achieve variance reduction by 17% to 18%, while 

those using the SHF are only around 5.6% to 8.7%. Similarly, the DCC-BGARCH models using 

the TKF data produce variance reduction by around 10.6% to 17.7%, compared with 10% to 

12.4% when using the SHF contract. In conclusion, the daily TKF contract is more favorable in 

terms of risk reduction in comparison to the domestic SHF contract. We also run the model using 

other futures contracts, for example, WTI from NYEMEX, and heating and crude oil contracts 



from India futures exchange; unfortunately, expected results were not obtained, and results are 

provided upon request. 

3.4. Hedging with Weekly Data 

[Insert Table 7 Here] 

Estimating hedging performance using daily data is fairly adopted for speculators in futures 

market; however, it is too frequent for measuring behaviors of hedgers, such as commodity 

holders, who aim to hedge risk exposure, instead to speculate in the market. This argument is 

consistent with the findings of Moon el al. (2010). The authors employ daily, weekly and 

monthly crude oil futures and gold futures traded at the New York Mercantile Exchange 

(NYMEX) from March 1983 to November 2007. Using various GARCH models evidence is 

found that there is more variance reduction as the sample frequency declines from daily to 

weekly to monthly.  This result implies less frequent hedging trading would be more beneficial.  

In this subsection, weekly data are used to analyze the hedging performance of various models 

and results are presented in Table 7. Panel A reports results for the SHF contract and Panel B for 

the TKF.  For both the in-sample estimation and out-of-sample forecasting, all the BGARCH 

models produce higher variance reduction than the OLS and naïve strategies. The SHF contract 

reduces risk in terms of out-of-sample variance reduction by around 40% to 49%, and the TKF 

contract reduces risk by around 36%. In general, the SHF performs better in variance reduction 

than the TKF contract for the weekly data. However, the magnitude of variance reduction is still 

less than empirical results for developed countries. 

4. Conclusions 



Hedging using futures contract is a popular short-term risk-minimizing strategy for investors. 

Successful hedging strategy gives investors protection against currency exchange rate changes. 

In this paper, the authors examine the hedging performances of the domestic SHF and the TKF 

futures contracts. The results reveal the SHF contract provides little risk reduction in daily 

hedging, while the TKF provides two-times higher risk reduction. Both contracts provide better 

hedging performance when weekly data are applied. 

The OHRs are estimated with the CCC-BGARCH and DCC-BGARCH models. To capture the 

fat-tails and asymmetry properties of the spot and futures return and avoid misspecification of 

the models, we estimate the BGARCH model with flexible distributions such as bivariate 

symmetric student- t  and bivariate skewed- t  density functions. The use of asymmetry 

distributions improves the goodness-of-fit. However, it also confirms additional evidence that 

there is no guarantee the models of the goodness-of-fit have higher variance reduction and lower 

variances in returns. In addition, the results show that simple OLS hedge ratios fail to outperform 

the complicated BGARCH models in terms of variance reduction. This contradicts many 

previous studies on developed futures markets (Collins, (2000); Lien, (2002, 2009), and Park and 

Jie, (2009)). 

 Energy commodity futures prices have soared and deviated from cash prices in the past few 

years, when institution investors are increasingly interested in commodities.  However, the 

phenomenon does not show up in the Chinese energy futures market, because the SHF contract 

provides little hedging benefits to investors. The results presented in this paper provide evidence 

the Chinese energy fuel oil market is not well-established and more market and regulation efforts 

are needed to help investors diversify risk exposure. 
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Table 1. Summary Statistics of Spot and Futures Returns 

 Shanghai  Tokyo 
 Spot Futures  Futures 
Mean 0.040 0.027    0.000  
Standard deviation 1.011 1.875   1.020  
Skewness -1.092 -1.784  -0.859 
Excess Kurtosis 13.637 24.381   13.245  
J-B 8379.680[0.000] 26638.600[0.000]  12560.200[0.000] 
Q(20) 451.076[0.000] 50.771[0.000]   65.614[0.000] 
Notes: The spot and futures returns are defined as 100 times the log-difference of 
weekly spot and futures exchange rates. J-B is the Jarque-Bera test for the null 
hypothesis of normality. Q(20) is the Ljung-Box test of the null hypothesis that 
the first 20 autocorrelations are zero. P-values are given in brackets 

 

Table 2. Unit-root and Stationary Test 

  Shanghai   Tokyo 
 Spot Futures  Futures 
ADF -8.427 -13.716   -11.772 
KPSS 0.171 0.106   0.141  
Notes: ADF corresponds to statistic of Augmented Dicky-Fuller test of the null hypothesis that t 
the return series has unit root. KPSS is Kwiatkowski-Phillips-Schmidt-Shin statistic for the null  
hypothesis that the return series has unit root. The critical values at 5% and 1% for KPSS test 
are 0.739 and 0.463, respectively. The critical values for the ADF test are -3.435 and -2.864, 
 respectively 

 

 

 

 

 

 

 



 

Table 3. CCC-BGARCH Estimation Results 

 SHF  TKF 

 

 
 

Normal Student t Skewed-t  Normal Student t Skewed-t 

 cS 0.029(0.029) 0.038(3.607) 0.016   0.034(0.031) 0.028(4.138) 0.124(0.077) 

αS1 0.097(0.068) 0.083 0.051(2.288)  0.111(0.070) 0.105(2.046) 0.344(0.191) 

βs1 0.884(0.077) 0.837(1.182) 0.910(1.198)  0.870(0.078) 0.821(1.044) 0.776(0.076) 

cf 0.142(0.071) 0.538(1.611) 0.187(1.545)  0.024(0.018) 0.074(1.689) 0.052(0.041) 

αf1 0.068(0.033) 0.193 0.078(1.979)  0.026(0.009) 0.031 0.065(0.036) 

βf1 0.897(0.034) 0.582(1.149) 0.854(1.114)  0.971(0.005) 0.934(1.166) 0.959(0.021) 

υ  5.325 5.183(0.220)*   6.616 2.424(0.210)* 

ϵs   0.949(1.088)*    1.023(0.024)* 

ϵf   0.835(1.164)*    0.966(0.034)* 

        

Log-lik -2531.051 -2381.846 -2384.715  -2373.767 -2267.385 -2118.036 

AIC 6.739 6.345 6.358  6.732 6.434 6.017 

BIC 6.775 6.388 6.413   6.771 6.479 6.075 

Notes: The table reports the CCC-BGARCH results under flexible distributions for the SHF and TKF. 

The first six rows presents the estimated coefficients for the BGARCH models. Loglik, AIC, BIC are 

the maximum loglikelyhood value, Akaike information criteria and Schwarz information criteria of 

the models. The numbers in parentheses are the standard errors. * denote the 5% significance levels. 

 

 

 

 

 

 



Table 4. Hedge Performance of SHF with CCC-BGARCH Model 

 OLS  Naïve Normal Student  
Skewed-

t 
Panel A.       
In-sample -1.888  -2.095 0.0740 0.0865 0.0851 
Panel B.       
Out-of-sample -2.989  -3.288 0.0568 0.0637 0.0673 
Notes: The table reports the magnitude of variance reduction (VR) 
of each models. 

 

 

Table 5. Hedge Performance of SHF with DCC-BGARCH Model 

 OLS Naïve Normal Student  Skewed-t 
Panel A.      

In-sample -1.888 -2.095 0.1102 0.0996 0.1244 
Panel B.      
Out-of-
sample -2.989 -3.288 0.0501 0.0609 0.05837 
Notes: The table reports the magnitude of variance reduction (VR) 
of each models. 

 

Table 6. Cross-Hedge Performance of TKF 

        

CCC-BGARCH 

  

    

DCC-BGARCH 

  

  

  OLS Naïve   Normal Student  Skewed-t   Normal Student  Skewed-t 

Panel A.              

In-sample -1.538 -1.734   0.1768 0.1768 0.1698  0.1768 0.1062 0.1698 

Panel B.               

Out-of-sample -6.127 -6.73   0.1593 0.1593 0.1547   0.1593 0.1024 0.1431 

Notes: The table reports the magnitude of variance reduction (VR) 
of each models. 
 
 
 
 
 
 



 

 

Table 7. Hedge Performance with Weekly Data 

    OLS Naïve   CCC   DCC 

          Normal Student Skewed-t   Normal Student Skewed-t 

SHF In-sample -0.027 -0.1079  0.4608 0.4618 0.4597  0.4327 0.3967 0.4874 

 Out-of-sample -0.0853 -0.1724  0.4313 0.4285 0.4314  0.4314 0.491 0.43 

            

TKF In-sample -0.4496 -0.559  0.3469 0.3566 0.3563  0.3469 0.3564 0.3567 

  Out-of-sample -2.1442 -2.4147   0.283 0.2952 0.2955   0.2624 0.255 0.2883 

Notes: This table reports the magnitude of variance reduction (VR) of each models using weekly data. 


