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Abstract

Why are some sale items subject to limited availability while other substitute items are available

in large quantities and are priced relatively high at the same point in time? Can such a retail

strategy lure consumers into purchasing the more expensive item? This paper characterizes the

profit-maximizing pricing and product-availability strategies for a retailer selling two substitute

goods to loss-averse consumers and shows that limited-availability sales can manipulate consumers

into an ex-ante unfavorable purchase. Consumers have unit demand, are interested in buying only one

good, and their reference point is given by their recent rational expectations about what consumption

value they would receive and what price they would pay. The seller maximizes profits by raising the

consumers’ reference point through a tempting discount on a good available only in limited supply

(the bargain) and cashing in with a high price on the other good (the rip-off), which the consumers

buy if the bargain is not available to minimize their disappointment. The seller might prefer to offer

a deal on the more valuable product, using it as a bait, because consumers feel a larger loss, in terms

of forgone consumption, if this item is not available. I also show that the bargain item can be a loss

leader, that the seller’s product line is not welfare-maximizing and that she might supply a socially

wasteful product. The model suggests that the current FTC Guides Against Bait Advertising, by

allowing retailers to employ limited-availability sales, could reduce consumer and social welfare.

JEL classification: D11; D42; L11.
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1 Introduction

Retailers frequently use low prices and offer deals to attract consumers. In many cases, these

deals apply only to a subset of a store’s product line and are often subject to “limited availability”.

Some shops, for example, offer deals that are valid only “while supplies last,” or they might offer

price reductions on sale items only to the very first customers of the day. Consider the two following

examples:

Example 1 A retailer in Berkeley California has offered the following:

Converse All Star high-top in black for just $24.99 (offer valid while supplies last).

Any other color for $54.99.1

Example 2 On Black Friday 2011, Best Buy offered, among other items, the following:

Panasonic 50" Class / Plasma / 1080p / 600Hz / Smart HDTV for $599.99.

Panasonic 50" Class / Plasma / 720p / 600Hz / HDTV for $799.99.2

In the first example, the store is offering a deal on black shoes – $20 less than the regular price.

There is, however, no deal on other colors; indeed their price is $10 higher than the regular price. The

$30 difference between the price of black and non-black shoes is unlikely to be explained by differences

in cost or demand. Furthermore, the deal on black shoes is valid only while current supplies last and the

price could well be higher once the store restocks. In the second example, the store is selling two very

similar TVs for very different prices; moreover, somewhat puzzlingly, the TV with the higher-resolution

screen, universally preferred, is offered at a lower price. The original Best Buy ad specified that the

one on the superior TV was an online-only deal, that availability was “limited to warehouse quantity,”

and no rainchecks would be offered to consumers. Notice also that the goods in these examples are

substitutes and consumers normally buy at most one unit. Why, then, do stores discount only a few

items heavily, and why is there so much dispersion, within the same store, in the price of similar goods?

How do stores select which products to offer for a discount?

Traditional search-theoretic models of sales based on costly information acquisition are not well-

equipped to answer these questions, as they pertain mainly to retailers supplying only one product.

Moreover, they are concerned with explaining price dispersion either across different stores (as in Salop

and Stiglitz, 1977) or across different time periods (as in Varian, 1980), not with the issue of within-store

price dispersion across similar items, nor they look at the role of product availability in retailing.3

1At the same retailer, Bancroft Clothing Co., the regular price during the “non-deal” weeks is $44.99, independent of
color. The manufacturer online price is $50 plus shipping fees.

2Black Friday is the day following American Thanksgiving and traditionally marks the beginning of the Christmas
shopping season. The 1080p TV first appeared at Best Buy on March 20, 2011 for $1,000 and its price has been constant
until Thanksgiving Day of the same year. The 720p TV first appeared at Best Buy on March 28 for $719.99 and its
price was reduced to $649.99 on August 9, 2011 and raised again up to $799.99 on November 10, 2011, two weeks before
Thanksgiving. These data have been collected using camelbuy.com, a website that provides a price tracker and price
history charts for products sold online at Amazon.com and Best Buy.com.

3For an extensive survey of the search theory literature in IO, see Baye, Morgan and Scholten (2006). Rhodes (2012)
and Zhou (2012) study multi-product search models with complements. A notable exception is provided by Konishi and
Sandfort (2002). In their paper a multi-product store can increase its profits by discounting only some of its products,
even when they are substitutes. However, consumers in this model shop for a “search good” and hence they learn their
tastes only once they arrive at the store and discounts on few items are a way to increase store traffic. The logic in my
model is quite different.
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In this paper, I propose a model of bait-and-switch where a retailer uses limited-availability bargain

sales to exploit consumers’ loss-aversion and prompt them to willfully engage in an ex-ante unfavorable

purchase. I do so by introducing consumer loss aversion into an otherwise classical model of linear

pricing: a risk-neutral profit-maximizing monopolist sells two substitutable goods to homogeneous

consumers who demand at most one unit altogether and whose reference point for evaluating a purchase,

following the model of Kőszegi and Rabin (2006), is given by their recent rational expectations about

the purchase itself. With these preferences, a consumer’s willingness to pay for a good is determined

not only by his intrinsic value for it, but also endogenously by the market conditions and his own

anticipated behavior. Moreover, the monopolist can directly affect consumers’ expectations by making

announcements regarding prices or availability. For example, if a consumer expects to buy with high

probability, he experiences a loss if he fails to buy. This, in turn, increases his willingness to pay. On

the other hand, compared to the possibility of getting a deal, paying a high price is assessed by the

consumer as more of a loss, which in turn decreases his willingness to pay. Since expectations are the

reference point and because expectations are (also) about own future behavior, the reference point is

determined endogenously in the model by requiring that the (possibly stochastic) outcome implied by

optimizing behavior conditional on expectations coincides with expectations.

The main result of the paper is that, when two goods have a similar social value, the profit-

maximizing strategy for the monopolist is to offer a limited-availability deal on one of the goods and

then cash in with a high price on the other. Consumers perceive this limited-availability sale as

equivalent to a lottery on both which good they will end up with and how much they will pay. The

price of the good on sale (the bargain) is chosen such that it is not credible for the consumers to

expect not to buy it. Thus, the limited-availability deal works as a bait in luring consumers into the

store.4 Then, because the consumers expect to make a purchase with positive probability and dislike

the uncertainty in their consumption outcomes, in the event that the bargain is not available, they

prefer to buy the substitute good, even at a higher price (the rip-off ). In other words, consumers go

to the store enticed by the possibility of the bargain, but if it is not there they buy a substitute good

as a means of reducing their disappointment.5

I distinguish two cases depending on whether the two items are valued similarly by the consumers.

If the goods are “close” substitutes, the seller chooses a price of the bargain and a price of the rip-off

that are farther away than consumers’ valuations. If instead the products are “distant” substitutes, the

seller prices them closely or even equally. Hence, under limited availability and loss aversion, dispersion

in prices and dispersion in valuations are inversely related. This provides a possible explanation for

why relatively similar goods are often offered at different prices, like the shoes in Example 1 above

and, at the same time, why different goods are sometimes priced equally, like in all-you-can-eat buffet

restaurants.

4There is a reason why in Black Friday jargon these deals are called “doorbusters.”
5Because of loss aversion, consumers are willing to pay a premium in order to avoid the feeling of loss resulting from

not getting the bargain. So, the seller is not exploiting a cognitive bias of the consumers. This is in contrast to several
models with boundedly rational or naïve consumers, as in DellaVigna and Malmendier (2004), Eliaz and Spiegler (2006,
2008, 2011b), Gabaix and Laibson (2006), Grubb (2009), Rubinstein and Spiegler (2008), and Spiegler (2006). See Spiegler
(2011) for a textbook treatment.
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The limited-availability nature of the deal is critical for this strategy to work, and the degree of

availability of each item is publicly announced by the seller. On the one hand, a high likelihood of

availability for the bargain makes the consumers more attached to the idea of buying. This allows the

seller to charge a higher price on the rip-off. On the other hand, a greater availability of the bargain

necessarily means fewer sales of the rip-off. When choosing the supply level of the bargain item, the

seller optimally trades off these two effects. I also show that if the bargain is the product with the

smaller social surplus, its availability is bounded above by 50%, implying that less than half of the

consumers actually end up buying the item on sale.6

According to the current FTC regulation, it is not a bait-and-switch if the store communicates up-

front that availability is limited.7 Nevertheless, the popular press and various consumers’ associations

seem to perceive limited-availability deals as being of an exploitative nature, as suggested by the

following quotes:

One of the biggest problems during significant sale days like Black Friday is the deceptive

practice of offering a popular, expensive item for a great sale price, but only stocking a very

limited number of these products. This is somewhat of a bait-and-switch because even if

that product is unavailable, you are likely to stay at the store and take advantage of other,

less valuable sales. (Denver Better Business Bureau, http://denver.bbb.org)

Know why they call it “Black Friday?” It isn’t because those sale items push retailers into

the “black” (accounting speak for profitability). Those sale items are almost always loss

leaders – items sold at a loss in order to lure you into the store in the hope you’ll buy

other, more profitable items. What really pushes retailers into the black are the profitable

items you buy because you showed up at 4am and everything you hoped to buy was sold out

and you HAD to buy SOMETHING. (http://www.thewisdomjournal.com/Blog/beware-of-

black-friday-bait-and-switch/)

The above quotes seem to imply that among the consumers who go shopping during sales with the

intention of getting a deal, some fulfill their goal and get a bargain; others, however, might not find

what they were looking for and might end up buying a different and often not-on-sale item.8 But, if

they know in advance that the chance of getting a deal is small, why do consumers go shopping anyway?

6Besides Black Friday, other examples of limited-availability sales that take place in the U.S. are: (i) Cyber Monday, the
first Monday after Thanksgiving Day, which mainly pertains to online shopping; (ii) Back-to-School Sales taking place at
the end of summer when most schools and colleges begin their school year; and (iii) the The Running of the Brides, which
was a one-day sale of wedding gowns that used to take place in many Filene’s Basement stores (in December 2011 Filene’s
Basement declared bankruptcy and went out of business). Moreover, many big national retailers, like Target and Toys
R Us, have begun to hold Black Friday-style sales during the summer as well (see http://www.washingtonpost.com/wp-
dyn/content/article/2010/07/22/AR2010072206101.html)

7The current FTC Guides Against Bait Advertising require retailers “to have available at all outlets listed in the adver-
tisement a sufficient quantity of the advertised product to meet reasonably anticipated demands, unless the advertisement
clearly and adequately discloses that supply is limited and/or the merchandise is available only at designated outlets” (16
C.F.R. Part 238.3).

8Empirical studies in marketing and psychology reveal indeed that consumers are likely to buy substitute items when
their preferred product is out of stock, and even more so if the product they were planning to buy was on sale or if the
seller had announced up-front that quantities were limited. I review the evidence about consumers’ response to stockouts
in Section 2.
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Interestingly, by exploiting the time inconsistency of the consumers’ preferences, with a limited-

availability strategy the seller is able to push the consumers’ reservation utility below zero. This is

possible because with expectations-based reference-dependent preferences, the consumers’ participa-

tion constraint is belief-dependent – and therefore endogenous – and the seller can manipulate the

consumers’ beliefs with her own strategy.9 The intuition is as follows: if a consumer expects to find

a product he likes available for a very low price, he will definitely plan to buy it. The attachment to

the good induced by realizing that he will do so, however, changes his attitudes toward the purchasing

decision. If the store runs out of the good on sale for a low price, but has a similar one available for a

higher price, the consumer must now choose between a loss of money from paying a higher price and a

loss of consumption from returning home empty-handed. While, in equilibrium, buying the expensive

substitute is indeed the best response to his expectations, it is still worse than if he could have avoided

the feeling of loss by avoiding the expectation of getting the bargain in the first place. More gener-

ally, because an expectations-based loss-averse consumer does not internalize the effect of his ex-post

behavior on ex-ante expectations, the strategy that maximizes ex-ante expected utility is often not a

credible plan. Moreover, consumers are hurt also by the uncertainty about which item they will get

to consume and how much they will pay. Thus, despite the fact that, with some probability, they get

a good deal, on average consumers are hurt by limited-availability bargain sales. Hence, the current

FTC Guides Against Bait Advertising, by allowing stores to credibly announce that they have limited

supplies for bargain items, might have the perverse effect of reducing consumers’ welfare.

Despite the products being substitutes, loss aversion endogenously creates positive demand spillovers

between them so that the higher a consumer’s intrinsic valuation for a product, the higher his willingness

to pay is for a substitute of that product as well. When the goods are vertically differentiated, the seller

tends to use the more valuable item as the bargain. This may, at first, seem odd, given that consumers

are (intrinsically) willing to pay a higher price for the superior good. Yet, exactly because consumers

value the superior item more, the possibility of getting it for a bargain makes them feel a larger loss, in

terms of forgone consumption, when this item is not available; hence, they are willing to pay a lot to

avoid (or mitigate) this loss, which, in turn, allows the seller to charge a higher price for the rip-off. So

my model predicts that more valuable items should be more likely to be used as baits, as in Example

2 above.

A related implication is that the monopolist, in order to effectively induce uncertainty into the con-

sumers’ purchasing plans, might introduce a less socially desirable or, worse, socially wasteful product

and the profit-maximizing product line could differ from the socially optimal one.10 Although this

implication appears also in models of second-degree price discrimination via quality distortion (i.e.,

Deneckere and McAfee, 1996), the motive in this case is not to screen the consumers, but rather to

exploit the aforementioned positive spillover effect by selling a less valuable product at a higher price.

Furthermore, the bargain item can be a “loss leader” (i.e., being priced below cost). Traditional

models of consumer behavior can explain the use of loss leaders for complementary goods (see Ambrus

9Spiegler (2012b) studies the problem of incentivizing participation for agents with expectations-based reference-
dependent preferences in more general environments.
10Klemperer and Padilla (1997) obtain a similar result in an oligopoly model where consumers have classical preferences

and multi-unit demand. For this environment they show that a firm might want to introduce an additional, socially
wastful variety, because of a profitable business stealing effect.
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and Weinstein, 2008); my model instead can rationalize the use of loss leaders for substitutes. With

classically assumed reference-free preferences, the scope for using loss leaders is to increase store traffic;

however, for this increase in store traffic to be profitable, consumers must buy other items in addition to

the loss leader. In my model, instead, loss leaders lure consumers into the store, but their profitability

stems from the fact that, if the seller has run out of the loss-leading product, consumers will buy another

item instead of the loss leader in order to minimize their disappointment. Moreover, while traditional

models – like the one of Lal and Matutes (1994) – suggest that products with lower reservation

prices are more natural candidates to be loss leaders, my model can explain the use of highly valuable

products as loss leaders.11 This is consistent with the observation that, on Black Friday, Best Buy

offers a below-cost large-screen flat TV to the first ten people who buy one.

My paper is related to, and builds upon, the analysis in Heidhues and Kőszegi (forthcoming),

which provides an explanation for why regular prices are sticky, but sales prices are variable, based

on expectations-based loss aversion. In their model, a single-product monopolist maximizes profits by

committing to a stochastic-price strategy made of low, variable sales prices and a high, sticky regular

price. Their result and mine share a similar intuition: low prices work as baits to attract the consumers

who, once in the store, are willing to pay a price even above their intrinsic valuation to avoid the

loss resulting from going home empty-handed. The key-difference in my paper is that I consider a

monopolist who sells two goods and uses one of them as a bait to attract the consumers and the other

one to exploit them. My result on the optimality of limited-availability sales can be seen as a foundation

as well as a more plausible re-interpretation of their result about the optimality of random-price sales.12

Katz and Nelson (1990) also study product availability and price dispersion for the case of a monop-

olist selling two substitutable goods to consumers with downward sloping and continuous multi-unit

demand, who can choose whether to enter the market and have type-dependent outside options. They

show that if the monopolist can credibly commit to have stockouts, there exists a two-price equilibrium

in which the lower-price brand is understocked. However, they study only the case of perfect substi-

tutes and their main result relies on the assumption that once a consumer enters the store, he forfeits

his outside option and if faced with a stockout of the low-priced brand, he must buy the expensive

one. In my model, instead, the consumers’ behavior in the event of a stockout is not assumed, but

it arises endogenously in equilibrium because consumers have expectations-based reference-dependent

preferences and prefer to buy the expensive substitute instead of leaving the store empty-handed.

There are a few papers analyzing on the role of product availability as a strategic variable in various

oligopoly settings (see Daughety and Reinganum, 1991; Chakravarty and Ghose, 1994; Balachander

and Farquhar, 1994; Dana, 2001b; Watson, 2009). In these models, firms supply only one product and

by competing (also) in availability, they are able to charge higher prices. However, how availability

interplays with a firm’s other strategic variables (quantity or price) varies considerably between the

papers depending on the specific details of each model.

The remainder of this paper proceeds as follows. Section 2 briefly summarizes the key empirical

evidence on sales and limited availability. Section 3 describes the baseline model with homogeneous

11Kamenica (2008) proposes a model of contextual inference from product lines where a firm may try to manipulate
consumers’ beliefs by introducing premium loss leaders – expensive goods of overly high quality that increase the demand
for other goods.
12 I discuss in more detail the similarities and differences with Heidhues and Kőszegi (forthcoming) in Section 7.
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consumers and the features of market demand when consumers have expectations-based reference-

dependent preferences. Section 4 presents the main result about the seller’s optimal pricing and avail-

ability with homogeneous consumers. Section 5 deals with three extensions of the baseline model:

endogenous product lines, heterogeneous consumers’ tastes and consumers’ naïvete. Section 6 relates

the paper to the literatures on firms’ response to consumers’ loss aversion, loss leaders, bait-and-switch,

price discrimination, and other topics. Section 7 concludes by recapping the results of the model and

pointing out some of its limitations as well as possible avenues for future research.

2 Evidence on Sales and Stock-Outs in Retailing

This section summarizes empirical evidence that points to three main facts: (1) sales are frequent

but affect a small fraction of items, (2) products on sale are more likely to be out of stock and (3)

consumers are willing to buy substitute products when their preferred item is sold out. These facts

frame the importance and relevance of the analysis of this paper in understanding why and how retailers

use limited-availability sales, and how consumers react when facing alternatives for a product that is

sold out.

Sales, in the sense of periodic, temporary price reductions, are a ubiquitous feature of retail pricing

(see Hosken and Reiffen, 2004a and Nakamura and Steinsson, 2008).13 However, among all the items

supermarkets and other retailers carry, usually only a small fraction each week are offered at a low

sale price and, within categories, retailers seem to systematically place some products on sale more

often than others, with more popular items – those appealing to a wider range of customers – being

more likely to go on sale (Hosken and Reiffen, 2004b). Relatedly, Nakamura (2008) finds that only a

small fraction (19%) of price variation is common to all products in a category at a given retail store.

According to a recent study by ShopAdvisor, a deferred shopping service used by independent websites

and tablet magazines, in the 54 days from Nov. 1st through Dec. 24th 2011, the day with the lowest

percentage (46%) of products on sale below their initial holiday season price was indeed Black Friday,

Nov. 25th. In fact, Black Friday is also the day on which shoppers begin to see prices spike on selected

items: on Black Friday itself, 24% of the toys on ShopAdvisor’s list were priced above their initial

holiday season price.14 Strausz (2007) reports that the two largest German discounters, Aldi and Lidl,

weekly advertise limited-availability bargain sales on products that do not belong to their usual selling

stock. Chevalier, Kashyap and Rossi (2003) find that the majority of sales are not caused by changes

in wholesale pricing, implying therefore that sales are primarily due to changes in retailers’ margins.

Similarly, Anderson, Nakamura, Simester and Steinsson (2012) report that while regular prices react

strongly to cost and wholesale price changes, the frequency and depth of sales is largely unresponsive.

While not as ubiquitous as sales, stockouts are also prevalent in retailing. Gruen, Corsten and

Braradwaj (2002) report an 8.3% out-of-stock rate worldwide, rising to even 25% for some promoted

items. Hess and Gerstner (1987) sampled two general merchandise stores and found that stockouts

occurred more often for products on sale than for similar products not on sale. Using data from a

13Sales might also refer to systematic reductions in the price of fashion items; see Lazear (1986), Pashigian (1988) and
Pashigian and Bowen (1991).
14See http://www.prnewswire.com/news-releases/shopadvisor-cautions-buyers-on-black-friday-not-worth-the-early-

morning-rise-174618581.html
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supermarket chain in Spain, Aguirregabiria (2005) documents a significant amount of heterogeneity

across items in the frequency of stockouts; most of this heterogeneity is within-product (i.e., among

brands of the same product line) and not among products. Grant-Worley, Saltford and Zick (1982)

surveyed five major non-food chains in Syracuse, New York and found that the average rate of unavail-

ability for advertised products was 12%. Similarly, Taylor and Fawcett (2001) investigated availability

of advertised products for three large national mass merchants, four category killers involved in the

office supplies and electronics subcategories and three retail grocers in the Mid-West, and found that

the stock-out ratio for advertised items was twice as high as that of comparable, non-advertised items.

Bils (2004) presents evidence on temporary stockouts for durable consumer goods using data from the

CPI Commodities and Services Survey and finds that from January 1988 to June 2004 the temporary

stockout rate averaged between 8.8% and 9.2%.

Several marketing and psychology studies on consumers’ response to product unavailability (Em-

melhainz, Stock and Emmelhainz, 1991; Anupindi, Dada and Gupta, 1998; Verbeke, Farris and Thurik,

1998; Fitzsimons, 2000; Campo, Gijsbrechts and Nisol, 2000, 2003; Zinn and Liu, 2001) show that con-

sumers are often willing to buy substitute items when faced with stockouts: depending on the specific

characteristics of the product and store under study, the percentage of consumers who is willing to buy

a substitute – within the same store – ranges from 30% to 80%. Through a post-purchase question-

naire, Zinn and Liu (2001) find also that consumers are more likely to leave a store empty-handed if

they are surprised by the stockout; this finding suggests that prior expectations of product availability

may be an important predictor of out-of-stock response. Relatedly, Anderson, Fitzsimons and Simester

(2006) and Ozcan (2008) find that consumers are more willing to buy a substitute if the stockout prod-

uct was on sale or if limited supplies were announced up-front. Conlon and Mortimer (2011) conducted

a field experiment by exogenously removing top-selling products from a set of vending machines and

tracking subsequent consumer responses. Their results show that most consumers purchase another

good when a top-selling product is removed. Moreover, some product removals increase the vendor’s

profits as consumers substitute toward products with higher margins. Ozcan (2008) ran a survey study

in a grocery store where the manager had previously agreed to create stockouts artificially by removing

some items entirely from the shelves. Of all the consumers who replied to the survey saying that they

had experienced a stockout, 11% said they cancelled or postponed the purchase, 49% decided to switch

store (there are two other supermarkets within a 4 minute walking distance from the treated store),

and 40% said they bought a substitute item for the one that was not available.15

3 Model

In this section, I first introduce the consumers’ preferences and outline the timing of the interaction

between the monopolist and the consumers. Then, I describe the consumers’ strategies and illustrate

the logic behind the solution concepts. I end this section with a simple example that shows how the

monopolist can achieve higher profits by strategically manipulating product availability.

15Although product availability is probably more relevant for traditional brick and mortar stores than for online retailers,
recent studies show that limited-availability sales and stockouts pertain to online shopping as well; see Breugelmans, Campo
and Gijsbrechts, (2006), Jing and Lewis (2011) and Kim and Lennon (2011).
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3.1 Environment

There is a unit mass of identical consumers whose intrinsic valuation for good i is vi, i = 1, 2.

Assume v1 ≥ v2 > 0. The goods are substitutes and each consumer is interested in buying at most one
unit of one good. The goods could be two different brands of a consumer durable, such as a household

appliance.16

Consumers have expectations-based reference-dependent preferences as formulated by Kőszegi and

Rabin (2006). In this formulation, a consumer’s (his) utility function has two components. First, when

buying item i at price pi, a consumer experiences consumption utility vi− pi. Consumption utility can
be thought of as the classical notion of outcome-based utility. Second, a consumer also derives utility

from the comparison of his actual consumption to a reference point given by his recent expectations

(probabilistic beliefs).17 For a riskless consumption outcome (vi, pi) and riskless expectations (ṽi, p̃i),

a consumer’s total utility is given by

U [(vi, pi) | (ṽi, p̃i)] = vi − pi + µ (vi − ṽi) + µ (p̃i − pi) (1)

where

µ (x) =

{
ηx if x ≥ 0
ηλx if x < 0

is gain-loss utility.

I assume η > 0 and λ > 1. By positing a constant marginal utility from gains and a constant,

but larger marginal disutility from losses, this formulation captures prospect theory’s (Kahneman and

Tversky 1979, Tversky and Kahneman 1991) loss aversion, but without its diminishing sensitivity. The

parameter η can be seen as the relative weight a consumer attaches to gain-loss utility, and λ can be

seen as the coefficient of loss aversion.

According to (1), a consumer assesses gains and losses separately over product’s quality and money.18

For instance, if his reference point is that he will not get the product (and thus pay nothing), then he

evaluates getting the product and paying for it as a gain in the item dimension and a loss in the money

dimension rather than as a single gain or loss depending on total consumption utility relative to his

reference point. This feature of the Kőszegi-Rabin’s model is what allows the monopolist to extract

more than the consumer’s intrinsic valuation for the good.19 Furthermore, this is consistent with much

16Alternatively, this situation can be thought as one of vertical differentiation in which there are two versions of the
same item, with good 2 being the “basic” version and good 1 being the “advanced” version. All consumers agree on the
vertical ranking of the two goods.
17Recent experimental evidence lends support to Kőszegi and Rabin’s (2006, 2007) expectations-based model of

reference-dependent preferences and loss aversion; see for instance Abeler, Falk, Goette, and Huffman (2011), Ericson
and Fuster (2011), Gill and Prowse (2012), Karle, Kirchsteiger and Peitz (2012), Song (2012) and Sprenger (2011).
18The model of Kőszegi and Rabin (2006) assumes that the gain-loss utility function µ is the same across all dimensions.

In principle, one could also allow for this function to differ across the item and the money dimension. For example,
Novemsky and Kahneman (2005) and Kőszegi and Rabin (2009) argue that reference dependence and loss aversion are
weaker in the money than in the item dimension.
19The other crucial feature of these preferences, which is that the reference point is determined by the decision maker’s

forward-looking expectations, is implicit in disappointment-aversion models of Bell (1985), Loomes and Sugden (1986),
and Gul (1991). However, because in these models gains and losses are assessed along only one dimension, the consumer’s
intrinsic utility (vi − pi, in this paper), they are unable to predict the type of pricing schemes that is the subject of this
paper.
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of the experimental evidence commonly interpreted in terms of loss aversion.20

Because in many situations expectations are stochastic, Kőszegi and Rabin (2006) extend the utility

function in (1) to allow for the reference point to be a pair of probability distribution F = (F v, F p) over

the two dimensions of consumption utility. In this case a consumer’s total utility from the outcome

(vi, pi) can be written as

U [(vi, pi) | (F v, F p)] = vi − pi +
∫

ṽi

µ (vi − ṽi) dF v (ṽi) +
∫

p̃i

µ (p̃i − pi) dF p (p̃i) (2)

In words, when evaluating (vi, pi) a consumer compares it to each possible outcome in the reference

lottery. For example, if he had been expecting to buy good 1 for $15, then buying good 2 for $10 feels

like a loss of v1−v2 on the quality dimension and a gain of $5 on the money dimension.21 Similarly, if a
consumer had been expecting to buy good 1 for either $10 or $20, then paying $15 for it feels like a loss

of $5 relative to the possibility of paying $10, and like a gain of $5 relative to the possibility of paying

$20. In addition, the weight on the loss (gain) in the overall experience is equal to the probability with

which he had been expecting to pay $10 ($20).

To complete this theory of consumer behavior with the above belief-dependent preferences, Kőszegi

and Rabin (2006) assume that beliefs must be consistent with rationality: a consumer correctly antici-

pates the implications of his plans, and makes the best plan he knows he will carry through. Notice that

any plan of behavior – which in my setting amounts simply to a price-contingent strategy of which

item to buy – induces some expectations. If, given these expectations, the consumer is not willing

to follow the plan, then he could not have rationally formulated the plan in the first place. Hence, a

credible plan must have the property that it is optimal given the expectations it generates. Following

the original definitions in Kőszegi and Rabin (2006) and Kőszegi (2010), I call such a credible plan a

personal equilibrium (PE). If there exist multiple credible plans, a rational consumer chooses the one

that maximizes his expected utility from an ex-ante perspective. I call such a favorite credible plan a

preferred personal equilibrium (PPE).22

The seller (she) is a monopolist supplying good 1 and good 2 at a unit cost of c1 ≥ 0 and c2 ≥ 0,
respectively (these could be the wholesale prices). The seller does not experience economies of scale

or scope in supplying these goods. For i = 1, 2, let qi denote the amount or degree of availability of

good i offered by the monopolist. If qi < 1, then good i is subject to “limited availability” so that only

a fraction qi of the consumers can purchase it. I assume that, in the event of a stockout, rationing is

proportional: each consumer has the same ex-ante probability of obtaining the good, which is allocated

to consumers on a random first-come, first-serve basis.23

20This feauture is able to predict the endowment effect observed in many laboratory experiments (see Kahneman,
Knetsch, and Thaler 1990, 1991). The common explanation of the endowment effect is that owners feel giving up the
object as a painful loss that counts more than money they receive in exchange, so that they demand a lot of money for the
object. But if gains and losses were defined over the value of the entire transaction, owners would not be more sensitive
to giving up the object than to receiving money in exchange. Heffetz and List (2011), however, find no evidence that
expectations alone play a part in the endowment effect.
21Therefore, the two goods are substitutes not only in the usual sense, but also in the sense of being evaluated along

the same hedonic dimension.
22 In the simple environment considered in this paper, a PPE always exists and is generically unique. Kőszegi (2010)

discusses conditions for existence and uniqueness of PPE in more general environments.
23Gilbert and Klemperer (2000) show that rationing can be a profitable strategy if consumers must make sunk investe-
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The interaction between the monopolist and the consumers lasts two periods, 0 and 1. In period 0,

the seller announces (and commits to) a price pair (p1, p2) ∈ R2+ and a quantity pair (q1, q2) ∈ [0, 1]2;
after observing the seller’s choice of quantities and prices, consumers pick the plan that is consistent

and that maximizes their expected utility (PPE). I assume also that consumers cannot commit ex-ante

not to go to the store. In period 1, consumers execute their purchasing plans and payments are made.

The assumption about the seller announcing both prices in period 0 is not very realistic because while

stores frequently advertise their good deals, it is rather uncommon to see a store publicizing its high

prices. However, in Appendix B I show that the main results of the paper are unchanged if the seller

commits only to the price and availability of the bargain.24 Finally, I assume that when indifferent

between a plan that involves buying and another plan that involves not buying, consumers always break

the indifference in favor of the first of these plans.

3.2 Consumers’ Demand

Let H ∈ ∆
(
[0, 1]2 × R2+

)
denote a consumer’s expectations, induced by the seller’s strategy, about

the degree of availability and the prices he might face. For a given seller’s choice of prices and degree of

availability, a consumer chooses among five possible plans: (i) “never buy,” (ii) “buy item 1 if available

and don’t buy otherwise,” (iii) “buy item 2 if available and don’t buy otherwise,” (iv) “buy item 1 if

available and otherwise buy item 2 if available” and (v) “buy item 2 if available and otherwise buy item

1 if available.”25 Let σ ∈ {{∅} , {1,∅} , {2,∅} , {1, 2} , {2, 1}} denote a consumer’s plan and let ΓH,σ
denote the distribution over final consumption outcomes induced jointly by H and σ. In a personal

equilibrium the behavior generating expectations must be optimal given the expectations:

Definition 1 σ is a Personal Equilibrium (PE) if

U [σ|ΓH,σ] ≥ U
[
σ′|ΓH,σ

]

for any σ′ 6= σ.

Utility maximization in period 0 implies that the consumer chooses the PE plan that maximizes his

expected utility:

Definition 2 σ is a Preferred Personal Equilibrium (PPE) if it is a PE and

EUΓH,σ [σ|ΓH,σ] ≥ EUΓH,σ′
[
σ′|ΓH,σ′

]

for any σ′ such that σ′ is a PE.

ments to enter the market, and Nocke and Peitz (2007) show that rationing across periods can be profitable in a model of
intertemporal monopoly pricing under demand uncertainty.
24Since consumers have rational expectations, they would correctly infer the price of the rip-off even if it was not publicly

advertised.
25Mixing between plans on the consumers’ side can easily be ruled out by the fact that the seller would never choose a

price-pair inducing a buyer to buy with probability less than 1.
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In the remainder of this section, I analyze the conditions for when plans (i), (ii) and (iv) constitute a

PE or a PPE.26 This allows me to both illustrate the logic of PE and PPE, as well as to start developing

the intuition for my main result on the optimality of limited-availability schemes. Specifically, a central

element of the seller’s strategy is to make sure that plan (i) is not a PE and I start by analyzing

conditions for this.

Conditions for plan (i) to be a PE For never buying to be a PE, the consumer must expect

not to buy. In this case his reference point is to consume nothing and pay nothing. Let the price of

good 1 be p1 and suppose the consumer sticks to his plan. Then, his overall utility is

U [(0, 0) | {∅}] = 0.

What if instead the consumer decides to deviate from his plan and buys item 1? In this case his

overall utility is

U [(v1, p1) | {∅}] = v1 − p1 + ηv1 − ηλp1,

where v1 − p1 is his intrinsic consumption utility from buying item 1 at price p1, ηv1 is the gain he

feels from consuming item 1 when he was expecting to consume nothing, and −ηλp1 captures the loss
he feels from paying p1 when he was expecting to pay nothing. Thus, the consumer will not deviate in

this way from the plan to never buy if

U [(0, 0) | {∅}] > U [(v1, p1) | {∅}]⇔ p1 >
1 + η

1 + ηλ
v1.

A similar threshold can be derived for the case in which the consumer considers deviating from

his original plan and buy item 2 at price p2. Therefore, the plan to never buy is a PE if and only if

p1 >
1+η
1+ηλv1 ≡ pmin1 and p2 >

1+η
1+ηλv2 = p

min
2 because otherwise the consumers would not follow through

their intended plan of not buying. The expected utility associated with the plan to never buy is

EU [{∅} | {∅}] = 0

as the expected utility from planning to consume nothing and pay nothing and expecting to follow this

plan is of course zero.

Therefore, if either p1 ≤ pmin1 or p2 ≤ pmin2 plan (i) cannot be a PE and consumers must select a

plan that involves buying at least one item with positive probability. As I will show in the next section,

it turns out that (unsurprisingly) it is optimal for the seller to induce consumers to select plan (iv)

and thus to expect to never leave the store empty-handed whenever an item is available; however, (less

obviously) it is not optimal for that to be the only PE plan. Hence, the seller would like the consumer

to prefer plan (iv) over plan (ii) ex-ante.

Conditions for plan (ii) to be a PE Suppose a buyer enters the store expecting to buy item

1 if available and not to buy otherwise. In this case his reference point on the product dimension is

to enjoy v1 with probability q1 and to consume nothing with probability 1− q1; similarly, on the price

26The relevant conditions for plans (iii) and (v) are analogous to the ones for plans (ii) and (iv), respectively; hence, I
do not show them here.
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dimension he expects to pay p1 with probability q1 and to pay nothing with probability 1− q1. If the
consumer follows this plan his realized utility if item 1 is indeed available is

U [(v1, p1) | {1,∅}] = v1 − p1 + η (1− q1) v1 − ηλ (1− q1) p1,

where v1−p1 is his intrinsic consumption utility from buying item 1 at price p1, η (1− q1) v1 is the gain
he feels from consuming item 1 when he was expecting to consume nothing with probability 1 − q1,
and −ηλ (1− q1) p1 is the loss he feels from paying p1 when he was expecting to pay nothing with

probability 1 − q1. Suppose that item 1 is available but the buyer instead deviates and does not buy.

In this case his overall utility is

U [(0, 0) | {1,∅}] = 0− ηλq1v1 + ηq1p1,

where 0 is his intrinsic consumption utility, −ηλq1v1 is the loss he feels from consuming nothing when

he was expecting to consume item 1 with probability q1, and ηq1p1 is the gain from paying nothing

instead of p1 which he was expecting to pay with probability q1. Thus, the consumer will not deviate

in this way from his plan if

U [(v1, p1) | {1,∅}] ≥ U [(0, 0) | {1,∅}]⇔ p1 ≤
1 + η (1− q1) + ηλq1
1 + ηq1 + ηλ (1− q1)

v1. (3)

Next, consider the case in which item 1 is not available. If the buyer follows his plan, his overall

utility is U [(0, 0) | {1,∅}]. If instead he deviates and buys item 2, for p1 ≥ p2 his overall utility is

U [(v2, p2) | {1,∅}] = v2 − p2 + η (1− q1) v2 − ηλq1 (v1 − v2) + ηq1 (p1 − p2)− ηλ (1− q1) p2,

where v2−p2 is the intrinsic consumption utility from buying item 2 at price p2, η (1− q1) v2 is the gain
he feels from consuming item 2 compared to the expectation of consuming nothing with probability

(1− q1), −ηλq1 (v1 − v2) is the loss he feels from consuming item 2 instead of item 1 when he was

expecting to consume item 1 with probability q1 (recall that v1 ≥ v2), ηq1 (p1 − p2) is the gain from
paying p2 instead of p1 which he was expecting to pay with probability q1, and −ηλ (1− q1) p2 is the
loss from paying p2 when he was expecting to pay nothing with probability 1− q1. Thus, the consumer
will not deviate in this way from his plan if

U [(0, 0) | {1,∅}] > U [(v2, p2) | {1,∅}]⇔ p2 >
1 + η (1− q1) + ηλq1
1 + ηq1 + ηλ (1− q1)

v2. (4)

Notice that conditions (3) and (4) together imply that U [(v1, p1) | {1,∅}] > U [(v2, p2) | {1,∅}],
so that there is no need to check that a consumer does not want to deviate and buy item 2 when

item 1 is available. Therefore, for p1 ≥ p2, {1,∅} is a PE if and only if p2 > 1+η(1−q)+ηλq
1+ηq+ηλ(1−q)v2 and

p1 ≤ 1+η(1−q)+ηλq
1+ηq+ηλ(1−q)v1. Similarly, for p1 < p2, {1,∅} is a PE if and only if p1 < 1+η(1−q1)+ηλq1

1+ηq1+ηλ(1−q1)v1 and

p2 >
v2[1+η(1−q1)+ηλq1]+q1η(λ−1)p1

1+ηλ . The expected utility associated with this plan is

EU [{1,∅} | {1,∅}] = q1 (v1 − p1)− q1 (1− q1) η (λ− 1) (v1 + p1) . (5)
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The first term in (5), q1 (v1 − p1), is standard expected consumption utility. The second term,
−q1 (1− q1) η (λ− 1) (v1 + p1) , is expected gain-loss utility and it is derived as follows. On the product
dimension, the consumer compares the outcome in which with probability q1 he consumes item 1 and

enjoys v1 with the outcome in which with probability 1− q1 he does not consume and gets 0. Similarly,
on the price dimension he compares paying price p1 with probability q1 with paying 0 with probability

1− q1. Notice that the expected gain-loss utility is always negative as, since λ > 1, losses are felt more
heavily than equal-size gains. Also, notice that uncertainty in the product and uncertainty in money

are “added up” so that the expected gain-loss term is proportional to v1 + p1.

Conditions for Plan (iv) to be a PE For the plan to buy item 1 if available and otherwise

buy item 2, a consumer’s reference point in the product dimension is to consume item 1 and enjoy v1

with probability q1, to consume item 2 and enjoy v2 with probability q2 and to consume nothing with

probability 1− q1− q2; similarly, in the price dimension, a consumer expects to pay p1 with probability
q1, p2 with probability q2 and to pay nothing with probability 1− q1 − q2. Then, if he follows his plan
and buys item 1, for p1 ≥ p2, his realized utility is

U [(v1, p1) | {1, 2}] = v1 − p1 + ηq2 (v1 − v2) + η (1− q1 − q2) v1 − ηλq2 (p1 − p2)− ηλ (1− q1 − q2) p1.

If instead he deviates and buys item 2, his utility is

U [(v2, p2) | {1, 2}] = v2 − p2 − ηλq1 (v1 − v2) + η (1− q1 − q2) v2 + ηq1 (p1 − p2)− ηλ (1− q1 − q2) p2.

Thus, the consumer will not deviate in this way from his plan if

U [(v1, p1) | {1, 2}] ≥ U [(v2, p2) | {1, 2}]⇔ p1 ≤ p2 +
1 + η (1− q1) + ηλq1
1 + ηq1 + ηλ (1− q1)

(v1 − v2) . (6)

Suppose now that once a consumer arrives at the store, item 2 is everything that is left. If he follows

his plan and buys item 2 his overall utility is U [(v2, p2) | {1, 2}]. If instead he deviates and does not
buy his utility is

U [(0, 0) | {1, 2}] = 0− ηλq1v1 − ηλq2v2 + ηq1p1 + ηq2p2.

Thus, the consumer will not deviate in this way from his plan if

U [(v2, p2) | {1, 2}] ≥ U [(0, 0) | {1, 2}]⇔ p2 ≤
1 + ηλ (q1 + q2) + η (1− q1 − q2)
1 + η (q1 + q2) + ηλ (1− q1 − q2)

v2. (7)

Notice that conditions (6) and (7) together imply that U [(v1, p1) | {1, 2}] > U [(0, 0) | {1, 2}]. Hence,
for p1 ≥ p2, {1, 2} is a PE if and only if p1 ≤ p2+1+η(1−q1)+ηλq1

1+ηq1+ηλ(1−q1) (v1 − v2) and p2 ≤
1+ηλ(q1+q2)+η(1−q1−q2)
1+η(q1+q2)+ηλ(1−q1−q2)v2.

Similarly, for p1 < p2, {1, 2} is a PE if and only if p2 ≤ 1+ηλ(q1+q2)+η(1−q1−q2)
1+ηq2+ηλ(1−q2) v2 +

η(λ−1)q1
1+ηq2+ηλ(1−q2)p1.
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The expected utility associated with this plan is

EU [{1, 2} | {1, 2}] = q1 (v1 − p1) + q2 (v2 − p2) (8)

−q1 (1− q1 − q2) η (λ− 1) (v1 + p1)
−q2 (1− q1 − q2) η (λ− 1) (v2 + p2)
−q1q2η (λ− 1) (v1 − v2)
−q1q2η (λ− 1) (max {p1, p2} −min {p1, p2}) .

The first and second terms in (8), q1 (v1 − p1) + q2 (v2 − p2), are the standard expected consump-
tion utility terms. The third term, q1 (1− q1 − q2) η (λ− 1) (v1 + p1), is always negative and captures
expected gain-loss utility in both the product and the money dimensions from comparing the outcome

in which the consumer buys item 1 and pays p1 with the outcome of returning home empty-handed.

Similarly, the fourth term captures expected gain-loss utility in both dimensions from comparing the

outcome of buying item 2 at price p2 with the outcome of returning home empty-handed. The fifth

term, −q1q2η (λ− 1) (v1 − v2), captures expected gain-loss utility in the consumption dimension when
comparing the two outcomes in which he buys something: with probability q1 the consumer expects to

buy good 1 and with probability q2 he expects to buy good 2. Notice again that this term is negative,

but it is proportional to (v1 − v2). This is because with this plan, the consumer is “guaranteeing” him-
self to enjoy at least the item he values v2 and the expected gain-loss utility is therefore related only to

by how much more he would prefer to consume the other good (or, the degree of substitutability be-

tween the two goods). The sixth term, −q1q2η (λ− 1) (max {p1, p2} −min {p1, p2}), captures expected
gain-loss utility in the money dimension when comparing the two outcomes in which he buys and can

be explained in a similar fashion.

Conditions for Plan (iv) to be the PPE Suppose that p1 ≥ p2. When both plan (ii) and (iv)
are Personal Equilibria, a consumer will select plan (iv) rather than plan (ii) if and only if

EU [{1, 2} | {1, 2}] ≥ EU [{1,∅} | {1,∅}]⇔ v2 − p2 ≥ η (λ− 1) (1− 2q1 − q2) (v2 + p2) . (9)

Similarly, for p1 < p2 a consumer will select plan (iv) rather than plan (ii) if and only if

v2 − p2 ≥ (1− q2) η (λ− 1) (v2 + p2)− 2q1η (λ− 1) (v2 + p1) . (10)

Notice, crucially, that conditions (9) and (10) might hold even if p2 > v2. Therefore, a consumer

might prefer, from an ex-ante perspective, to plan to always buy even if p2 > v2. This happens because,

by planning to always buy, the consumer is essentially insuring himself against extreme fluctuations in

his consumption outcome.27

27More generally, as shown in Kőszegi and Rabin (2007), a decisionmaker with expectations-based loss aversion dislikes
uncertainty in consumption utility because he dislikes the possibility of a resulting loss more than he likes the possibility
of a resulting gain.
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3.3 An Illustrative Example

Consider a monopolist supplying two goods, 1 and 2, to a unit mass of consumers who have

expectations-based reference-dependent preferences with η = 1 and λ = 3. Let v1 = v, v2 =
2
3v,

c1 =
3
5v and c2 =

v
3 . If she had to provide full availability, the seller would supply only item 1 and price

it at v, obtaining a profit of 25v.

Consider instead the following limited-availability scheme: q1 =
1
4 , q2 =

3
4 , p1 =

v
2 and p2 = v. Since

p1 < p
min
1 , it is not a PE for consumers to never buy: the price of item 1 is so low that if consumers

had planned not to buy it, then if item 1 is indeed available, they would like to surprise themselves and

buy it, and since the price is very low, the gain on the item dimension more than outweighs the loss on

the money dimension.

The plan to buy item 1 if available and nothing otherwise is a PE because p1 <
5
7v1 and p2 >

5v2+p1
8 . Intuitively, if consumers enter the store with the expectation of consuming item 1 with positive

probability and item 1 is available, they are willing to follow their plan since the price of item 1 is

relatively low compared to its intrinsic value; however, they are not willing to buy item 2 if they were

not expecting to do so, since the price of item 2 is relatively high compared to its intrinsic value.

Similarly, the plan to buy item 1 if available and item 2 otherwise is a PE because p2 <
8v2+p1
5 .

The intuition is that, by planning to always buy something, consumers expect to enjoy at least v2 for

sure; because of this attachment effect, therefore, they are willing to buy item 2 if they were expecting

to do so even if its price is relatively high. Furthermore, this plan is the PPE since

EU [{1, 2} | {1, 2}] =
1

4

(
v − v

2

)
+
3

4

(
2

3
v − v

)
− 9

16

(
v

3
+
v

2

)

>
1

4

(
v − v

2

)
− 9

16

(
v +

v

2

)
= EU [{1,∅} | {1,∅}] .

The reason why, from an ex-ante point of view, consumers prefer the plan to always buy is that this

plan reduces the magnitude of the fluctuations of their consumption outcomes and, therefore, makes

them subject to a smaller expected gain-loss disutility. Finally, notice that with this limited-availability

scheme the seller’s profit equals 1940v, which is higher than the profit under full availability.

This example illustrates already many of the key insights of the general model. First, with a limited-

availability scheme the seller is able to obtain a higher profit than what she can obtain with perfect

availability. The prices of the bargain and the rip-off are chosen by the seller in a way such that (i)

not buying is not a PE for the consumers and (ii) planning to always buy is the consumers’ PPE.

Furthermore, the superior item is chosen as the bargain and it is priced below its marginal cost. The

purpose of the next section is to formalize and generalize these insights.

4 Optimal Availability and Pricing

In this section I derive the seller’s profit-maximizing schemes. I divide the analysis in two cases. In

the first sub-section, I consider the case of close substitutes. I define two goods to be close substitutes

if the two following conditions hold both:

(i) v2 >
(

1+ηλ
2+ηλ+η

)
v1;
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(ii) v2 >

√
v1(1+η)[2(c1−c2)(η2λ2−η2λ+2ηλ−η+1)+v1(1+η)]−η(λ−1)(1+η)v1

η2λ2−η2λ+2ηλ−η+1 .

The first condition ensures that the price of the superior product, when this is the rip-off, is higher

under limited availability than under perfect availability. The second condition ensures that the price of

the rip-off is higher than the price of the bargain, even when the inferior product is used as the rip-off.

I show that when the products are close substitutes, the seller’s profit-maximizing limited-availability

scheme entails prices being farther away than valuations.

In the second sub-section, I consider the case of distant substitutes – when either condition (i)

or (ii) fails – and I show that in this case the seller always uses the superior product as a bargain.

Moreover, when the products are distant substitutes, the seller’s profit-maximizing limited-availability

scheme encompasses prices being less dispersed than valuations.

4.1 Close Substitutes

For given prices (p1, p2) and “quantities” (q1, q2), the monopolist’s profit is

π (p1, p2, q; c1, c2) = q1 (p1 − c1) + q2 (p2 − c2) .

If consumers were not loss-averse, the profit-maximizing strategy for the seller would be to just set

pi = vi, for i = 1, 2, and q1 = 1 (resp. q2 = 1) if v1− c1 ≥ v2− c2 (resp. if v1− c1 < v2− c2). Consumers
would get zero surplus and the seller’s profit would be exactly v1 − c1 (resp. v2 − c2).

The first lemma of this section shows that with loss-averse consumers, if restricted to supply one

good with certainty, the above mentioned strategy remains the monopolist’s profit-maximizing one.28

Lemma 1 With perfect availability the monopolist cannot extract more than v1 from the consumers.

In general, however, this strategy need not be the profit-maximizing one when consumers are loss-

averse as the seller instead can achieve a higher profit by reducing the availability of some goods and

thus inducing uncertainty into the buyers’ plans.

The next lemma states that even though she might reduce the degree of availability of some goods,

it is in the seller’s best interest that all consumers get to buy a good for sure, and the uncertainty

is only about which good they will buy.29 The intuition for this result relies on the seller’s intent to

mitigate the “comparison effect” and simultaneously magnify the “attachment effect” for the consumers

(Kőszegi and Rabin, 2006). An increase in the likelihood of buying increases a consumer’s sense of loss

if he does not buy, creating an “attachment effect” that increases his willingness to pay. On the other

hand, for a fixed probability of buying, a decrease in the price a consumer expects to pay makes paying

a higher price feel like more of a loss, creating a “comparison effect” that lowers his willingness to pay

the high price.

Lemma 2 The market is fully covered: q1 + q2 = 1.

28All proofs are relegated to Appendix A.
29A similar result is provided by Pavlov (2011) and Balestrieri and Leao (2011) for the case of a monopolist selling

substitutes to risk-neutral consumers.
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With q1+q2 = 1, if a consumer plans to always buy, he is guaranteed to get at least the less preferred

item (v2) and thus he is not exposed anymore to the possibility of returning home empty-handed; this

increases the consumer’s willingness to pay through the attachment effect. At the same time, because

the possibility of buying nothing has disappeared, the consumer expects to always spend some money;

this also increases the consumer’s willingness to pay through reducing the comparison effect.

Given Lemma 2, from this point forward I am going to use q and 1− q to denote the quantities of
good 1 and 2, respectively. The lemma below shows that with limited availability, the monopolist must

offer at least one good at a discounted price.

Lemma 3 If q ∈ (0, 1) then either p1 < v1 or p2 < v2.

With limited availability, a consumer faces uncertainty about his consumption outcome before

arriving at the store and because losses are felt more heavily than gains, if he expects to buy with

positive probability, his expected gain-loss utility is negative. Therefore, for a consumer to be willing

to plan to buy, the seller must guarantee him a strictly positive intrinsic surplus on at least one item,

otherwise he would be better off by planning to not buy and this plan would be consistent for p1 ≥ v1
and p2 ≥ v2.

Having established that the monopolist can sell a strictly positive quantity of both goods only if one

of them is priced at a discount, the next question is how big this discount must be. The next lemma

states that the seller must offer a bargain on this good; in other words, its price must be so low that it

is not credible for consumers to plan on not buying.

Lemma 4 If q ∈ (0, 1) the seller chooses prices such that the plan to never buy is not a PE.

Since, for a given product i, the highest price the seller can charge to make not buying a non credible

plan is pmini ≡ 1+η
1+ηλvi, then it must be that if the seller is producing both goods in strictly positive

quantity, one of them is priced at this “forcing price.”30

What about the price of the other item? If she produces a strictly positive quantity of both goods,

the seller wants the buyers to plan to always buy. However, as the lemma below shows, it is not optimal

for the seller to choose the other price such that always buying is the unique consistent plan. Instead,

the optimal price pair is such that consumers are indifferent, ex-ante, between the plan of always buying

and the plan of buying only the bargain item.

Lemma 5 For q ∈ (0, 1), if the seller uses item 2 as the bargain (i.e., p2 = pmin2 ), then the optimal

price for item 1 is

p∗1 = v1 +
2 (1− q) η (λ− 1) [v2 (2 + η + ηλ)− v1 (1 + ηλ)]

(1 + ηλ) [1 + η (λ− 1) (1− q)] > v1.

If instead she uses item 1 as the bargain (i.e., p1 = p
min
1 ), then the optimal price for item 2 is

p∗2 = v2 +
2qv1η (λ− 1) (1 + η)

(1 + ηλ) [1 + η (λ− 1) q] > v2.

30This result is akin to the single-product one in Heidhues and Kőszegi (forthcoming) from whom I borrowed the term
“forcing price.”
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This last lemma implies that consumers are willing to pay a premium, in the form of a higher

price on the item that is not on sale (and therefore in the form of a higher expected expenditure), to

avoid ex-ante the disappointment of leaving the store empty-handed. Furthermore, p∗i is the highest

price such that consumers (weakly) prefer, from an ex-ante point of view, the plan of buying item j if

available and item i otherwise to the plan of buying item j if available and nothing otherwise, when

item j is sold at its “forcing price.” To gain intuition on why a consumer might find it optimal to plan

to buy at p∗i > vi, suppose the seller uses item 1 as the bargain, by pricing it at pmin1 . If a consumer

plans to buy only item 1 and nothing otherwise his expected utility is equal to

q
(
v1 − pmin1

)
− η (λ− 1) q (1− q)

(
v1 + p

min
1

)
.

While the term relating to consumption utility in the above expression is strictly positive, the

expected gain-loss utility term is strictly negative. If instead the consumer plans to always buy, then

his expected utility is

q
(
v1 − pmin1

)
+ (1− q) (v2 − p∗2)− η (λ− 1) q (1− q)

(
v1 − v2 + p∗2 − pmin1

)
.

In the above expression the expected gain-loss utility is still negative, but now its magnitude is
(
v1 − v2 + p∗2 − pmin1

)
.31 Therefore, as long as p∗2 − v2 < 2pmin1 , by planning to always buy a consumer

is subject to a smaller expected gain-loss disutility and this allows the seller to raise p∗2 above v2.

Furthermore, the closer v2 is to v1, the more freedom the seller has in raising p
∗
2, implying that dispersion

in prices and dispersion in valuations are inversely related.

Both rip-off prices p∗1 and p
∗
2 are increasing in the degree of availability of their respective bargain

item – 1− q and q – implying that the attachment effect (see Kőszegi and Rabin, 2006 and Heidhues

and Kőszegi, forthcoming) carries over to the case of multiple goods evaluated along the same hedonic

dimension.

Similarly, notice that
∂p∗

i

∂vj
> 0, for i, j = 1, 2, i 6= j. Thus, expectations-based loss aversion produces

a kind of positive demand spillover across products, despite these being substitutes. Indeed, both p∗1

and p∗2 are written as the sum of two components: the direct effect, which simply equals the consumers’

intrinsic valuation for the product, and the spillover effect due to loss aversion. Notice that while the

spillover effect for p∗2 depends only on v1 and is increasing in it, the spillover effect for p
∗
1 depends

both on v1 and v2 and is increasing in the former and decreasing in the latter. Intuitively, increasing

consumers’ intrinsic value for item 1 makes item 2 is not such a good substitute for it. This, however,

does not affect p∗2 because when item 1 is the bargain, a higher v1 increases consumers’ expected gain-

loss disutility when planning to buy only the bargain and when planning to always buy by the same

amount.

Having derived the optimal prices for the bargain and the rip-off, the next step for the seller is

to choose the optimal degree of availability for each item. For example, consider the case in which

the seller uses item 2 as the bargain. Then, she is going to choose the q that solves the following

31The second condition about close substitutability ensures that p∗2 − pmin1 > 0.
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maximization problem:

max
q
q (p∗1 − c1) + (1− q)

(
pmin2 − c2

)
.

The first-order condition yields

p∗1 − c1 −
(
pmin2 − c2

)
+ q

∂p∗1
∂q

= 0. (11)

Notice that q
∂p∗

1

∂q
< 0 because of the attachment effect: the higher the degree of availability of

the bargain, the more optimistic the consumers’ beliefs about making a deal. This in turn, allows

the seller to charge a higher mark-up on the rip-off. On the other hand, a greater availability of the

bargain necessarily means fewer sales of the rip-off and hence reduces the seller’s profits, as captured

by p∗1 − c1 −
(
pmin2 − c2

)
> 0. At the optimal degree of availability these two effects offset each other.

Lemma 6 If the seller uses item 2 as the bargain, the optimal degree of availability of item 1 is

q = argmax
q
π
(
p∗1, p

min
2 , q; c1, c2

)
, with q ∈

(
1
2 , 1

)
. If instead she uses item 1 as the bargain, the optimal

degree of availability of item 1 is q = argmax
q
π
(
pmin1 , p∗2, q; c1, c2

)
, and q ∈

(
0, 12

)
if v2 − c2 ≥ v1 − c1

or if v2 − c2 < v1 − c1 and η ≤ 1. Furthermore, q > 1− q.

When the bargain is the product with the lower social surplus, the seller always supplies more units

of the rip-off item than the bargain. So, even if a high degree of availability for the bargain allows her,

via the attachment effect, to increase the price of the rip-off, the effect is not strong enough for the

seller to be willing to sell the bargain more often than the rip-off. This can be seen most easily when

the two items are perfect substitutes (v1 = v2 = v) and have zero costs. In this case, (11) reduces to:

1 +
2η (λ− 1) (1− q)
1 + η (λ− 1) (1− q)

1 + η

1 + ηλ
=
1 + η

1 + ηλ
+

2η (λ− 1) q
[1 + η (λ− 1) (1− q)]2

1 + η

1 + ηλ
. (12)

The left-hand-side of (12) captures the seller’s marginal gain from an increase in q; similarly, the

right-hand-side captures the seller’s marginal loss. The following is necessary for (12) to hold:

2η (λ− 1) q
[1 + η (λ− 1) (1− q)]2

>
2η (λ− 1) (1− q)
1 + η (λ− 1) (1− q)

⇔ q

1− q > 1 + η (λ− 1) (1− q) .

The above inequality can be satisfied only for q > 1
2 . Then, for vi− ci > vj − cj , i, j ∈ {1, 2}, i 6= j

if item j is the bargain it follows

p∗i − ci > vi − ci > vj − cj > pminj − cj ,

so that the seller’s margins on the two items are even further apart if the items are not perfect substitutes

and have different costs. Hence, the seller wants to reduce the availability of the bargain below 1
2 even

more.

On the other hand, suppose that v2 − c2 < v1 − c1 but the seller uses item 1 as the bargain (as

shown in the lemma below, this can be a profit-maximizing strategy for the seller). In this case we have
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that p∗2 > v2 and p
min
1 < v1, yet the difference p

∗
2 − c2 −

(
pmin1 − c1

)
could be relatively small. Then,

as λ tends to 1 pmin1 approaches v1 and for η > 1 the attachment effect could be strong enough for the

seller to choose q > 1
2 .

Furthermore, as q > 1−q, the seller chooses a higher degree of availability for the bargain when this
is the superior item. Intuitively, when the seller uses the superior item as the bargain, some consumers

will end up paying a very high price for the item they like the least; in order to convince them to do

so, the seller must compensate the consumers with a higher ex-ante chance of making a deal.

The above analysis does not specify which item the seller would prefer to use as the bargain. To

determine whether the seller would prefer to use item 1 or 2, we must compare her profits in the two

cases. Unfortunately, these are complex non-linear functions of v1 and v2, which are difficult to sign even

in the simplest cases and are intractable in general. To overcome this difficulty, I employ comparative

statics techniques based on the envelope theorem; but the downside of this approach is that some of

the results in the following lemma apply only for small changes in the relevant parameters.32

Lemma 7 If the two goods are perfect substitutes (i.e., v1 = v2) the seller prefers to use as the bargain

the one with the higher marginal cost and is indifferent if the two goods have the same marginal cost

(i.e., c1 = c2). For v1 > v2, the seller uses item 2 as the bargain only if v1−c1+c2 > v2 > 2(1+ηλ)(c1−c2)
1+2η

and v1 ≥ ṽ1, where ṽ1 is implicitly defined by:
[
1− η (λ− 1) (1− q)
1 + η (λ− 1) (1− q)q −

1 + η

1 + ηλ
q −

(
1− q

) 1 + η

1 + ηλ

2qη (λ− 1)
1 + qη (λ− 1)

]
(v1 − v2) ≥

(
q − q

)
(c1 − c2) .

Otherwise, she prefers using item 1 as the bargain.

So, if v1 − c1 ≤ v2 − c2, the seller always uses item 1 as the bargain. Arguably more interesting,

however, is the fact that the seller might prefer to use item 1 as the bargain even when this is the item

with the greater social surplus (i.e., v1 − c1 > v2 − c2). The intuition for this result can be seen in
two steps. First, as v1 > v2 it follows that p

min
1 > pmin2 and this in turn implies that p∗2

(
q
)
> p∗1 (q)

through both the attachment effect and the comparison effect. So both prices are higher when the

seller uses item 1 as the bargain. However, from this we cannot yet conclude that the seller’s revenue

is higher when she supplies item 1 at a discount because the weights, q and q, are different. Indeed,

we know from lemma 6 that the seller supplies more units of the rip-off when this is the superior good.

Nevertheless, for v1− v2 small enough the difference in the weights is a second-order one and the seller
prefers to use item 1 as the bargain even if c1 = c2. Second, if c2 < c1, by using the superior item as

the bargain, the seller is able to reduce her average marginal cost by more, compared to the case in

which she uses item 2 as the bargain.

Figure 1 shows how the profitability of different schemes changes with v1 for the case in which

v1 − c1 > v2 − c2 and the difference in marginal costs is small. The black line represents the seller’s
profits when supplying only item 1 at price p1 = v1, whereas the green and red curves depict the seller’s

profits with limited availability when either item 1 or 2 is used as the bargain item, respectively (notice

that the seller’s overall profit is given by the upper envelope of these three curves). Concerning the

32The results apply only for small changes because comparative statics techniques linearize profits around the maximum.
Klemperer and Padilla (1997) use the same approach in a similar context.
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choice of the bargain item, in the graph we can distinguish three different regions, delimited by the two

dashed vertical lines. For relatively low values of v1, the profit-maximizing strategy for the seller is to

use a limited-availability deal and use item 1 as the bargain. As v1 increases, the difference between the

green and the red curve becomes smaller and eventually the two cross. Then, for intermediate values

of v1, the seller maximizes profits by using item 2 as the bargain item. Finally, for high values of v1

the seller prefers to supply just item 1 and price it at its intrinsic value.

80 90 100

70

80

90

p

v1

Figure 1: Profits as a function of v1, for η = 1, λ = 3, v2 = 80, c1 = 12, c2 = 10.

When the difference in marginal costs is larger, however, the seller prefers to use item 1 as the

bargain item for low as well as intermediate values of v1. This is shown in Figure 2 where the green

curve is always above the red one. In this case item 1 is more valuable to the consumer and it has a

larger social surplus; yet it is never used as a rip-off item.
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Figure 2: Profits as a function of v1, for η = 1, λ = 3, v2 = 80, c1 = 20, c2 = 10.

The following proposition, which constitutes the main result of this section, identifies the necessary

and sufficient conditions for a limited-availability scheme to be profit-maximizing.
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Proposition 1 Fix any η > 0 and λ > 1. The seller’s profit-maximizing strategy is as follows:

(i) for v1 ≤ v2 − c2 + c1 there exists a α (v2, c1, c2, η, λ) such that if v1 ≥ α the seller uses item 1 as

the bargain and item 2 as the rip-off, and if v1 < α she supplies only item 2;

(ii) for ṽ1 > v1 > v2 − c2 + c1 there exists a β (v2, c1, c2, η, λ) such that if v1 ≤ β the seller uses item 1

as the bargain and item 2 as the rip-off, and if v1 > β she supplies only item 1;

(iii) for v1 > ṽ1 there exists a γ (v1, c1, c2, η, λ) such that if v2 ≥ γ the seller uses item 2 as the bargain

and item 1 as the rip-off, and if v2 < γ she supplies only item 1.

Furthermore, π (p1, p2, q; c1, c2) ≥ max {v1 − c1, v2 − c2} and the inequality is strict if both items are
supplied.

The exact expressions for α, β and γ are derived in the proof of the proposition in Appendix A.

What they imply is that, if the two goods are close substitutes, the seller’s profit-maximizing strategy

consists of luring the consumers with a tempting discount on one good which is available only in limited

supply (pmini < vi) and cashing in with a high price on the other (p
∗
j > vj). Moreover, by offering both

products and inducing uncertainty into the buyers’ plans through this type of limited-availability deals,

the seller is able to achieve a profit higher than max {v1 − c1, v2 − c2}.
The limited-availability scheme described in Proposition 1 cannot be rationalized by introducing

a shopping (or search) cost into a model where consumers have traditionally assumed reference-free

preferences. The reason is that, although shopping (or search) costs that are sunk once the consumers

reach the store induce an ex-post boost in consumers’ willingness to pay, this boost (i) is independent

of a good’s intrinsic consumption value, (ii) is always smaller than the intrinsic value itself – otherwise

consumers would not go to the store, even if the price were to be zero – and, crucially, (iii) because

randomization does not affect a risk-neutral consumer’s reservation utility, any profit the seller can

achieve with randomization could be also achieved with a single price.33 Therefore, in this case the

seller would simply supply the product with the larger social surplus and price it at its intrinsic value

minus the shopping (or search) cost.

It is possible for the seller to find this limit-availability strategy profit-maximizing even if the bargain

is a loss leader, as the following example shows.

Example 3 (Loss Leader) Let η = 1, λ = 3, v1 = 60, v2 = 40, c1 = 35 and c2 = 22. For these

parameters’ values the seller profit-maximizing strategy is given by: q = 3
√
5√
83
− 1

2 , p
min
1 = 30 and

p∗2 =
200q+40

2q+1 = 59. 26. Item 1 is used as a loss leader and the seller’s profit is 27. 27.

By combining the results in Proposition 1 with the condition for the bargain item to be a loss leader

(i.e., pmini < ci) we immediately obtain the following result.

Corollary 1 Item 1 is a loss leader if either 1+ηλ1+η c1 > v1 ≥ α or v1 < min
{(

1+ηλ
1+η

)
c1, β

}
. Similarly,

item 2 is a loss leader if 1+ηλ1+η c2 > v2 ≥ γ.
33 If consumers are risk-averse in the sense of Expected Utility Theory, then randomization in prices yields always lower

profits than committing to a single price since consumers must be compensated for the ex-ante risk they face about the
price.
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As shown by Ambrus and Weinstein (2008), classical models of consumers behavior can rationalize

the use of loss leaders when the goods are complements but not when they are substitutes. The reason is

that with classical preferences a store might benefit from using a loss-leading strategy only if consumers

buy other items together with the loss leader. In my model, instead, the presence of loss leaders still

attracts consumers into the store but, because the loss-leading product is in shortage, in equilibrium

some consumers end up buying a different, more expensive product.

Despite the consumers being homogeneous in terms of tastes for both items, the bargains and rip-

offs strategy described above endogenously separates them. Some consumers end up purchasing the

good that is offered at a discount, making a bargain indeed. Others, instead, end up purchasing the

other good and paying for it even more than their intrinsic valuation. The next result shows that in

expectation consumers are hurt by this strategy.

Proposition 2 For any η > 0 and λ > 1 a consumer’s expected surplus is at most zero and therefore

he would be better off if he could commit to a strategy of never buying rather than following through his

actual equilibrium strategy of always buying.

As with the similar result obtained in Heidhues and Kőszegi (forthcoming), Proposition 2 suggests

that firms’ sales are “manipulative” in the sense that they lead the consumers to go to the store even

though ex-ante they would prefer not to. Consumers enter the store with the expectations – induced

by the seller – of making a bargain by purchasing a good on sale and then might end up buying

something else at an even higher price. Of course, this rather extreme result relies on the assumption

that the seller knows the consumer’s preferences perfectly. Nevertheless, Proposition 7 below shows

that even with consumer heterogeneity, some consumers who buy would be better off making and

following through a plan of never buying. Notice also that the assumption about the seller being able

to credibly commit in advance to a given degree of availability is crucial. In fact, she has a strong

incentive to always claim, ex-post, that the bargain item is sold-out and to try to sell only the rip-

off. Having rational expectations, however, the consumers would correctly anticipate this and would

never plan to buy to begin with and this plan would be consistent. Hence, the current FTC Guides

Against Bait Advertising, by allowing to advertise limited-availability deals, provide the stores exactly

with the commitment power they need to implement this exploitative scheme. Abolishing the role

of limited-supply claims as a disclaimer for bait-and-switch or mandating retailers to issue rainchecks

when advertised products are out of stock, would therefore improve consumers’ welfare.

In addition to the consumers being worse off with limited availability, the monopolist’s product line

is sub-optimal:

Remark 1 With limited availability, if v1 − c1 6= v2 − c2, the monopolist’s profit-maximizing product
mix differs from the socially optimal one.

Therefore, except for the non-generic case in which the two goods contribute equally to social

surplus (v1 − c1 = v2 − c2), by employing a limited-availability strategy, the seller is reducing welfare
compared to first-best, according to which only the item with the larger social value should be supplied.

The monopolist, however, can make matters even worse and bring into the market a socially wasteful

product, as the following examples show.
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Example 4 (Wasteful Product 1) Let η = 1, λ = 3, v1 = 20, v2 = 15, c1 = 21 and c2 = 10. For

these parameters’ values the seller profit-maximizing strategy is given by: q =
√
15−3
6 , pmin1 = 10 and

p∗2 =
70q+15

2q+1 = 35− 4
√
15 for a total profit of 6.52.

Example 5 (Wasteful Product 2) Let η = 1, λ = 3, v1 = 30, v2 = 24, c1 = 28 and c2 = 25. For

these parameters’ values the seller profit-maximizing strategy is given by: q =
√
105−7
14 , pmin1 = 15 and

p∗2 =
108q+24

2q+1 = 54− 2
√
105 for a total profit of 3.52.

In fact, none of the results required vi > ci, i ∈ {1, 2}. The intuition in Example 4 is that, albeit
socially wasteful, item 1 is highly valuable to the consumers and this makes it an ideal candidate for a

bait. The intuition is somewhat different for Example 5 because the seller is now introducing an item

that is socially wasteful as well as inferior for the consumers; the key here is that item 2 has a lower

marginal cost than item 1 and therefore the seller can reduce her average marginal cost by introducing

such a wasteful item. Average revenue also decreases, but as the example shows the cost-saving effect

might outweigh the decrease in revenue. Furthermore, by comparing Example 4 with Example 5, we

see also that the socially wasteful product can be either the bargain or the rip-off.

By combining the results in Proposition 1 with the condition for an item to be socially wasteful

(i.e., vi < ci) we immediately obtain the following result.

Corollary 2 The seller supplies a socially wasteful product only if item 1 is used as the bargain. She

supplies a socially wasteful item 1 if and only if v2 − c2 ≥ 0 > v1 − c1 and v1 ≥ α. She supplies a

socially wasteful item 2 if and only if v1 − c1 ≥ 0 > v2 − c2 and β ≥ v1.

Moreover, with limited availability the seller could even supply two socially wasteful products and

still obtain strictly positive profits.34

Example 6 (Two Wasteful Products) Let η = 1, λ = 3, v1 = 20, v2 = 9, c1 = 21 and c2 = 10.

For these parameters’ values the seller profit-maximizing strategy is given by: q =
√
2−1
2 , pmin1 = 10 and

p∗2 =
58q+9

2q+1 = 29− 10
√
2 for a total profit of 1.57.

Example 6 shows how the seller can simultaneously exploit the aforementioned effects and supply

two socially wasteful products at the same time: item 1 is highly valuable and thus allows the seller

to increase her revenue whereas item 2 has a strong cost-saving effect. Unlike other models where

consumers buy socially wasteful products (i.e., Gabaix and Laibson, 2006 and Heidhues,Kőszegi and

Murooka, 2012), consumers are rational in my model and it is the combination of reference dependence

and lack of ex-ante commitment that makes them buy socially wasteful products.

I end this section with the comparative statics with respect to the products’ social value for the

seller’s profits under limited availability.

Proposition 3 Let π1 ≡ π
(
p∗1, p

min
2 , q; c1, c2

)
and π2 ≡ π

(
pmin1 , p∗2, q; c1, c2

)
and assume η ≤ 1. Then,

we have: dπ1
dv2

>
∣∣∣dπ1dc2

∣∣∣ > 0, dπ2dv1
>
∣∣∣dπ2dc1

∣∣∣ > 0, dπ2dv2
=
∣∣∣dπ2dc2

∣∣∣ > 0 and
∣∣∣dπ1dc1

∣∣∣ > dπ1
dv1

> 0.

34A similar implication arises also in the paper of Heidhues and Kőszegi (forthcoming), where a single-product monopolist
sells an item valued at v > 0 by the consumers. Because the monopolist is able to extract, in expectation, more than v
from the consumer, she can still attain strictly positive profits for c > v.
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When consumers have classically-assumed reference-free preferences, increasing their valuation for

a product from v to v+ ς , with ς > 0, by making it more appealing, or reducing the product’s marginal

cost by the same amount, would have the same effect on the seller’s profit. Proposition 3 implies that

this is no longer the case if consumers have reference-dependent preferences.

Intuitively, since the bargain item is a bait that lures consumers into the store and that the seller

does not want to sell more often than necessary, her profits rise by more if this product is made more

appealing than if its marginal cost is reduced. Indeed, as previously highlighted, expectations-based

loss-averse preferences induce a positive demand spillover across products since the more valuable the

bargain item is, the higher the price the seller can charge the consumers for the rip-off.

Things are different, however, for the rip-off. Since this is the item the monopolist sells more often,

she has a bigger incentive to reduce its marginal cost. When item 2 is the rip-off, the two effects go in

opposite directions, but have the same magnitude and end up offsetting each other. When instead item

1 is the rip-off, the gain from reducing its marginal cost is strictly larger than the one from increasing

its appeal to consumers. In fact, if item 1 becomes more valuable by ς, consumers’ ex-ante uncertainty

in the product dimension also increases by ς so that the seller can raise p∗1 by less than ς. This can be

easily seen by recalling that the spillover effect for p∗1 is decreasing in v1.

4.2 Distant Substitutes

The conditions for the items being close substitutes pertain to the price of the rip-off item, not

the price of the bargain. Therefore, the first four lemmas of the previous section apply also when the

products are distant substitutes, since these lemmas do not rely on any assumption concerning the

rip-off item.

Recall the first condition for close substitutability is

v2 >

(
1 + ηλ

2 + ηλ+ η

)
v1 ⇔ pmin2 > v1 − v2.

If this condition is violated, it is never profit-maximizing for the seller to use product 1 as the rip-off

item, as shown in the following proposition.

Proposition 4 Let pmin2 ≤ v1−v2. Then, there does not exist a limited-availability scheme, where item
1 is used as a rip-off, yielding a higher profit than the perfect-availability scheme in which the seller

supplies only the item with the larger social surplus and price it at its intrinsic value.

When the items are distant substitutes, and if they plan to always buy, consumers face a lot of ex-

ante uncertainty in the product dimension; therefore, in order to reduce consumers’ expected gain-loss

disutility the seller must price the two goods quite closely. However, this cannot be done by using item

1 as the rip-off because such a scheme necessarily requires prices being further away than valuations;

that is, p1 > v1 and p2 < v2.

The second condition for close substitutability, instead, pertains to the rip-off price of product 2:

v2 >

√
v1 (1 + η)

[
2 (c1 − c2)

(
η2λ2 − η2λ+ 2ηλ− η + 1

)
+ v1 (1 + η)

]
− η (λ− 1) (1 + η) v1

η2λ2 − η2λ+ 2ηλ− η + 1
.
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If the above condition is violated, then p∗2 ≤ pmin1 . In other words, the difference v1 − v2 is so
large that it is impossible for the seller to price the inferior product higher than the superior one.

Nevertheless, there exists a limited-availability scheme in which item 2 is used as the rip-off.

Lemma 8 If the seller uses item 1 as a bargain (i.e., p1 = p
min
1 ), then its degree of availability is

q∗ =
p2 − v2

η (λ− 1) (p2 + v2)

and the optimal price for item 2 is

p2 = min
{
pmax2 , pmin1

}
> v2

where pmax2 ≡ 1+ηλ
1+η v2. Furthermore, q

∗ < 1
2 .

Notice also that

pmax2 ≥ pmin1 ⇔ v2

v1
≥
(
1 + η

1 + ηλ

)2
.

Thus, differently from the result in Lemma 6, when the products are not close substitutes the seller

prices them close to one another, with p1 < v1 and p2 > v2, in order to mitigate consumer’s expected

gain-loss disutility. Furthermore, if pmax2 ≥ pmin1 the optimal limited-availability strategy entails flat

pricing so that the consumers do not face any uncertainty in price. The following proposition delivers

necessary and sufficient conditions for when such a limited-availability scheme is profit-maximizing.

Proposition 5 Fix any η > 0 and λ > 1 and suppose v1 − c1 ≤ v2 − c2 :

(i) for v2
v1
<
(
1+η
1+ηλ

)2
a limited-availability scheme with q = q∗, p1 = pmin1 and p2 = pmax2 is profit-

maximizing if and only if v1 ≥ 1+ηλ
1+η

[(1+η)2−ηλ(1+ηλ)]v2+(1+η)(c1−c2)
1+η ;

(ii) for v2
v1
≥
(
1+η
1+ηλ

)2
a limited-availability scheme with q = q∗, p1 = pmin1 and p2 = pmin1 is profit-

maximizing if and only if v1 ≥ 1+ηλ
1+η

[
c1−c2
η(λ−1) − v2

]
.

Similarly, fix any η > 0 and λ > 1 and suppose v1 − c1 > v2 − c2:

(iii) for v2
v1
<
(
1+η
1+ηλ

)2
a limited-availability scheme with q = q∗, p1 = pmin1 and p2 = pmax2 is profit-

maximizing if and only if v1 ≤ 1+η+2ηλ+η2λ+η2λ2

1+3ηλ+η2λ+η2λ2

(
c1 − c2 + 1+ηλ

1+η v2

)
;

(iv) for v2
v1
≥
(
1+η
1+ηλ

)2
a limited-availability scheme with q = q∗, p1 = pmin1 and p2 = pmin1 is profit-

maximizing if and only if v2 ≥
(c1−c2)[1+η(λη−λ2η+1)]+η2(λ−1)2v1

(c1−c2)[1−η(2λ−λη+λ2η+1)]−η2(λ−1)2v1
1+η
1+ηλv1.

Furthermore, π (p1, p2, q; c1, c2) ≥ max {v1 − c1, v2 − c2} and the inequality is strict if both items are
supplied.
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It is easy to see that, as for the case of close substitutes, the bargain can be a loss leader and the

seller’s product line need not be welfare-maximizing. Finally, notice that, differently from the case of

close substitutes, here c2 < c1 is a necessary condition for a limited-availability scheme to be profit-

maximizing. Indeed, since the rip-off price of item 2 is at most equal to the bargain price of item 1

and because the latter is always below item 1’s intrinsic value, it follows that the seller’s revenue with

limited availability is strictly less than v1. Hence, she must also bring her marginal cost down at least

by the same amount.

5 Extensions

In this section I analyze three extensions of the baseline model with close substitutes. In the first

subsection, I consider the case in which the seller is able to create perfect substitutes of a given product

through a cosmetic change at no additional cost. In this case, the profit-maximizing strategy is always

a limited-availability one. Moreover, if item 2 is the socially superior item, the seller might want

to introduce the socially inferior item 1, even if she can create a perfect substitute for item 2 at no

additional cost.

In the second subsection, I consider a model in which consumers have heterogeneous tastes and I

show that even in this more general case the seller’s profit-maximizing strategy is to reduce availability

and use a combination of bargains and rip-offs. Interestingly, with limited availability, the seller is able

to serve a larger portion of the potential demand.

In the last subsection, I relax the assumption of rational expectations and derive the profit-

maximizing strategy for a monopolist selling to overly optimistic loss-averse consumers. For moderate

levels of optimism, the seller’s profit-maximizing strategy is qualitatively similar to the one with ra-

tional consumers. However, when consumers are extremely optimistic, there is no need for the seller

to offer a tempting deal on one item to make not buying not a credible plan. Instead, she can simply

induce the consumers to believe that they will find the bargain item available for sure at a price equal to

its intrinsic value and then charge for the rip-off the highest price consumers are willing to pay ex-post.

5.1 Endogenous Product Line

In the model of the previous section, the seller was exogenously endowed with two different products

that the consumers regarded as imperfect substitutes. However, retailers can often create almost-

perfect substitutes of a given product through a small cosmetic change that does not affect consumers’

valuations. For example, two TVs might share the same technology and have the same screen-size

and number of pixels, thus providing consumers with the same picture quality, and just differ in their

frame’s color. An alternative interpretation is that the seller is able to charge different prices for some

units of the same product. This happens, for example, when a retailer offers a price reduction on a

particular product only for the first units sold on a day.

To formally model this idea, consider a situation in which the seller can create a perfect substitute

for a product without incurring any additional cost and suppose she is allowed to price these de facto

identical products differently. Therefore, the seller now has the choice between supplying two substi-

tutable but distinct items or just supplying two slightly different versions of the same item. In either
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case, the seller has the option of reducing the availability of one of the items, just like in the model of

the previous section.

Assume v1 > v2, ci ≥ 0, i ∈ {1, 2} and, let pmini , q (η, λ, v1, v2, c1, c2) and q (η, λ, v1, v2, c1, c2) be

defined as in the previous section. Because now the seller can supply two different versions of the same

product, let p∗i,j be the price of the rip-off item i, when item j is the bargain. The following proposition

characterizes the seller’s profit-maximizing strategy.

Proposition 6 Fix any η > 0 and λ > 1. If v1 − c1 > v2 − c2, the seller maximizes profits

by supplying two different versions of item 1: the bargain version is priced at pmin1 , with degree of

availability 1 − q (η, λ, v1, v1, c1, c1) and the rip-off version is priced at p∗1,1, with degree of availability
q (η, λ, v1, v1, c1, c1). If v1−c1 ≤ v2−c2, there exists a ṽ2 < v1 such that: (i) for v2 ≤ ṽ2 the seller max-
imizes profits by using item 1 as a bargain, with price pmin1 and degree of availability q (η, λ, v1, v2, c1, c2)

and item 2 as a rip-off, with price p∗2,1 and degree of availability 1−q (η, λ, v1, v2, c1, c2); (ii) for v2 > ṽ2
the seller maximizes profits by supplying two different versions of item 2: the bargain version is priced

at pmin2 , with degree of availability q (η, λ, v2, v2, c2, c2) and the rip-off version is priced at p
∗
2,2, with

degree of availability 1− q (η, λ, v2, v2, c2, c2).

Proposition 6 delivers several interesting results. First, if the seller can easily create perfect substi-

tutes of the same item that are valued equally by consumers, the profit-maximizing strategy is always

a combination of limited availability, bargains and rip-offs.35 This result can be interpreted as a foun-

dation for the analysis in Heidhues and Kőszegi (forthcoming): although it might not be possible for

the seller to credibly commit to a stochastic pricing strategy, she could achieve the same goal by in-

troducing many slightly different – but equivalent from the consumers’ point of view – versions of

the same product. Second, if the socially superior product is the most preferred by the consumers,

the seller prefers to create perfect substitutes of this product instead of introducing another, inferior,

one. On the other hand, if the socially superior item is the one consumers value the least, the seller

might want to supply both products, even if she could create a perfect substitute for either product

at no additional cost. The intuition is that, albeit socially inferior, item 1 is highly valuable to the

consumers and this makes it an ideal candidate for a bait because it allows the seller to charge an even

higher price for the rip-off, therefore increasing average revenue; although average cost also increases,

the former effect might dominate. In this case the consumers’ most preferred item is used as a bargain

and the seller’s product line is not welfare-maximizing. Finally, it is easy to see that the results from

the previous section about loss leaders and socially wasteful products still apply in this context.

5.2 Heterogeneous Values

In the model analyzed in Section 4 the seller did not face any trade-off between margins and

quantities due to the homogeneity assumption about the consumers’ preferences. In this section, I

consider a more general and realistic environment in which the monopolist faces a classical downward-

sloping demand curve and I show that she can still make higher profits by using a limited-availability

35The results would be the same if the seller had to incur a positive cost k to create the artificial substitute, as long as
k is not too large.
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scheme with a bargain item and a rip-off item. The key insight for this result is that although the

seller must choose between serving a large share of the demand with a low price or a small share of

the demand with a high price, she can still extract from the marginal consumer more than his intrinsic

value for the product.

Consider a seller supplying item 1 at a constant marginal cost c1 ≥ 0 to a unit mass of consumers
who differ in their intrinsic value, v1, for the seller’ product. From the seller’s point of view v1 is a

random variable with distribution F . Assume F is strictly increasing, weakly convex and differentiable,

with positive density f everywhere on the support
[
vl1, v

h
1

]
with vh1 > c1 ≥ vl1 ≥ 0.36

Without loss aversion the seller would just choose the price p̂1 that solves the following maximization

problem:

max
p1

(p1 − c1) [1− F (p1)] .

Taking FOC and re-arranging yields

p̂1 − c1 =
1− F (p̂1)
f (p̂1)

.

The consumer with value v1 = p̂1 is the “marginal” type; that is, the type who is exactly indifferent

between buying or not. The seller’s profit is equal to

(p̂1 − c1) [1− F (p̂1)]

and consumers’ surplus is equal to
vh
1∫

p̂1

(v1 − p̂1) dF (v1) .

As before, this perfect-availability strategy constitutes a feasible option for the seller also when

consumers are expectations-based loss-averse. To see why, notice that, given the price announced by

the seller, types below p̂1 can just plan not to buy and this plan is not only consistent but it maximizes

their expected utility; similarly, types above p̂1 prefer the plan of buying for sure at price p̂1. Since

q1 = 1−F (p̂1), the measure of types who plan to buy coincides with the amount the seller is supplying
and there is no uncertainty in the outcome that each type is expecting; therefore, gain-loss utility is

zero in equilibrium. Yet, the seller can attain a higher profit through the introduction of a limited-

availability deal. In this case the seller must induce some uncertainty in the buyers’ plans otherwise,

as argued above, gain-loss utility would be irrelevant.

Suppose that the seller can create an artificial perfect substitute for item 1 without incurring

any additional cost and suppose she can price these de facto identical products differently. A type-v

consumer will plan to buy with positive probability only if pmin1 ≤ 1+η
1+ηλv ≡ pmin1 (v). From Section 4

we also know that, for given 1− q (the degree of availability of the bargain item), this consumer will be
indifferent between the plan of buying only the bargain item and the plan of buying the bargain item

36The assumptions on F ensure that, for deterministic prices, the demand curve is decreasing and weakly concave (a
property that is typically assumed in models of industrial organization).
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if available and the rip-off item otherwise if and only if

p∗1 = v

[
1 +

2η (λ− 1) (1− q)
1 + η (λ− 1) (1− q)

1 + η

1 + ηλ

]
≡ p∗1 (v) .

In order to maximize how much surplus she can extract from this consumer, the monopolist chooses

the following degree of availability:

q = argmax
q
qp∗1 (v) + (1− q) pmin1 (v)− c1.

Notice that q does not depend on either v or c1 (see appendix A for the details).

With heterogeneous values there is an additional difficulty in characterizing the optimal limited-

availability scheme because different types might select different PPEs. The lemma below describes the

PPEs for all consumers’ types.

Lemma 9 Suppose the seller plays the limited-availability strategy that makes a type-v consumer indif-

ferent between buying only the bargain item and always buying. Then, for types in
[
vl1, v

)
the PPE plan

is to never buy whereas for types in
[
v, vh1

]
the PPE plan is to always buy. Furthermore, a consumer’s

equilibrium expected utility is weakly increasing in his type.

In order to identify the profit-maximizing marginal type, the seller solves the following program:

max
v

[
qp∗1 (v) + (1− q) pmin1 (v)− c1

]
[1− F (v)] ,

which can be re-written as

max
v

(Φv − c1) [1− F (v)] ,

where Φ ≡ 4−2η2+η2λ2+4λη+η2λ−2
√
2(2+η+ηλ)(1+η)(1+ηλ−η)

η(λ−1)(1+ηλ) > 1. Let v̂1 be the solution to the above

program. It is immediate to see that v̂1 < p̂1, implying that the seller serves a larger fraction of the

consumers when using a limited-availability scheme. The following proposition characterizes the seller’s

profit-maximizing strategy.

Proposition 7 For any η > 0 and λ > 1 the seller maximizes profits by supplying two different versions

of item 1: the bargain version is priced at pmin1 (v̂1), with degree of availability 1−q and the rip-off version
is priced at p∗1 (v̂1), with degree of availability q. The marginal type v̂1 is implicitly defined by

1−F(v̂1)
f(v̂1)

+
c1
Φ = v̂1. Furthermore, consumers whose type is in [v̂1, v

s
1), where v

s
1 = qp

∗
1 (v̂1) [1 + (1− q) η (λ− 1)] +

(1− q) pmin1 (v̂1) [1− qη (λ− 1)], get negative expected utility.

Notice that in this case the overall welfare effect of limited availability is ambiguous, since with a

limited-availability scheme the seller is serving a larger measure of consumers compared to the case of

perfect availability. Nevertheless, some consumers, who would get a utility level of zero with perfect

availability, are unambiguously worse off with this strategy.

The result in Proposition 7 can easily be extended to the case in which the seller’s products are

not perfect substitutes and have different marginal costs. Suppose the seller cannot create a perfect
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substitute for item 1, but she can supply item 2 at a constant marginal cost c2 = c1 − k ≥ 0. Let v2
denote consumers’ taste for item 2 and assume v2 = v1−h. To see the intuition, suppose h = k so that
with perfect availability the seller would be exactly indifferent between whether to supply item 1 or 2

and the marginal types would be p̂1 and p̂2 = p̂1 − k, respectively.
With limited availability, we know from Lemma 7 that if v1 − c1 = v2 − c2 the seller maximizes

profits by using item 1 as the bargain item. Therefore, she supplies q units of item 1 at price pmin1 (v̂1)

and 1−q units of item 2 at price p∗2 (v̂2), where v̂1 = v̂2+k and achieves higher profits than with perfect
availability. Furthermore, v̂1 < p̂1 so that, also in this case, limited availability implies less exclusion

than perfect availability.

5.3 Optimistic Consumers

So far I have closely followed the model of Kőszegi and Rabin (2006) by assuming that consumers’

beliefs must be consistent with rationality: a consumer correctly anticipates the implications of his

period-0 plans, and makes the best plan she knows she will carry through. In this section I relax the

assumption about rational expectations.

Suppose that when the seller announces a degree of availability q for a bargain, consumers are

overly optimistic about their chance of getting a deal and when forming their purchasing plan, they

think they will get the bargain with probability q̃ = min {χq, 1}, where χ > 1 parametrizes the degree
of consumers’ optimism. The seller knows χ, but cannot be held liable for the difference between

perceived and actual availability; however, she cannot reduce product availability below the level q that

she announces. On the other hand, after observing the seller’s announcement of availability and prices,

consumers still select a PPE purchasing plan, but they base their decisions and payoffs’ comparison on

the biased beliefs q̃.

For simplicity, let’s assume that the products are perfect substitutes (v1 = v2 = v > 0) and that

marginal cost is zero for both of them, and as a normalization, let item 1 be the bargain item. Denote

by q̂ the profit-maximizing degree of availability of item 1 when consumers have rational expectations

(χ = 1).

At first glance one could be tempted to guess that with naïve consumers, the seller would always

choose a lower degree of availability for the bargain item, compared to the rational case. After all, the

seller can just announce q = q̂
χ
, inducing the same attachment effect as with rational consumers but

actually selling the bargain less often and hence making even higher profits. However, this intuition is

incomplete. To see why, notice that for given q and p1 that the seller announces for the bargain item,

she can raise the price of the rip-off up to

p∗2 (q, p1) = v +

[
2η (λ− 1)χq
1 + η (λ− 1)χq

]
p1.

This means
∂2p∗2 (q, p1)

∂χ∂q
> 0⇔ 1− qχη (λ− 1) > 0,

implying that if χ is small, the marginal gain from raising q is higher when consumers are optimistic.
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The monopolist will then choose the degree of availability and price for item 1 that solves:

max
q,p1

π̃ = qp1 + (1− q) p∗2 (q, p1) .

Let qχ (p1) be the solution to this maximization problem. The following proposition characterizes

the seller’s profit-maximizing strategy.

Proposition 8 Fix any η > 0 and λ > 1. There exists a χ̃ such that the seller’s profit-maximizing

strategy is as follows:

(i) if χ < χ̃, she announces a degree of availability for the bargain equal to qχ
(
pmin1

)
, and prices pmin1

and p∗2
(
qχ
(
pmin1

)
, pmin1

)
;

(ii) if χ ≥ χ̃, she announces a degree of availability for the bargain equal to qχ = 1
χ
and prices v and

p∗2 = v
(
1 + η(λ−1)

1+ηλ

)
.

Furthermore, the seller’s expected profit is strictly greater than v.

The first implication of Proposition 8 is that the monopolist profit displays a discontinuity at χ̃.

The intuition is as follows. For moderate levels of consumers’ optimism, the seller’s profit-maximization

problem is very similar to the one with rational consumers: she chooses the highest price for the bargain

that makes not buying not a credible plan and the price of the rip-off is such that consumers ex-ante

are (perceive to be) indifferent between planning to buy only the bargain and planning to always buy.

Then, she announces a degree of availability for the bargain that trades off the gains from exploiting

the attachment effect with those from selling the rip-off more often than the bargain. Hence, except

for the fact that consumers believe to be more likely to make a deal than they actually are, the seller’s

profit-maximizing limited-availability scheme is qualitatively similar to the one derived in Section 4.

Things are different, however, when consumers are very optimistic. For χ = χ̃ we have that:

q̃
(
v − pmin1

)
− q̃ (1− q̃) η (λ− 1)

(
v + pmin1

)
= 0,

where q̃ = qχ̃
(
pmin1

)
. That is, χ̃ is the lowest degree of optimism for which, when the seller plays the

scheme in part (i) of Proposition 8, consumers perceive their expected utility to be non-negative. In

this case, there is no need for the seller to offer a tempting deal on item 1 to make not buying not

credible; instead, she can just announce qχ =
1
χ
, inducing consumers to believe that they will find item

1 available for sure, and price item 1 at its intrinsic value and item 2 at the highest price consumers

are willing to pay ex-post. So at χ = χ̃, the degree of availability of the bargain and the prices jump

up and so does the seller’s profit. Notice also that the optimal level of availability for the bargain is

not monotone in the degree of optimism χ, as shown in Figure 3.

32



1 2 3 4 5

0.0

0.1

0.2

c

qc

Figure 3: Level of availability with naïve consumers qχ as a function of χ, for η = 1, λ = 3 and v = 1.

Clearly naïvete makes consumers worse off. However, notice that as χ tends to 1, the seller is

choosing a higher degree of availability for item 1 compared to the case with rational consumers; hence,

if χ is relatively small, although overly optimistic consumers on average are exploited even more than

rational consumers, there is more of them that end up making a deal.

6 Related Literature

This paper belongs to a recent and growing literature on how firms respond to consumer loss aver-

sion. Heidhues and Kőszegi (2008), Karle and Peitz (2012) and Zhou (2011) study the implications

of reference-dependent preferences and loss aversion in an oligopolistic environment with differentiated

goods. In a monopolistic-screening setting, Carbajal and Ely (2012), Hahn, Kim, Kim and Lee (2012)

and Herweg and Mierendorff (forthcoming) analyze the implications of reference-dependent preferences

and loss aversion for the design of profit-maximizing menus and tariffs. Karle (2012) studies the adver-

tising strategy of a single—product monopolist when consumers are expectation—based loss-averse. He

shows that the seller maximizes profits by releasing an advertising signal about the consumers’ (un-

known ex-ante) match-value for the product that is only partially informative and would be redundant

if consumers had classical preferences; instead with loss-averse consumers this partially informative

signal can have a persuasive effect and hence increase consumers’ willingness to pay.37

As discussed in the Introduction, my paper is most related to Heidhues and Kőszegi (forthcoming),

which provides an explanation for why regular prices are sticky, but sales prices are variable, based

on expectations-based loss aversion. In their model, a monopolist sells only one good and maximizes

profits by employing a stochastic-price strategy made of low, variable sales prices and a high, sticky

37For other applications of the Kőszegi-Rabin model of reference-dependent preferences outside the field of IO, see
Aperjis and Balestrieri (2010) on advategeous selection in insurance markets, Crawford and Meng (2011) and Eliaz and
Spiegler (2012) on labor supply, Herweg, Muller and Weinschenk (2010) and Macera (2012) on agency contracts, Lange
and Ratan (2010) , Eisenhuth (2012) and Eisenhuth and Ewers (2012) on sealed-bid auctions and mechanism design, and
Daido and Murooka (2012) on team incentives.
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regular price. My results share an intuition similar to theirs: low prices work as baits to lure consumers

who, once in the store, are willing to pay a price even above their intrinsic valuation for the item.

However, in my model the monopolist sells two goods and uses one of them as a bait to attract the

consumers and the other to exploit them. Also, in Heidhues and Kőszegi (forthcoming) consumers

face uncertainty about the price whereas in my case the uncertainty stems from the limited availability

of the deal.38 I consider my model to be an extension as well an improvement over theirs.39 It is

an extension because it shows that the intuition behind their main result holds also in the case of

a multi-product monopolist and it is an improvement because I find my assumption about the seller

endogenously choosing the degree of availability of a product more realistic than their assumption of

the seller being able to credibly commit to an entire price distribution.40 Moreover, by analyzing the

case of a multi-product retailer, I can derive predictions about which products are more likely to be

put on sale and I show that higher-value products are more likely to be used as baits.

Within the realm of industrial organization, this paper is also closely related to the literature on

advertising, bait-and-switch and loss leaders. Lazear (1995) studies a duopoly with differentiated goods

in which each firm produces only one good and consumers pay a search cost to visit a firm, and derives

the conditions under which bait-and-switch is a profitable strategy. Although consumers have rational

expectations and understand that a firm might engage in bait-and-switch, this strategy can be profitable

if the goods sold by different firms are similar and if search is costly. However, bait-and-switch is a form

of false advertising in which a firm claims to sell a different good than the one it actually produces. In

my model, instead, the firm is not lying to the consumers but is using a truthful version of the bait and

switch strategy through endogenously reducing the availability of the goods. Furthermore, in Lazear’s

model prices are exogenous whereas in mine they are optimally chosen by the seller. Gerstner and

Hess (1990) present a model of bait-and-switch in which retailers advertise only selected brands, low-

priced advertised brands are understocked and in-store promotions are biased towards more expensive

substitute brands. In their model consumers are rational and foresee stock outages. However, the

authors assume that in-store promotions can create a permanent utility increase for consumers and this

is the reason why in equilibrium some consumers will switch to more expensive brands.

Ellison (2005) presents a model of competitive price discrimination with horizontal and vertical taste

differences across consumers in which firms advertise a base price for a product and then try to sell

“add-ons” or more sophisticated versions of the product for a higher price at the point of sale. Gabaix

and Laibson (2006) study a model where firms benefit from shrouding add-on prices if there myopic

consumers who, mistakenly, do not consider the add-on price when forming their shopping plans. Apart

from the result that the “basic” version of the product can be a loss leader, my model is different since

I assume that all prices are known and that consumers correctly predict their own shopping behavior.

38 If consumers value the two goods equally and the goods have the same production cost, my model coincides with a
special case of theirs in which the monopolist uses a two-price distribution. However, in my model the seller can credibly
announce to the consumers that she is having a sale on some selected products – as stores often do indeed – whereas in
their model the seller can only announce that she might have a sale.
39Spiegler (2012a) proposes another simplification and extension of Heidhues and Kőszegi (forthcoming).
40After entering a store that claims to use a stochastic-pricing strategy à la Heidhues and Kőszegi (forthcoming), and

faced with a high-price draw, a consumer might reasonably doubt whether he was just unlucky or whether the seller was
just pretending to randomize prices. In my model, instead, if a consumer does not find a bargain available, he has less of a
reason to blame the seller because other consumers might have bought all the bargain items and he might even be mad at
himself for not having gone to the store earlier. I thank Kfir Eliaz for suggesting this “shifting the blame” interpretation.
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Furthermore, the situation described in Example 2 in the Introduction, where the more sophisticated

version of the product is offered at a lower price, can be rationalized by my model but not theirs.

Eliaz and Spiegler (2011a) propose a model where stores compete for consumers’ limited attention by

expanding their product lines with “pure attention grabbers”; that is, loss-leading products that have

the sole purpose of attracting consumers’ attention to the other products offered by the store. Once at

the store, a consumer might realize that there exists another product that better suits his needs. Thus,

differently from my model, a consumer might switch to another product with a larger margin even if

the bargain item is still available.

Hess and Gerstner (1987) develop a model in which multi-product firms might stock out of advertised

products and offer rain checks to consumers, and Lal and Matutes (1994) consider multi-product firms

competing for consumers who are initially unaware of prices. In both of these models firms might

advertise loss leaders in order to increase store traffic. The profitability of this strategy, then, stems

from the fact that once they arrive at the store, consumers will buy also other complementary items

that are priced at a high mark-up; that is, each firm enjoys a form of monopoly on the other items

once a consumer is attracted into the store by the loss leader.41 My model is different as I consider

a monopolist selling substitutable goods to consumers who demand at most one unit of one good and

therefore loss-leading is not aimed at increasing store traffic in order to boost demand for complementary

products. Furthermore, in these models the products with lower consumer value are the more natural

candidates for loss-leading pricing; my model instead can also rationalize the use of more valuable or

popular products as loss leaders.

Models of price dispersion under demand uncertainty (Dana, 1999, 2001a; Deneckere and Peck,

1995; Nocke and Peitz, 2007) and buying frenzies (De Graba 1995; Gilbert and Klemperer, 2000) also

predict that rationing some consumers through voluntary stockouts can be a profit-maximizing strategy.

However, these models apply mainly to new products that are launched on the market for the first time

and for which either the seller or the consumers cannot predict what actual demand will turn out to

be; or to industries with clear binding capacity constraints like airlines, hotels and restaurants. Yet,

goods sold during bargain sales are usually not appearing on the market for the first time. Moreover, in

these models, once the true demand-state is revealed, the scope for rationing disappears; in my model,

instead, the scope for rationing arises directly from the consumers’ preferences.

Finally, Thanassoulis (2004) studies the problem of a multi-product monopolist selling two substitute

goods to risk-neutral consumers with unit demand, and derives conditions such that the optimal tariff

includes lotteries.42 In my model, when the seller endogenously reduces the availability of the goods,

from the consumers’ point of view this is equivalent to taking a lottery on both which good they will

41Related, but somewhat different explanations for the use of loss leaders are advanced by DeGraba (2006) and Chen
and Rey (2012). DeGraba (2006) presents a multi-product pricing model in which the loss leaders are the goods purchased
mainly by more profitable consumers – consumers who are more likely to buy larger quantities of other goods as well;
hence, loss-leading is a way to price discriminate between differently profitable consumers. In Chen and Rey (forthcoming),
a large retailer, competing with smaller stores offering a narrower range of products, can exercise market power by pricing
below costs some of the products offered also by its rivals. Thus, loss-leading emerges as an exploitative device that allows
the large retailer to discriminate multi-stop shoppers from one-stop shoppers.
42Pavlov (2011) solves for the optimal mechanism when selling two substitutable goods and generalizes the analysis

in Thanassoulis (2004). Balestrieri and Leao (2011) extend this result to an oligopoly setting where consumers have
horizonally differentiated tastes. Fay and Xie (2008) show how lotteries can provide a buffer against a seller’s own demand
uncertainty and capacity constraints.
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end up with and how much they will have to pay.43 Nevertheless, there are several differences between

his model and mine. First, my result on the optimality of limited-availability deals holds also when

consumers have homogeneous tastes, whereas his result on the optimality of lotteries does not. Second,

in his lotteries there is uncertainty only on the item dimension but not on the price one, whereas in my

case the uncertainty is on both dimensions. Last, in his model a lottery is offered in addition to each

good being offered in isolation with its own posted price; in my model instead each good is offered in

isolation with its own price, but because the items are in short supply, consumers are uncertain about

their consumption outcomes.

7 Conclusion

Limited-availability sales are commonly employed by retailers selling durable consumer goods such

as electronics, household appliances, or clothes. However, while this type of sales are familiar to

consumers, economists have not devoted much attention to the importance of product availability in

retailing.

In this paper, I have provided an explanation, based on consumer loss aversion, for why a monopolist

selling substitute goods might find it profitable to use limited-availability sales. The optimal strategy for

the monopolist resembles bait-and-switch: she lures the consumers with a limited-availability tempting

deal on one good and cashes in with a high price on another one. The model also predicts that more

valuable or popular items are more likely to be used as baits and that the bait can be a loss leader.

I conclude the paper by discussing some of the model’s limitations, as well as some directions for

future research.

An implicit premise of my model is that consumers cannot commit not to go shopping. Although

this might seem unrealistic, there exist some real-life situations in which this assumption is not that

restrictive. For example, around Christmas many consumers “have to” go shopping in order to buy

gifts for their friends and relatives. Furthermore, committing not to look at ads or not to learn about

sales to avoid being manipulated by firms might require some costly effort on the part of the consumers.

If this is the case, then the seller could easily “bribe” the consumers into visiting the store.44

Another important assumption is that, from the consumers’ perspective, the two products belong

to the same hedonic dimension. This creates an insurance effect: by planning to always buy a consumer

can reduce the uncertainty in his consumption compared to the plan of buying only the bargain item.

The monopolist then, is able to exploit this insurance effect by charging a high price for the rip-off

item. If the two goods were evaluated along different hedonic dimensions, the insurance effect would

disappear, making the conditions for always buying to be the PPE more restrictive.

43Thanassoulis (2004) makes also the related point that capacity constraints, actual or alleged, are an indirect way to
implement lotteries.
44 In fact, introducing a small shopping cost into the model would not significantly affect the results. To see why,

suppose that consumers must incur a positive shopping cost φ, with 0 < φ < pmin2 , to go to the store and let the gain-
loss utility in the shopping cost be evaluated separately from the product and money dimensions. Then, there exists a
φ∗ (η, λ, v1, v2, c1, c2) such that for φ ≤ φ∗ the seller’s profit-maximizing strategy is a limited-availability scheme with the
only difference that now the price of the bargain must be reduced by φ

q
(or φ

1−q
, depending on which item is the bargain)

in order to make never buying non-credible for the consumers and therefore induce them to visit the store (the price of
the rip-off should also be adjusted accordingly).
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The analysis in this paper can be extended to the case of a monopolist carrying more than two

goods. If the goods are perfect substitutes, or if the seller can endogenously fine tune their degree of

differentiation, then she will always use as many products as possible and price them slightly different to

mitigate the consumers’ comparison effect on the price dimension, implementing de facto the random-

price strategy described in Heidhues and Kőszegi (forthcoming). However, if the products are not close

enough in terms of substitutability, then the seller will supply only the most similar ones.

I have closely followed the model of Kőszegi and Rabin (2006) in specifying the reference point

as the entire distribution of consumers’ rational beliefs. However, the analysis would be the same if

the reference point, for each hedonic dimension, was equal to the point expectation instead of the

distribution. In fact, since all lotteries that consumers face in the model involve comparing only two

possible outcomes, each realization is either a loss or a gain, and the same would still be true if the

reference point was a point expectation. On the other hand, the assumption that consumers assess

gains and losses separately on each hedonic dimension of consumption utility is crucial for the results.

If gain-loss utility were defined on the consumers’ intrinsic surplus, v − p, then the seller could never
raise p above v and the profit-maximizing scheme would be a perfect-availability one.

I have also assumed that all consumers show up at the store at the same time and are served

randomly with equal probability. In reality, however, especially during popular promotions like Black

Friday, consumers line up outside stores before they open. This suggests that consumers’ heterogeneity

in waiting costs is likely to play a role. Also, those consumers planning to go later in the day would

most likely hold different beliefs about their chances of getting the bargain.

Since my model is one-shot, once a consumer arrives at the store and realizes there are no items left

for a discounted price anymore, he has to choose between the feeling of loss on the item dimension by

returning home empty-handed or the feeling of loss by paying a higher price for a substitute. In reality,

the consumer could decide to wait and return to the store some time later. More generally, sales and

promotions appear to be periodic and inter-temporal price discrimination on the part of firms is a big

part of the story.

It would be interesting to study which results of this model, if any, continue to hold in a (possibly

imperfect) competitive environment. Indeed, one of the most striking features of popular sales like

Black Friday is that all retailers use limited-availability deals at the same time. At first glance, since

Heidhues and Kőszegi (forthcoming) show that their result does not hold in an environment with two

retailers selling a homogeneous product and competing à la Bertrand, one might think that also the

results of this paper would not survive. However, given the multi-product framework that characterizes

my model, firms would have a different strategy-space than in Heidhues and Kőszegi (forthcoming).

The interaction between the retailer and the manufacturing sector, not modeled in this paper, could

also be an interesting topic for further research. For example, if both goods are produced by the same

upstream firm, then since the retailer is able to extract more surplus from the consumers through a

limited-availability scheme, the firm could try to design a contractual agreement through which she

extracts some of this extra surplus. On the other hand, if the goods are produced by two independent

manufacturers, the firm producing the good used as a bargain might want to prohibit the retailer from

using a limited-availability scheme, since this scheme shifts sales away from the bargain and towards

the rip-off.
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A Proofs

Proof of Lemma 1: As shown in Kőszegi and Rabin (2006), the plan of buying good i = 1, 2 is

a PE if and only if pi ≤ 1+ηλ
1+η vi ≡ pmaxi and the plan of not buying good i is a PE if and only if

pi >
1+η
1+ηλvi ≡ pmini . Therefore, for pi ∈

(
pmini , pmaxi

]
both plans are consistent. However, the plan of

buying good i at pi is the PPE if and only if

EU [{i} | {i}] ≥ EU [{∅} | {∅}]

⇔ vi − pi ≥ 0

and this proves the statement. �

Proof of Lemma 2: The result holds trivially for the case of perfect availability. Then, let q1 > 0,

q2 > 0 with q1 + q2 < 1 and suppose the seller charges p1 for item 1 and p2 for item 2, with p2 ≥ p1.
The highest price the seller can charge for item 2 is the one that makes the following inequality bind:

EU [{1, 2} | {1, 2}] ≥ EU [{∅} | {∅}] . (13)

Substituting and re-arranging yields

p2 ≤
v2 [1 + η (λ− 1) q1 − η (λ− 1) (1− q1 − q2)]− 2η (λ− 1) q1

1 + η (λ− 1) (1− q2)
.

It is easy to see that the right-hand-side of the above inequality is increasing in q2. Therefore, the

seller can raise q2 up to 1 − q1 and increase her profits without violating condition (13). A similar

analysis applies if p2 < p1. �

Proof of Lemma 3: I prove the result by contradiction. Suppose that q ∈ (0, 1) and pi = vi for

i = 1, 2 and that v1 > 2v2; then we have that

EU [{∅} | {∅}] = 0

> −2η (λ− 1) q (1− q) v2 = EU [{2,∅} | {2,∅}]
> −2η (λ− 1) q (1− q) (v1 − v2) = EU [{1, 2} | {1, 2}]
> −2η (λ− 1) q (1− q) v1 = EU [{1,∅} | {1,∅}] .

Furthermore, we know that not buying is a PE when pi = vi. Therefore, for this quantity vector

and this price vector the buyers would strictly prefer the plan of not buying . The seller would then

do better by setting pi = p
min
i for at least one good and thus force the consumers to buy it. The same

argument applies to the case in which v1 ≤ 2v2 (just switch the first and second inequalities). �
Proof of Lemma 4: I prove the result by contradiction. Suppose that q ∈ (0, 1) and pi > pmini for

i = 1, 2 and that v1 − c1 ≥ v2 − c2. By producing a strictly positive quantity of both goods, the seller
wants the buyers to choose the plan to always buy; however, for this plan to be the PPE it must be

that

EU [{1, 2} | {1, 2}] ≥ EU [{∅} | {∅}]

⇒ q (v1 − p1) + (1− q) (v2 − p2) > 0

⇔ qp1 + (1− q) p2 < qv1 + (1− q) v2
⇒ q (p1 − c1) + (1− q) (p2 − c2) < q (v1 − c1) + (1− q) (v2 − c2) ≤ v1 − c1.
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But then the seller would prefer to set q = 1 and p1 = v1 and this contradicts the assumption that

seller produces a strictly positive quantity of both goods. The same argument applies to the case in

which v1 − c1 < v2 − c2. �
Proof of Lemma 5: Let q ∈ (0, 1). From Lemma 4 we know that pi = pmini for at least one good;

let this be good 2. I now show that it is not profitable for the seller to choose p1 such that the plan

to always buy is the unique credible plan for the consumers. First, we have that, for p2 = pmin2 , the

highest price the seller can use, in order to make the plan to buy only good 2 not credible, is

p1 ≤
(1 + η) v1 + η (λ− 1) (1− q) v2

(
1 + 1+η

1+ηλ

)

1 + ηλ
≡ p̃1 (q)

Then, we have that, for p2 = p
min
2 , the plan to always buy is a PE if and only if

p1 ≤
[1 + η (1− q) + ηλq] v1 + η (λ− 1) (1− q) v2

(
1 + 1+η

1+ηλ

)

1 + ηq + ηλ (1− q) ≡ p1 (q) .

It is readily verified that p1 (q) > p̃1 (q) ⇔ q > 0. However, for p1 (q) ≥ p1 > p̃1 (q) both the plan
to always buy and the plan to buy only item 2 are personal equilibria; but the plan of always buying

is the PPE if and only if

p1 ≤ v1 +
2 (1− q) η (λ− 1) [v2 (2 + η + ηλ)− v1 (1 + ηλ)]

(1 + ηλ) [1 + η (λ− 1) (1− q)] ≡ p̂1 (q) .

It is easy to see that p̂1 (q) > p̃1 (q). Therefore, the highest price p
∗
1 at which a buyer prefers the

plan to always buy is given by

p∗1 = min {p1 (q) , p̂1 (q)}

and this proves that it is not profit-maximizing for the seller to make always buying the unique consistent

plan.

Then, in order to prove that p∗1 = p̂1 (q), notice that

p1 (q) < p̂1 (q)

⇔ q <
v2 (1 + 2ηλ) (2 + η + ηλ)− ηv1 (1 + λ) (1 + ηλ)−

√
A2v21 − 2Bv1v2 + C2v22

2v2η (λ− 1) (2 + η + ηλ)
whereA ≡ η (1 + ηλ) (1 + λ), B ≡ η (1 + ηλ) (2 + η + ηλ) [3 + 2η + 2η (λ− 1)] andC ≡ (1 + 2η) (2 + η + ηλ).
It is also easy to verify that

v2 (1 + 2ηλ) (2 + η + ηλ)− ηv1 (1 + λ) (1 + ηλ)−
√
A2v21 − 2Bv1v2 + C2v22

2v2η (λ− 1) (2 + η + ηλ)
< 1.

However, it is in the seller’s interest to select the p∗1 that maximizes qp
∗
1 and since

v2 (2 + η + ηλ)− v1 (1 + ηλ) > 0⇒
∂ [qp̂1 (q)]

∂q
> 0,

it follows that p∗1 = p̂1 (q). The same argument applies if the seller uses item 1 as the bargain (i.e.,

p1 = p
min
1 ). �
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Proof of Lemma 6: Suppose the seller uses item 2 as the bargain and thus prices it at pmin2 . Then,

by Lemma 5 we know that the optimal price for item 1 is

p∗1 = v1 +
2 (1− q) η (λ− 1) [v2 (2 + η + ηλ)− v1 (1 + ηλ)]

(1 + ηλ) [1 + η (λ− 1) (1− q)] .

This pair of prices provides the seller with profits equal to

q




v1 [1− η (λ− 1) (1− q)] + 2η (λ− 1) (1− q)

(
1 + 1+η

1+ηλ

)
v2

1 + η (λ− 1) (1− q) − c1





+(1− q)
(
pmin2 − c2

)
.

The above expression is maximized at

q =
1 + ηλ− η
η (λ− 1) −

√
2

η (λ− 1)

√
(1 + ηλ− η) (−v1 + 2v2 + ηv2 − ληv1 + ληv2)√
(−c1 + c2 − v1) (1 + ηλ) + v2 (3 + η + 2ηλ)

≡ q (η, λ, v1, v2, c1, c2) .

Notice that for the above expression to be well-defined, it must be that

(−c1 + c2 − v1) (1 + ηλ) + v2 (3 + η + 2ηλ) > 0

since we know that (2 + η + ηλ) v2 > (1 + ηλ) v1 for p
∗
1 to be greater than v1. It is easy to see that

q > 0. Furthermore, we have that

q < 1⇔ v1

[
1 + 3ηλ− 2η + 2η2λ (λ− 1)

]
< (c1 − c2) (1 + ηλ) +

v2

[
1 + 4ηλ− 3η + 2η2 (λ− 1) (λ+ 1)

]
.

Notice that

q (η, λ, v1, v2, c1, c2) >
1

2

since

q (η, λ, v1, v2, c1, c2) > q (η, λ, v, v, c, c)

⇔ 1 + ηλ− η
η (λ− 1) −

√
2

η (λ− 1)

√
(1 + ηλ− η) (−v1 + 2v2 + ηv2 − ηλv1 + ηλv2)√
(−c1 + c2 − v1) (1 + ηλ) + v2 (3 + η + 2ηλ)

>

1 + ηλ− η
η (λ− 1) −

√
2

η (λ− 1)

√
(1 + η) (ηλ− η + 1)

(η + ηλ+ 2)

⇔ (1 + ηλ) (1 + ηλ− η) [(c1 − c2) (1 + η) + (v2 − v1) (1 + ηλ)] < 0

which is true for any η > 0 and λ > 1 provided that v1 − c1 > v2 − c2 (which, as shown below, is a
necessary condition for the seller to use item 2 as the bargain); and

q (η, λ, v, v, c, c) >
1

2
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⇔ 1

η (λ− 1) (ηλ− η + 1)−
1

η (λ− 1)

√
2 (1 + η) (ηλ− η + 1)

η + ηλ+ 2
>
1

2

⇔
η (λ− 1)

(
η2λ2 + 6ηλ− η2 − 6η + 4

)

η + ηλ+ 2
> 0

which is true for any η > 0 and λ > 1.

If instead the seller uses item 1 as the bargain, then by Lemma 5 we know that the optimal price

for item 2 is

p∗2 = v2 +
2qv1η (λ− 1) (1 + η)

(1 + ηλ) [1 + η (λ− 1) q] .

This pair of prices provides the seller with profits equal to

q
(
pmin1 − c1

)
+ (1− q)




v2 [1 + η (λ− 1) q] + 2η (λ− 1) q

(
1+η
1+ηλ

)
v1

1 + η (λ− 1) q − c2



 .

The above expression is maximized at

q =

√
2

η (λ− 1)

√
v1 (1 + η) (1 + ηλ− η)√

(c1 − c2 + v2) (1 + ηλ) + v1 (1 + η)
− 1

η (λ− 1)
≡ q (η, λ, v1, v2, c1, c2) .

We have that

q < 1⇔ v1 (1 + η) (1 + η − ηλ) < (1− η + ηλ) (v2 − c2 + c1) (1 + ηλ) .

Similarly, we also have

q > 0⇔ v1 (1 + η) (1 + 2ηλ− 2η) > (v2 − c2 + c1) (1 + ηλ) .

Notice that

q (η, λ, v1, v2, c1, c2) <
1

2

⇔ 2

√
2v1 (1 + η) (1 + ηλ− η)

(c1 − c2 + v1 + v2 + ηv1 + ληc1 − ληc2 + ληv2)
< η (λ− 1) + 2

⇔
{
8 (1 + ηλ− η)− [η (λ− 1) + 2]2

}
(1 + η) v1 < (v2 − c2 + c1) (1 + ηλ) [η (λ− 1) + 2]2 . (14)

Condition (14) is trivially satisfied for any η > 0 and λ > 1 if v2−c2 ≥ v1−c1 since [η (λ− 1) + 2]2−{
8 (1 + ηλ− η)− [η (λ− 1) + 2]2

}
= 2η2 (λ− 1)2 > 0. Condition (14) holds also for v2 − c2 < v1 − c1

if η ≤ 1 since, as shown below in the proof of proposition 1, if the seller prefers to use item 1 as the

bargain when this is the item with the larger social surplus then v1 < (v2 − c2 + c1)
(
1+ηλ
1+η

)
.

Finally, we have that

q > 1− q

⇔ v2 (2 + η + ηλ)− v1 (1 + ηλ)
(−c1 + c2 − v1) (1 + ηλ) + v2 (3 + η + 2ηλ)

<
v1 (1 + η)

(c1 − c2 + v2) (1 + ηλ) + v1 (1 + η)
⇔ v2 (2 + ηλ+ η) (v2 − v1 + c1 − c2)− η (λ− 1) v1 (c1 − c2) < 0
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which holds for any η > 0 and λ > 1 given we know that v2 (2 + ηλ+ η) > v1 (1 + ηλ) from Lemma

5 and provided that v1 − c1 > v2 − c2 which, as shown below, is the only case in which q and q are
comparable. �

Proof of Lemma 7: Define π1 ≡ π
(
p∗1, p

min
2 , q; c1, c2

)
and π2 ≡ π

(
pmin1 , p∗2, q; c1, c2

)
and recall that

q = argmax
q
π
(
p∗1, p

min
2 , q; c1, c2

)
and q = argmax

q
π
(
pmin1 , p∗2, q; c1, c2

)
.

First, consider the special case with v1 = v2 and c1 = c2. It is easy to see that in this case

pmin1 = pmin2 , p∗1 = p
∗
2, q = 1− q so that π1 = π2. Therefore the seller is indifferent between which item

to use as the bargain. Furthermore, by the envelope theorem we have that dπ1
dc1

= −q, dπ1
dc2

= − (1− q),
dπ2
dc1

= −
(
1− q

)
and dπ2

dc2
= −q. By lemma 6 we know that q > 1− q and therefore it follows that when

the two goods are perfect substitutes, the seller maximizes profits by using the more expensive one as

the bargain.

Next, suppose to change v1 by dv1 and c1 by dc1 with dv1 = dc1 = δ > 0 so that v1 > v2 but

v1 − v2 = c1 − c2.
By the envelope theorem the effect of these changes on profits are

dπ1 '
∂π1

∂v1
dv1 +

∂π1

∂c1
dc1 =

(
q
∂p∗1
∂v1

− q
)
δ

and

dπ2 '
∂π2

∂v1
dv1 +

∂π2

∂c1
dc1 =

[
q
1 + η

1 + ηλ
+
(
1− q

) ∂p∗2
∂v1

− q
]
δ.

By substituting and re-arranging, it follows that dπ2 > dπ1 if and only if

q
η (λ− 1)
1 + ηλ



2
(
1− q

)
(1 + η)− qη (λ− 1)− 1
qη (λ− 1) + 1


 > q

[
1− η (λ− 1) (1− q)
1 + η (λ− 1) (1− q) − 1

]
. (15)

As the expression on the right-hand-side of (15) is negative, it suffices to show that

2
(
1− q

)
(1 + η)− qη (λ− 1)− 1 > 0⇔ 1 + 2η

2 + η + ηλ
> q.

Substituting v1 = v2 and c1 = c2 into the expression for q yields

2 + η + ηλ+ η (λ− 1) (1 + 2η)
2 + η + ηλ

>

√
2 + η + ηλ+ η (λ− 1) (1 + 2η)

2 + η + ηλ

which is of course true for any η > 0 and λ > 1. Thus, the seller maximizes profits by using item 1

as the bargain if v1 > v2 and v1− v2 = c1− c2. Furthermore, it is easy to see that the same result holds
also if dc1 > dv1 > 0 so that v1 − c1 < v2 − c2. Therefore, we have that π2 ≥ π1 for v1 − c1 ≤ v2 − c2.

Finally, consider the case in which v1 − c1 > v2 − c2. Again, let’s start with v1 = v2 and c1 = c2 so
that π1 = π2 and suppose to change v1 by dv1 and c1 by dc1 with either dv1 > dc1 ≥ 0 or dv1 ≥ 0 > dc1.
By the envelope theorem the effect of these changes on profits are

dπ1 '
∂π1

∂v1
dv1 +

∂π1

∂c1
dc1 = q

∂p∗1
∂v1

dv1 − qdc1

and

dπ2 '
∂π2

∂v1
dv1 +

∂π2

∂c1
dc1 =

[
q
1 + η

1 + ηλ
+
(
1− q

) ∂p∗2
∂v1

]
dv1 − qdc1.
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By substituting and re-arranging, it follows that dπ1 ≥ dπ2 if and only if
[
1− η (λ− 1) (1− q)
1 + η (λ− 1) (1− q)q −

1 + η

1 + ηλ
q −

(
1− q

) 1 + η

1 + ηλ

2qη (λ− 1)
1 + qη (λ− 1)

]
dv1 ≥

(
q − q

)
dc1. (16)

We know that for dv1 = dc1 > 0 condition (16) is violated; but for either dv1 > dc1 ≥ 0 or

dv1 ≥ 0 > dc1 it can hold (for example, it is readily satisfied for dv1 = 0 and dc1 < 0). Then, let ṽ1
be the value of v1 for which (16) binds; if such a value exists then it is unique because the term on the

left-hand-side of (16) is continuous and increasing in dv1. Notice also that ṽ1 increases with c1 − c2.
However, from lemma 6 we know that

q < 1⇔ v1 <
(c1 − c2) (1 + ηλ) + v2 (1 + 4ηλ− 3η) + 2η2v2 (λ− 1) (λ+ 1)

1 + 3ηλ− 2η + 2η2λ (λ− 1) .

Therefore, a necessary condition for the seller to use item 2 as the bargain when v1 − c1 > v2 − c2
is that

(c1 − c2) (1 + ηλ) + v2 (1 + 4ηλ− 3η) + 2η2v2 (λ− 1) (λ+ 1)
1 + 3ηλ− 2η + 2η2λ (λ− 1) > v2 − c2 + c1

⇔ η (λ− 1) [2 (1 + ηλ) (c2 − c1) + v2 (1 + 2η)] > 0

⇔ 2 (1 + ηλ) (c2 − c1) + v2 (1 + 2η) > 0

⇔ v2 >
2 (1 + ηλ) (c1 − c2)

1 + 2η
.

However, the above condition is not sufficient as it could still be that

ṽ1 >
(c1 − c2) (1 + ηλ) + v2 (1 + 4ηλ− 3η) + 2η2v2 (λ− 1) (λ+ 1)

1 + 3ηλ− 2η + 2η2λ (λ− 1) . �

Proof of Proposition 1: For an arbitrary price-pair (p1, p2) and an arbitrary quantity-pair (q, 1− q)
the monopolist’s profit is

π (p1, p2, q; c1, c2) = q (p1 − c1) + (1− q) (p2 − c2) .

By Lemma 1 we know that if the seller produces only one good, then she will price it at its intrinsic

value.

By Lemma 3 and Lemma 4 we know that if the seller produces a strictly positive quantity of both

goods then one of them, say good i, must be priced at the discounted price pmini . By Lemma 5 we also

know that in this case the seller will price good j at p∗j . Therefore, the seller has three options:

i) Set p2 = p
min
2 , p1 = p

∗
1 and q = q. In this case the seller’s profit is

q (p∗1 − c1) + (1− q)
(
pmin2 − c2

)
≡ π1.

ii) Set p1 = p
min
1 , p2 = p

∗
2 and q = q. In this case the seller’s profit is

q
(
pmin1 − c1

)
+
(
1− q

)
(p∗2 − c2) ≡ π2.
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iii) Set pi = vi for i = 1, 2. This pair of prices provides the seller with profits equal to

q (v1 − c1) + (1− q) (v2 − c2) .

The above expression is maximized at q = 1 (resp. q = 0) if v1−c1 > v2−c2 (resp. if v1−c1 ≤ v2−c2).
Depending on the degree of substitutability between the two goods, their marginal costs and the

degree of loss aversion, the seller will choose the option that will give her the highest profit. Suppose

first that v1 − c1 ≤ v2 − c2. By Lemma 7 we know that if she were to produce both goods, the seller
would prefer to use item 1 as the bargain Then,

π
(
pmin1 , p∗2, q; c1, c2

)
≥ v2 − c2

⇔ v1 ≥
v2 − c2 + c1
1 + 2η (λ− 1)

1 + ηλ

1 + η
≡ α (v2, c1, c2, η, λ) .

Now suppose that ṽ1 > v1 > v2 − c2 + c1. By Lemma 7 we know that if she were to produce both
goods, the seller would again prefer to use item 1 as the bargain. Therefore,

π
(
pmin1 , p∗2, q; c1, c2

)
≥ v1 − c1

⇔ v1 ≤ (v2 − c2 + c1)
(
1 + ηλ

1 + η

)
Ξ (η, λ) ≡ β (v2, c1, c2, η, λ) .

where

Ξ (η, λ)≡ [1 + η (λ− 1)]×

 3η + 4η2+2η3+η2λ2 (1 + η)−ηλ

(
1 + 3η2 + 4η

)
−2η (λ− 1)

√
2 (1 + η)3+1

4η (1 + η3)+η4λ4−2η3λ3 (1 + 3η)+η2λ2 (13η2 + 2η − 5)−2ηλ (6η3 − 3η + 1)+1


 .

Furthermore, since Ξ (η, λ) < 1 for η ≤ 1, we have that

η ≤ 1⇒ β (v2, c1, c2, η, λ) < (v2 − c2 + c1)
(
1 + ηλ

1 + η

)
.

Finally, if v1 ≥ ṽ1 then by Lemma 7 the seller prefers to use item 2 as the bargain and we have

π
(
p∗1, p

min
2 , q; c1, c2

)
≥ v1 − c1 ⇔ v2 ≥

v1 − c1 + c2 + 2η (λ− 1) v1
1 + η (λ− 1)

(
3+2ηλ+2η
1+ηλ

) ≡ γ (v1, c1, c2, η, λ) .

To conclude the proof, notice that the seller’s profits, if she chooses to produce only one good, are

equal to max {v1 − c1, v2 − c2}. Since she would choose a different option only if this provides her with
at least as much, it thus follows that π ≥ max {v1 − c1, v2 − c2}, and the inequality is strict when either
option i) or ii) is profit-maximizing. �

Proof of Proposition 2: Suppose the seller uses item 2 as the bargain. We have:

q (p∗1 − c1) + (1− q)
(
pmin2 − c2

)
> max {v1 − c1, v2 − c2}
≥ q (v1 − c1) + (1− q) (v2 − c2)

⇒ qp∗1 + (1− q) pmin2 > qv1 + (1− q) v2.
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In this case, therefore, a consumer expects to buy with probability one at an expected price strictly

greater than his expected valuation. Hence, his consumption utility is negative. Furthermore, in any

PE expected gain-loss utility is non-positive. If instead he could commit to the plan of never buying,

both his consumption utility and his gain-loss utility would be zero. The same argument applies for

the case in which the seller uses item 1 as the bargain. �

Proof of Proposition 3: First, consider the seller’s profits when item 1 is used as the bargain. We

have:

π2 = π
(
pmin1 , p∗2, q; c1, c2

)
= q

(
pmin1 − c1

)
+
(
1− q

)
(p∗2 − c2) .

By the envelope theorem, we have that:

dπ2

dv1
= q

∂pmin1

∂v1
+
(
1− q

) ∂p∗2
∂v1

=
1 + η

1 + ηλ
q +

(
1− q

) 1 + η

1 + ηλ

2η (λ− 1) q
1 + η (λ− 1) q

=
1 + η

1 + ηλ
q


1 +

2η (λ− 1)
(
1− q

)

1 + η (λ− 1) q




> q

=

∣∣∣∣
dπ2

dc1

∣∣∣∣

where the inequality follows from

1 +
2η (λ− 1)

(
1− q

)

1 + η (λ− 1) q >
1 + ηλ

1 + η

⇔ 2
(
1− q

)
(1 + η) > 1 + η (λ− 1) q

⇔ 1 + 2η

2 + ηλ+ η
> q

⇔ v1 <
2 (η + 1)

(
η2λ2 − η2λ+ 2ηλ− η + 1

)
(c1 − c2 + v2)

2η + 3η2 + 2η3 + η2λ2 + 2ηλ− 2η2λ− 2η3λ+ 2

and
2 (η + 1)

(
η2λ2 − η2λ+ 2ηλ− η + 1

)
(c1 − c2 + v2)

2η + 3η2 + 2η3 + η2λ2 + 2ηλ− 2η2λ− 2η3λ+ 2
> β (v2, c1, c2, η, λ)

for η ≤ 1.

Similarly, we also have that

dπ2

dv2
=

(
1− q

) ∂p∗2
∂v1

=
(
1− q

)

=

∣∣∣∣
dπ2

dc2

∣∣∣∣ .
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Next, consider the seller’s profits when item 2 is used as the bargain. We have:

π1 = π
(
p∗1, p

min
2 , q; c1, c2

)
= q (p∗1 − c1) + (1− q)

(
pmin2 − c2

)
.

Then, we have that

dπ1

dv1
= q

∂p∗1
∂v1

= q

[
1− η (λ− 1) (1− q)
1 + η (λ− 1) (1− q)

]

< q

=

∣∣∣∣
dπ1

dc1

∣∣∣∣ .

Similarly,

dπ1

dv2
= q

∂p∗1
∂v2

+ (1− q) ∂p
min
2

∂v2

=
2η (λ− 1) (2 + ηλ+ η) q (1− q)
(1 + ηλ) [1 + η (λ− 1) (1− q)] + (1− q)

1 + η

1 + ηλ

= (1− q)
[

2η (λ− 1) (2 + ηλ+ η) q
(1 + ηλ) [1 + η (λ− 1) (1− q)] +

1 + η

1 + ηλ

]

> (1− q)

=

∣∣∣∣
dπ1

dc2

∣∣∣∣

where the inequality follows from

2η (λ− 1) (2 + ηλ+ η) q
(1 + ηλ) [1 + η (λ− 1) (1− q)] +

1 + η

1 + ηλ
> 1

⇔ 2 (2 + ηλ+ η) q > 1 + η (λ− 1) (1− q)
⇔ (4 + 3ηλ+ η) q > 1 + η (λ− 1)

⇐ q >
1

2

and this concludes the proof. �

Proof of Proposition 4: If the seller uses item 1 as the rip-off, item 2 must be priced at pmin2 . Let

pmin2 ≤ v1 − v2. First, notice that if the seller uses item 1 as the rip-off, then it must be that p1 > v1.

To see why, suppose, by contradiction, that p1 ≤ v1. The seller’s profit is

q (p1 − c1) + (1− q)
(
pmin2 − c2

)
.

We have that

p1 ≤ v1 ⇒ q (p1 − c1) + (1− q)
(
pmin2 − c2

)
< q (v1 − c1) + (1− q) (v2 − c2) < max {v1 − c1, v2 − c2} .

But then the seller would prefer to choose either q = 1 or q = 0, contradicting the hypothesis that

she is producing a strictly positive quantity of both goods.

Next, recall that the seller’s scheme must make the consumers indifferent between planning to buy
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only the bargain (item 2 in this case) and planning to always buy:

(1− q)
(
v2 − pmin2

)
− q (1− q) η (λ− 1)

(
v2 + p

min
2

)
= q (v1 − p1) + (1− q)

(
v2 − pmin2

)

−q (1− q) η (λ− 1)
(
v1 − v2 + p1 − pmin2

)

⇔ (1− q) η (λ− 1)
[
v1 + p1 − 2

(
v2 + p

min
2

)]
= v1 − p1. (17)

Since the right-hand-side of (17) is negative, it follows that

v1 + p1 − 2
(
v2 + p

min
2

)
< 0

⇔ v1 + p1
2

− v2 < pmin2 . (18)

Condition(18) and the assumption that pmin2 ≤ v1 − v2 combined together imply

v1 + p1
2

− v2 < v1 − v2 ⇔ p1 < v1.

The result then follows by reductio ad absurdum. �

Proof of Lemma 8: Let p1 = p
min
1 and suppose p2 < p1. Let q ∈ (0, 1) be the degree of availability

of the bargain item, and suppose consumers plan to always buy. If item 2 is the only product left in

the store, a consumer will follow his plan and buy if

U [(v2, p2) | {1, 2}] ≥ U [(0, 0) | {1, 2}]

⇔ v2 − p2 − qηλ (v1 − v2) + qη
(
pmin1 − p2

)
≥ −qηλv1 − (1− q) ηλv2 + qηpmin1 + (1− q) ηp2

⇔ p2 ≤
1 + ηλ

1 + η
v2 ≡ pmax2 .

However, we assumed that the price of good 2 must be lower than the price of good 1. Hence, if

pmax2 > pmin1 ⇔ v2 >

(
1 + η

1 + ηλ

)2
v1

then the highest price that the seller could charge for good 2 is pmin1 .

Given that the seller is charging the highest price for good 2 that consumers are willing to pay ex-

post, she must select a degree of availability for good 1 that makes consumers ex-ante indifferent between

planning to buy only the bargain item and planning to always buy. Suppose first that p2 = p
max
2 . Then

we have

q
(
v1 − pmin1

)
− q (1− q) η (λ− 1)

(
v1 + p

min
1

)
= q

(
v1 − pmin1

)
+ (1− q) (v2 − pmax2 )

−q (1− q) η (λ− 1)
(
v1 − v2 + pmin1 − pmax2

)

⇔ q =
pmax2 − v2

η (λ− 1) (pmax2 + v2)
.
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Next, suppose that p2 = p
min
1 . Then we have

q
(
v1 − pmin1

)
− q (1− q) η (λ− 1)

(
v1 + p

min
1

)
= q

(
v1 − pmin1

)
+ (1− q)

(
v2 − pmin1

)

−q (1− q) η (λ− 1) (v1 − v2)

⇔ q =
pmin1 − v2

η (λ− 1)
(
pmin1 + v2

) .

Therefore, in both cases we have that

q =
p2 − v2

η (λ− 1) (p2 + v2)
≡ q∗.

Finally, notice that

pmax2 − v2
η (λ− 1) (pmax2 + v2)

>
pmin1 − v2

η (λ− 1)
(
pmin1 + v2

) ⇔ pmax2 > pmin1

and

pmax2 − v2
η (λ− 1) (pmax2 + v2)

=

1+ηλ
1+η v2 − v2

η (λ− 1)
(
1+ηλ
1+η v2 + v2

)

=
1

2 + η + ηλ

<
1

2

for any η > 0 and λ > 1. Hence, q∗ < 1
2 . This concludes the proof of the lemma. �

Proof of Proposition 5: Suppose v2 − c2 ≥ v1 − c1 and that v2v1 <
(
1+η
1+ηλ

)2
. Hence, the rip-off price

for product 2 is equal to pmax2 and the seller will prefer to use a limited-availability scheme if and only

if

q∗
(
pmin1 − c1

)
+ (1− q∗) (pmax2 − c2) ≥ v2 − c2

⇔



1+ηλ
1+η v2 − v2

η (λ− 1)
(
1+ηλ
1+η v2 + v2

)



(
1 + η

1 + ηλ
v1 − c1

)
+


1−




1+ηλ
1+η v2 − v2

η (λ− 1)
(
1+ηλ
1+η v2 + v2

)





(
1 + ηλ

1 + η
v2 − c2

)
≥ v2−c2.

(19)

Solving condition (19) for v1 yields

v1 ≥
1 + ηλ

1 + η

[
(1 + η)2 − ηλ (1 + ηλ)

]
v2 + (1 + η) (c1 − c2)

1 + η
.

On the other hand, if v2
v1
≥
(
1+η
1+ηλ

)2
the rip-off price for product 2 is equal to pmin1 and the seller

will prefer to use a limited-availability scheme if and only if

q∗
(
pmin1 − c1

)
+ (1− q∗)

(
pmin1 − c2

)
≥ v2 − c2
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⇔



1+η
1+ηλv1 − v2

η (λ− 1)
(
1+η
1+ηλv1+v2

)



(
1 + η

1 + ηλ
v1 − c1

)
+


1−




1+η
1+ηλv1 − v2

η (λ− 1)
(
1+η
1+ηλv1+v2

)





(
1 + η

1 + ηλ
v1−c2

)
≥ v2−c2.

(20)

Solving condition (20) for v1 yields

v1 ≥
1 + ηλ

1 + η

[
c1 − c2
η (λ− 1) − v2

]
.

The conditions for when v2 − c2 < v1 − c1 can be derived in a similar fashion. �

Proof of Proposition 6: First, we prove that if the seller can create artificial substitutes, a combina-

tion limited availability, bargains and rip-offs always yields higher profits than perfect availability. Let

v1 − c1 > v2 − c2 so that the maximum level of profits the seller can achieve with perfect availability is

v1 − c1. If the seller can create perfect substitutes for item 1, then her profits are equal to

q̂
(
p∗1,1 − c1

)
+ (1− q̂)

(
pmin1 − c1

)

where q̂ = q (η, λ, v, v, c, c). Then, it suffices to show that

q̂

(
1 +

2 (1− q̂) η (λ− 1)
1 + (1− q̂) η (λ− 1)

1 + η

1 + ηλ

)
+
1 + η

1 + ηλ
(1− q̂) > 1

⇔ q̂ >
1 + η (λ− 1)
η + λη + 2

.

Substituting for q̂ yields

2 + 2λη − 2η2 + 2λη2 −
√
2 (η + 1) (λη − η + 1)

√
η + λη + 2

η (λ− 1) (η + λη + 2) > 0

⇔ 2η (λ− 1) (λη − η + 1)
(
2η2 + 3η + 1

)
> 0

which is of course true for any η > 0 and λ > 1. A similar argument applies if v1 − c1 ≤ v2 − c2.
Next, we prove the first part of the proposition. Define π1,2 ≡ π

(
p∗1,2, p

min
2 , q; c1, c2

)
, π2,1 ≡

π
(
pmin1 , p∗2,1, q; c1, c2

)
, π1,1 ≡ π

(
p∗1,1, p

min
1 , q̂; c1, c1

)
and π2,2 ≡ π

(
p∗2,2, p

min
2 , q̂; c2, c2

)
. Recall that q =

argmax
q
π
(
p∗1, p

min
2 , q; c1, c2

)
, q = argmax

q
π
(
pmin1 , p∗2, q; c1, c2

)
and let q̂ = argmax

q
π
(
pmini , p∗i,i, q; ci, ci

)
,

for i ∈ {1, 2}. If v1 = v2 and c1 = c2, then pmin1 = pmin2 , p∗1,2 = p
∗
1,1 = p

∗
2,2 = p

∗
2,1 and q = 1 − q = q̂ so

that π1,1 = π1,2 = π2,1 = π2,2.

Suppose to change v1 by dv1 and c1 by dc1 with either dv1 > dc1 ≥ 0 or dv1 ≥ 0 > dc1. By the

envelope theorem the effect of these changes on profits are

dπ1,2 '
∂π1,2

∂v1
dv1 +

∂π1,2

∂c1
dc1 = q

∂p∗1,2

∂v1
dv1 − qdc1

dπ2,1 '
∂π2,1

∂v1
dv1 +

∂π2,1

∂c1
dc1 =

[
q
1 + η

1 + ηλ
+
(
1− q

) ∂p∗2,1
∂v1

]
dv1 − qdc1

dπ1,1 '
∂π1,1

∂v1
dv1 +

∂π1,1

∂c1
dc1 = q̂

[
∂p∗1,1

∂v1
dv1 − dc1

]
+ (1− q̂)

[
1 + η

1 + ηλ
dv1 − dc1

]
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and

dπ2,2 = 0.

By substituting and re-arranging, we have that dπ1,1 > dπ2,1 since


q̂ + 2 (1− q̂) η (λ− 1) q̂

1 + η (λ− 1) (1− q̂)
1 + η

1 + ηλ
+
(
1− q̂ − q

) 1 + η

1 + ηλ
−
2qη (λ− 1)

(
1− q

)

1 + η (λ− 1) q
1 + η

1 + ηλ


 dv1 >

(
1− q

)
dc1

⇔ dv1 > dc1

where the last inequality follows from 1− q = q̂. Similarly, dπ1,1 > dπ1,2 since
[
q̂ +

2 (1− q̂) η (λ− 1) q̂
1 + η (λ− 1) (1− q̂)

1 + η

1 + ηλ
+ (1− q̂) 1 + η

1 + ηλ
− q + 2 (1− q) η (λ− 1) q

1 + η (λ− 1) (1− q)

]
dv1 > (1− q) dc1

⇔
[

2η (λ− 1) q
1 + η (λ− 1) (1− q)

(
2 + ηλ+ η

1 + ηλ

)
+
1 + η

1 + ηλ

]
dv1 > dc1

where the last inequality follows from q = q̂ > 1
2 and dv1 > dc1.

Finally, consider the case in which v1 − c1 ≤ v2 − c2. Again, let’s start with v1 = v2 and c1 = c2
and suppose to change v2 by dv2 and c2 by dc2 with dc2 ≤ dv2 < 0 so that v1 − c1 ≤ v2 − c2. By the
envelope theorem the effect of these changes on profits are

dπ1,2 '
∂π1,2

∂v2
dv2 +

∂π1,2

∂c2
dc2 =

[
q
∂p∗1,2

∂v2
+ (1− q) 1 + η

1 + ηλ

]
dv2 − (1− q) dc2

dπ2,1 '
∂π2,1

∂v2
dv2 +

∂π2,1

∂c2
dc2 =

(
1− q

) ∂p∗2,1
∂v2

dv2 −
(
1− q

)
dc2

dπ1,1 = 0

and

dπ2,2 '
∂π2,2

∂v2
dv2 +

∂π2,2

∂c2
dc2 =

[
q̂
∂p∗2,2

∂v2
+ (1− q̂) 1 + η

1 + ηλ

]
dv2 − dc2.

By substituting and re-arranging, we have that dπ2,1 ≥ dπ1,2 since

(
1− q

)
(dv2 − dc2) ≥ (1− q)

{[
2η (λ− 1) q

1 + η (λ− 1) (1− q)
2 + ηλ+ η

1 + ηλ
+
1 + η

1 + ηλ

]
dv2 − dc2

}

⇐ 2η (λ− 1) q
1 + η (λ− 1) (1− q)

2 + ηλ+ η

1 + ηλ
+
1 + η

1 + ηλ
≥ 1

where the last inequality follows from q = 1− q > 1
2 and 0 > dv2 ≥ dc2.

Finally, we have that dπ2,1 ≥ dπ2,2 if and only if

(
1− q

)
(dv2 − dc2) ≥ q̂

[
1 +

2 (1− q̂) η (λ− 1)
1 + η (λ− 1) (1− q̂)

1 + η

1 + ηλ

]
dv2 + (1− q̂)

1 + η

1 + ηλ
dv2 − dc2

⇔ 0 ≥ 1 + η

1 + ηλ

[
2η (λ− 1) q̂

1 + η (λ− 1) (1− q̂) + 1
]
dv2 − dc2 (21)
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where the last inequality follows from q̂ = 1 − q. Notice that, although dv2 − dc2 > 0, condition (21)
might hold. Therefore, let ṽ2 be the value of v2 for which condition (21) binds. This completes the

proof of the proposition. �

Proof of Lemma 9: We already know that if a consumer of type v is indifferent between the plan of

buying only the bargain and the plan of always buying, then his equilibrium expected utility must be

negative since he is paying a price above his valuation and, moreover, he is facing uncertainty over the

price. Next, consider the equilibrium expected utility for a consumer with type v ∈
(
v, vh1

]
. If he plans

to buy only the bargain item, his expected utility in equilibrium equals

(1− q)
[
v − pmin1 (v)

]
− η (λ− 1) q (1− q)

(
v + pmin1 (v)

)
. (22)

Differentiating (22) with respect to v yields (1− q) [1− η (λ− 1) q]. On the other hand, if he plans
to always buy, his expected utility in equilibrium is

v − (1− q) pmin1 (v)− qp∗1 (v)− η (λ− 1) q (1− q)
[
p∗1 (v)− pmin1 (v)

]
. (23)

Differentiating (23) with respect to v yields 1. Therefore, all consumers with type v ∈
(
v, vh1

]
prefer

the plan to always buy to the plan to buy only the bargain item.

Next, consider the plan of buying only the rip-off item and nothing otherwise. In this case the

consumers’ equilibrium expected-utility is

q [v − p∗1 (v)]− η (λ− 1) q (1− q) ([v + p∗1 (v)]) . (24)

It is easy to see that (23) is always larger than (24) since

v [1 + η (λ− 1) q] > pmin1 (v) [1− η (λ− 1) q]

and therefore we have proved that all consumers with type v ∈
(
v, vh1

]
prefer to always buy.

Last, consider the consumers with type v ∈
[
vl1, v

)
. For these types, not buying is a credible plan

since pmin1 (v) > pmin1 (v). Therefore, they are going to plan to buy with positive probability only if

they can make (weakly) positive utility in expectation. From (22) we have that a consumer’s expected

utility when planning to buy the bargain item and nothing otherwise is non-decreasing in his own type

if and only if 1 − η (λ− 1) q ≥ 0. If this condition holds, then since a type-v consumer gets strictly

negative utility in equilibrium so would a a type-v if he were to plan to buy; therefore, the latter would

prefer planning not to buy. This argument does not work when 1 − η (λ− 1) q < 0 because in this

case a consumer’s expected utility is decreasing with his type when he plans to buy only the bargain.

However, the utility of a type-v consumer when planning to buy only the bargain is equal to

(1− q)
[
v − pmin1 (v)

]
− η (λ− 1) q (1− q)

[
v + pmin1 (v)

]

= (1− q)
{
v − pmin1 (v)− η (λ− 1) q

[
v + pmin1 (v)

]}

which is negative for 1− η (λ− 1) q < 0. Therefore, also in this case consumers prefer not to buy. By
the same argument, it is easy to see that these consumers would never plan to buy only the rip-off

either and this concludes the proof. �

Proof of Proposition 7: From Lemma 9 we know that for a given marginal type v, types above v

plan to always buy and types below v plan to never buy. Then, the problem reduces to a standard
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monopoly-pricing one where the seller charges an expected price equal to

qp∗1 (v) + (1− q) pmin1 (v) = Φv

where Φ ≡ 4−2η2+η2λ2+4λη+η2λ−2
√
2(2+η+ηλ)(1+η)(1+ηλ−η)

η(λ−1)(1+ηλ) > 1. Let v̂1 be the profit-maximizing marginal

type. In equilibrium a consumer of type-v attains a positive expected utility if and only if

v ≥ (1− q) pmin1 (v̂1) + qp
∗
1 (v̂1) + η (λ− 1) q (1− q)

[
p∗1 (v̂1)− pmin1 (v̂1)

]
≡ vs1

and this concludes the proof. �

Proof of Proposition 8: Suppose p1 = p
min
1 ≡ 1+η

1+ηλv. Then, not buying is not a credible plan for the

consumers and for a given q their perceived expected utility when planning to buy item 1 if available

and nothing otherwise is

EU [{1,∅} | {1,∅}] = q̃
(
v − pmin1

)
− q̃ (1− q̃) η (λ− 1)

(
v + pmin1

)
(25)

where q̃ = χq > q. Consumers will be indifferent between the above plan and the plan to always if and

only if

p2 ≤ v +
[
2η (λ− 1) q̃
1 + η (λ− 1) q̃

]
pmin1 ≡ p∗2.

This pair of prices provides the seller with profits equal to

qpmin1 + (1− q) p∗2.

The above expression is maximized at

qχ =

√
2 (η + 1) (η + λη + 2) (−χη + λχη + 1)

χη (λ− 1) (η + λη + 2) − 1

χη (λ− 1) .

Next, notice that expression (25) is a continuous function of q̃, and its value is 0 for q̃ = 0 and

v − pmin1 > 0 for q̃ = 1. Furthermore, its derivative evaluated at q̃ = 0 is equal to

v − pmin1 − η (λ− 1)
(
v + pmin1

)
= −η (λ− 1)

1 + ηλ
(1 + η + ηλ) v < 0

and therefore it must have another zero for q̃ ∈ (0, 1); it follows that

0 = q̃
(
v − pmin1

)
− q̃ (1− q̃) η (λ− 1)

(
v + pmin1

)

⇔ χqχ =
1 + η + ηλ

2 + η + ηλ

⇔ χ =
η3λ3 + η3λ2 + 4η2λ2 − η3λ+ 4η2λ+ 8ηλ− η3 + 6η + 6

2 (1 + η) (η + ηλ+ 2)
≡ χ̃.

Therefore, for χ ≥ χ̃ consumers’ perceived expected utility is zero. But then,the seller can set

q = 1
χ
and p1 = v without affecting consumers’ perceived expected utility. In this case, since consumers

believe they will consume item 1 at price v for sure, the highest price they are willing to pay for item
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2 if they do not find item 1 available is

p2 = v

(
1 +

η (λ− 1)
1 + ηλ

)

and it is easy to see that this scheme provides the seller with higher profits since consumers’ realized

consumption utility is at most zero in any contingency. �

B Partial Commitment

While retailers frequently advertise their good deals, it is rather uncommon to see a store publicizing

its high prices. Therefore, consistently with this observation about stores’ advertising patterns, in this

section I assume that in period 0 the seller commits only to the price of the bargain pmini , i = 1, 2, and

its degree of availability. In this case, consumers form rational expectations about the price of the item

that is not publicly advertised.

Suppose that the products are close substitutes and the seller uses item 1 as the bargain by an-

nouncing that she has q units of it available for sale at price pmin1 . Once at the store, a buyer who had

planned to buy item 1 if available and item 2 otherwise will follow his plan and buy item 2 when this

is the only item left in the store if

U [(v2, p2) | {1, 2}] ≥ U [(0, 0) | {1, 2}]

⇔ p2 ≤
(1 + ηλ) v2 + η (λ− 1) q

(
1+η
1+ηλ

)
v1

1 + ηλq + η (1− q) . (26)

Notice that this price is higher than the one we found under full commitment because now the price

of the rip-off is the highest price consumers are willing to pay ex-post. However, for the consumers to

be willing to make the plan of always buying to begin with, the seller’s announced degree of availability

for the bargain must be such that

EU [{1, 2} | {1, 2}] ≥ EU [{2,∅} | {2,∅}] . (27)

To have an optimum for the seller both conditions (26) and (27) have to bind, defining a system of

two non-linear equations in q and p2. The relevant solution is

p∗2 =
v1 (1 + η) (1 + 2η) + v2 (1 + ηλ) (1 + η + ηλ)−

√
Y

2η (1 + ηλ)

q =
v2λ (1 + ηλ)− 1+ηλ

2η(1+ηλ)

[
v1 (1 + η) (1 + 2η) + v2 (1 + ηλ) (1 + η + ηλ)−

√
Y
]

v1 (1 + η) (λ− 1) + v2 (1 + ηλ) (λ− 1)

where

Y ≡ v21 (1 + η)2 (2η + 1)2+v22 (1− η + ηλ)2 (1 + ηλ)2−2v1v2 (1 + η) (1 + ηλ)
(
−η − 2η2 − λη + 2η2λ− 1

)
.

Similarly, if the goods are close substitutes and the seller uses item 2 as the bargain, degree of
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availability of item 1 and its price are

p∗1 =
v1η (λ− 1) (1 + ηλ) + v2 (1 + 2η) (2 + η + λη)−

√
Z

2η (1 + ηλ)

q =
v2

(
2λ− η − 2η2 − ηλ− 2η2λ+ ηλ2 − 2

)
− v1λ

(
η − η2 + ηλ+ η2λ+ 1

)

v2 (λ− 1) (η + λη + 2)

+

1+ηλ
2η(1+ηλ)

[
v1η (λ− 1) (1 + ηλ) + v2 (1 + 2η) (2 + η + ηλ)−

√
Z
]

v2 (λ− 1) (η + ηλ+ 2)

where

Z ≡ v21η2 (1 + λ)2 (1 + ηλ)2+v22 (1 + 2η)2 (2 + η + λη)2−2ηv1v2 (−λ+ 2η + 2ηλ+ 3) (1 + ηλ) (2 + η + ηλ) .

Compared to the situation where she is able to commit in advance to both prices, now the price of

the rip-off is higher but the degree of availability of the bargain is higher as well. Intuitively, since the

seller is charging a higher price for the rip-off, and the consumers anticipate this, she must compensate

them with a higher ex-ante chance of making a deal otherwise they would not plan to always buy.

Thus, given both prices, the seller is not choosing the degree of availability that maximizes her profits.

This is because by not committing in advance to the price of the rip-off, the seller must use the degree

of availability of the bargain to induce the consumers to select the to plan to always buy. Furthermore,

the optimal degree of availability with full commitment takes into account also the difference in the

marginal costs of the two items, whereas with partial commitment it does not. Therefore, the seller’s

profits are lower when she cannot commit to both prices.

Unfortunately, in this case it is hard to obtain a full characterization, like the one in proposition

1, for when the seller would find it profitable to use a limited-availability strategy made of bargains

and rip-offs. Nevertheless, a combination of bargains and rip-offs might be profit-maximizing as the

following example shows.

Example 7 Let v1 = 250, v2 = 230, c1 = 20 and c2 = 10. If the seller produces only one good, then

she would produce item 1 and price it at p1 = 250, obtaining a profit of 230. Let η = 1 and λ = 2

and suppose the seller uses item 1 as a bargain by pricing it at pmin1 = 500
3 . In this case the seller will

also commit to sell q = 2
119

√
3459 − 75

119 units of item 1 and will price item 2 at p∗2 = 710 − 20
3

√
3459,

obtaining a profit of 250.15.

Moreover, example 7 shows that also in this case of partial commitment the seller might prefer to use

the superior item as the bargain, exactly for the same reason as in the analysis with full commitment.45.

45For the parameters in example 7, if the seller were to use item 2 as the bait by pricing it at pmin2 = 460

3
then the

optimal degree of availability of the bait would be 1−q = 1

23

√
489− 12

23
and the price of item 1 would be p∗1 = 700− 50

3

√
489

for a total profit of 237. 52. Less than what the seller can obtain by using item 1 as the bait, but still better than what
she would make by selling only item 1.
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